
Journal of Pure and Applied Algebra 145 (2000) 59–73
www.elsevier.com/locate/jpaa

A proof of the simple connectivity at in�nity of Out F4
John Rickert

Department of Mathematics; University of Dallas; Irving; TX 75062; USA

Communicated by A. Blass; received 1 August 1997; received in revised form 5 February 1998

Abstract

A �nitely presented group G is said to be simply connected at in�nity if, for any compact set
C in the universal cover X̃ for the standard 2-complex for G, there exists a compact set D such
that any loop in X̃ \D is homotopically trivial in X̃ \C. Suppose that F4 is a free group on four
generators, Aut F4 its automorphism group, and Inn F4 the subgroup of inner automorphisms. We
use direct, elementary means to show that the outer automorphism group of rank 4, Aut F4=Inn F4
is simply connected at in�nity. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 20F32

0. Introduction

Suppose that G is a group with �nite presentation 〈A;R〉. Let X be the standard
2-complex corresponding to this presentation and X̃ its universal cover. The 1-skeleton
of X̃ is the Cayley graph corresponding to the presentation 〈A;R〉. If G is in�nite,
then X̃ is in�nite and therefore may be said to have “end properties”. In particular, X̃
is simply connected at in�nity if, for any compact set C ⊂ X̃ , there is a compact set
D containing C such that any loop in X̃ \D is homotopically trivial in X̃ \C. If X̃ is
also 1-ended, then X̃ is said to be 1-connected at in�nity. It can be shown that simple
connectivity at in�nity does not depend on the presentation chosen for the �nitely
presented group G [7], and thus the property is said to apply to G itself.
The group we consider is the outer automorphism group of a free group of rank 4,

Out F4. Out F2 has in�nitely many ends, and Vogtmann [8] showed that Out Fn is
1-ended for n≥ 3 and simply connected at in�nity for n≥ 5. Our Main Theorem is that
Out F4 is simply connected at in�nity. It should be reasonably clear that our argument
extends to the cases where n¿4, but we leave details of this to the reader. Recently,
Bestvina et al. [1] have completely answered the question of the higher connectivity
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at in�nity of Out Fn by using a Morse-theoretic approach on ‘Outer Space’. The proof
we o�er here we believe to be conceptually simple and concrete, using elementary
methods of geometric group theory.

1. Preliminaries

Let F4 be a free group of rank 4, Aut F4 its automorphism group, Inn F4 its inner
automorphism group, and Out F4 =Aut F4=Inn F4 its outer automorphism group. In
order to show simple connectivity at in�nity for Out F4, it is su�cient to establish this
property for some group of �nite index.
Consider the exponent sum homomorphism �̂ :Aut F4→GL4Z de�ned in the fol-

lowing way [5]. Since any homomorphism from a free group is determined by its
action on the generators, each automorphism � of F4 may be described as a quadru-
ple (a1 7→W1(a1; : : : ; a4); : : : ; a4 7→W4(a1; : : : ; a4)), where Wi(a1; : : : ; a4) is a word in the
generators a1; : : : ; a4 for 1≤ i≤ 4. Then the ij entry of the matrix �̂(�) is de�ned to
be the exponent sum of ai in Wj(a1; : : : ; a4). Composing �̂ with the homomorphism
det :GL4Z→ Z2 yields a map �̂; the kernel of �̂ is a subgroup of index 2 in Aut F4
and is called the special automorphism group, S Aut4. As Inn F4⊂ S Aut4, there are
induced maps � :Out F4→GL4Z and � :Out F4→ Z2. The kernel of � has index 2 in
Out F4 and will be called the group of special outer automorphisms, SOut4. It will be
shown that SOut4 is simply connected at in�nity.

De�nitions and conventions. Assume F4 = 〈a; b; c; d〉. The inverse of a is denoted �a;
similarly for the other generators. Except where noted, i; j; k; etc. mean variables with
values ranging over the generators of F4 and their inverses. For j 6= i; �–, Eij is the
automorphism which sends i 7→ ij, leaving all other generators ( 6=�–) �xed. (These are
called “Nielsen automorphisms”.) Occasionally, the subscripts will be dropped, for ease
of notation. Automorphisms will be composed from right to left, in contrast to many
writers, e.g., [2]. The commutator is taken to be [�; �] = ���−1�−1. Generators of F4
will be said to be positive, barred generators negative. Eij is called positive if i; j
have the same sign. Observe that if E is positive, then �(E) has only nonnegative
entries. The same is true for any product of positive generators of Out Fn with positive
exponents.
The group SOut4 acts on X̃ on the left as a group of covering transformations, so

that X is the quotient space of SOut4\X̃ . We will also be interested in an intermediate
cover IO4\X̃ of X , where IO4 is a normal subgroup of SOut4 to be described below.

Lemma 1.1. SOut4 has presentation 〈Eij;R〉; where i; j∈{a; b; c; d}; j 6=�– and R is the
following set of relations:

E−1
ij =Ei �—; (1)

[Eij; Ek l] = 1 if k =∈{i; j; �—} and l =∈{i; �–}; (2)
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[Ei �—; Ej �k ] =Ei �k ; k =∈{i; �–}; (3)

wij =w�– �—; where wij =E �—–E�–jEj i; (4)

w4ij =1; (5)

∏

j 6= i
EjiE �— i=1; with j positive: (6)

Proof. Gersten [2] showed that S Aut4 has presentation given by 〈Eij;R ′〉, where R ′

consists of relations (1)–(5). Relation (6) trivializes the inner automorphisms.

Remark. The 1-skeleton of the universal cover X̃ of the standard 2-complex for SOut4
with presentation given by Lemma 1.1 is the Cayley graph for SOut4 relative to the
generators {Eij}. The vertices of the 1-skeleton correspond to elements of SOut4; and
the edges are labeled by generators. Hence; � : SOut4→ SL4Z may be regarded as
mapping from the vertices of X̃ to SL4Z .

Main Theorem. Out F4 is simply connected at in�nity.

Proof. It is su�cient to establish simple connectivity at in�nity for SOut4, a subgroup
of index 2 in Out F4. Let X̃ be the universal cover of the standard 2-complex for the
presentation in Lemma 1.1. Suppose that C ⊂ X̃ is compact. The �rst part of Mihalik’s
proof of Jackson’s theorem applies: A subspace [IO]M for some positive integer M
and a compact set D exist such that any loop ′′ in X̃ \D is homotopic in X̃ \C to a
loop ′ in [IO]M (Lemmas 2.1 and 2.2). (If IO4 were known to be �nitely presented,
the theorem would now follow at once.) By Lemma 2.2 ′ is homotopic in X̃ \C to
a loop  which is in turn homotopic in X̃ \C to each of its translates by Enab; n≥ 0.
Finally, Lemmas 4.1–5.3 show that each of these translates of  bounds a disk, and
that for all su�ciently large n, these disks lie in X̃ \C.

Corollary. Out F4 is 1-connected at in�nity.

For, Out F4 is connected at in�nity as well.

2. Reduction to the subspace [IO]M

A preliminary simpli�cation will allow us to assume that the loop to be contracted
lies in a certain kind of subspace of X̃ .
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The exact sequence

1→ IA4→Aut F4→GL4Z→ 1 (7)

induces the exact sequence:

1→ IO4→ SOut4→ SL4Z→ 1; (8)

where IA4 and IO4 are the kernels of �̂ and �, respectively. Magnus [4] found that
IA4, and hence IO4 is generated by the set of all xij and xij k , where xij =EijE�–j and
xij k = [Eij; Ei k ].
In what immediately follows, we assume that the presentation for SOut4 has been

expanded to include the xij; xij k generators above and their de�ning relations. Also
added are relations of the form Ei �j xk lEij = rij k l and Ei �j xk lmEij = rij k lm, where rij k l
and rij k lm are products of xij and xij k . This will not a�ect simple connectivity at
in�nity but aids in the construction of homotopies. For the time being, we pass to the
universal cover of the space corresponding to the expanded presentation. This universal
cover is obtained from the previous one by adding only �nitely many 1- and 2-cells
at each vertex of the previous universal cover.

De�nition. The subspace [IO]⊂ X̃ consists of the vertices in the coset IO4 and the
edges {xij; xij k} connecting these vertices. The subspace [IO]k is Ekab[IO], the translate
of [IO] by Ekab. Note that every vertex in [IO]k maps under � to the same matrix, that
[IO]k ∩ [IO]m= ∅ unless k =m, and [IO] is a Cayley graph for IO4 with generating set
{xij; xij k}.

In [6], Mihalik proves the following extension of a theorem of Jackson [3].

Theorem. If 1→H→G→K→ 1 is a short exact sequence of in�nite; �nitely gene-
rated groups with G �nitely presented; K 1-ended and H contained in a �nitely
presented subgroup L of in�nite index in G; then G is simply connected at in�nity.

In (8), IO4 is �nitely generated; SL4Z 1-ended, and SOut4 �nitely presented. It is not
known, however, whether IO4 is contained in a �nitely presented subgroup of in�nite
index in SOut4. But Mihalik’s proof of his Lemma 8 in the proof of the above theorem
immediately implies the following:

Lemma 2.1. Let C′ ⊂ X̃ be compact. There exist a compact set D containing C′ and
a positive integer K such that; for every k ≥K and every loop ′′ in X̃ \D; ′′ is
homotopic to a loop ′ in [IO]k by a homotopy whose image misses C′.

For n≥ 1; �(Enab) is an element of in�nite order in SL4Z . Now recall that a ray is
a continuous map with domain [0;∞) and a map is proper if the inverse image of
every compact set is compact. Thus, for n≥ 1, ray(Eab)≡ ray(Enab) is proper in X̃ and
projects to a proper ray in the quotient space IO4=X̃ .
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De�nition. The standard ray is the ray Enab; n≥ 1 in X̃ .

Now since C has compact image in SL4Z , there is an integer M ′ such that the
maximum entry of any matrix in �(C) is less than M ′. The subspace [IO]m is therefore
disjoint from C for all m≥M ′.

Stipulation. Let C be a compact subcomplex of X̃ . Let D be determined by
Lemma 2.1, and let M = max{K;M ′}, where K is given by the preceding lemma
and M ′ is given by the discussion above. Hence, any loop ′′ in X̃ \D is homotopic to
a loop ′ in [IO]M by a homotopy in X̃ \C, and [IO]M is disjoint from C.

The proof of the Main Theorem will be completed by establishing the following
claim.

Claim 2.1. With D given by the previous stipulation; any loop in X̃ \D is homotopi-
cally trivial in X̃ \C.

Lemma 2.2. (1) Let any loop ′ in [IO]M be given. Then there is a homotopy in
X̃ \C from ′ to a loop  such that  is an edge path; each of whose directed edges
are labeled by members of {Eij : j 6= i; �–}; and such that every vertex in the homotopy
projects under � to a matrix with maximum value at least M.
(2) Let v be a vertex in X̃ ; and let |�(v)| be the maximum value of the entries in

�(v). If �(v) has only nonnegative entries and |�(v)| ≥M; and if P is any product of
positive generators; then |�(vP)| ≥M . Hence; vP =∈C.
(3) Let v be a vertex such that �(v) has only nonnegative entries. For any positive

number N; there exists a positive number L such that; if P is any product of positive
generators with length at least L; then |�(vP)|¿N .

Proof. (1) Now ′ is a loop with edge labels in {x±1ij ; x±1ij k }. First, it may be assumed
that all of the arguments i; j; k in xij and xijk are positive. When negative arguments
are involved, the following equations show how to convert to positive ones only. With
i; j; k positive, we have

xi �—= x−1ij ; x �–j = xij; x �– �—= x−1ij ;

xij �k = xjk xikj xj �k ; xi �—k = xkj xikj xk �—; x �–jk = [xij; xjk ]xikj;

xi �— �k = xkj xi �kj xk �—; x �–j �k = [xij; xi �k ]xi �kj; x �– �—k = [xi �—; xik ]xik �—;

x �– �— �k = [xi �—; xi �k ]xi �k �—:

Then xij is homotopic to EijE−1
�– �— and xijk is homotopic to EijEikE−1

ij E
−1
ik with i; j; k

all positive. Thus ′ is homotopic to a path  in {Eij} in such a way that |�(g)| ≥M
for each vertex g in , by a homotopy with image missing C.
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(2) Since �(v) has no negative entries and |�(v)| ≥M , and since �(Eij) adds one
column of �(v) to another when i; j have the same sign, it follows that |�(vP)| ≥M
for all positive products P.
(3) Each column of �(v) has at least one positive entry and no negative en-

tries, and the fact that each generator E is positive implies that |�(vE)| ≥ |�(v)|. The
statement thus holds if P is long enough to have N + 1 occurrences of the same
generator.

3. Standard slides

Lemma 2.2 allows us to assume that the loop to be contracted is a product of {E±1
ij }

and that it has a contraction using basic relators not involving any xij; xijk . Hence, for
the remainder of the proof of the xij; xijk and all relators in which they appear are
deleted, yielding the presentation for SOut4 of Lemma 1.1.
In order to �nd a contracting homotopy for  outside of C, we �rst describe the

process of “sliding” , and edges in general, along the standard ray.

Lemma 3.1. Each Eij commutes with at least one of Eab; Eba; Ecd; Edc:

Proof. By direct calculation Eij commutes with Ekj, and each of a; b; c; d appears as
the second argument in the set {Eab; Eba; Ecd; Edc}.

De�nition. Let e∈{Eij} be an edge in X̃ with initial vertex e0 and terminal vertex
e1, and let n≥ 1. The nth standard slide of e along Enab is the disk chosen to be as
follows:

(1) If e commutes with Eab, then the nth standard slide of e is the disk based at
e0 with boundary EnabeE

−n
ab e

−1 �lled in with copies of the 2-cell corresponding to the
basic relator [Eab; e].
(2) If e does not commute with Eab but commutes with Edc, then the nth standard

slide of e is the disk based at e0 with boundary

EnabE
n
dcE

−n
ab eE

n
abE

−n
dc E

−n
ab e

−1;

�lled in with copies of the 2-cell corresponding to the basic relator [Edc; e] and of the
2-cell corresponding to the basic relator [Eab; Edc] in the obvious way.
(3) Similarly, if e does not commute with Eab or Edc but commutes with Ecd, then

the nth standard slide of e is the disk based at e0 with boundary

EnabE
n
cdE

−n
ab eE

n
abE

−n
cd E

−n
ab e

−1;

�lled in analogously to the case given in (2).
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Fig. 1. Sketch of plan for contracting  outside of C.

(4) Finally, if e commutes with none of Eab; Ecd; Edc, then the nth standard slide of
e is the disk based at e0 with boundary

EnabE
n
dcE

−n
ab E

n
baE

−n
dc eE

n
dcE

−n
ba E

n
abE

−n
dc E

−n
ab e

−1;

�lled in also analogously to the case given in (2).
The edge e occurring in the middle of its standard slide is called its translate along

the standard slide.
The choice of standard slides yields the following.

Lemma 3.2. If e is an edge in ; then the standard slide of e along Enab is disjoint
from C for all n≥ 1. Hence; for all n≥ 1; the “lateral homotopy” formed by the nth
slide of  is disjoint from C.

Proof. By Lemma 2.2(1), the vertices of e project under � to matrices with nonnegative
entries whose maximum values are at least M . The standard slides have both arguments
positive on each ray used, and hence, if v is a vertex in the slide of e, v= e0P or
v= e1P; where e0 is the initial vertex of e and e1 its terminal vertex, and P is a product
of positive generators. Lemma 2.2(2) yields that v =∈C:

Using these lemmas the proof of the Main Theorem is reduced to proving Claim 3.1
below. First, a contracting homotopy H is taken for  using copies of basic relators in
the presentation for SOut4. As H is slid along Enab, the slide of  is disjoint from C,
according to the theorem just proved. The slides of the basic relators on the interior
of H may still intersect C. But for each n≥ 1, the nth slide of each of these basic
relators along Enab can be capped (contracted) by a disk, and these disks are disjoint
from C for all su�ciently large n. The caps together with the lateral homotopy provide
a contraction for  in X̃ \C. (See Fig. 1.)

Claim 3.1. Suppose that A is a copy of a 2-cell corresponding to a basic relator in
H; and let An consist of A and the nth standard slide of each of its edges. Then there
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is a disk Bn⊂ X̃ with @Bn= @An such that; for all su�ciently large n; Bn is disjoint
from C.

4. The commutation complex

In order to specify the disks Bn, we make extensive use of the commutation relations
in SOut4.

De�nition. The commutation complex � has vertices {Eij: Eij positive} and an undi-
rected edge between Eij and Ekl if Eij and Ekl commute.

Remark. Lemma 3.1 shows that � is connected.

De�nition. The standard commutation path from Eij to Eab in � is the shortest path
obtained by using the edges in Star�(Eij) and the path Ecd − Eab − Edc − Eba; going
through Edc in preference to Ecd.

De�nition. If v is a vertex in X̃ ; n≥ 1; and E1; E2 commute, then a simple commuta-
tion path in X̃ of order n from vEn1 to vE

n
2 with origin v is the path E

n
2E

−n
1 with initial

point vEn1 . This path will be said to correspond to the edge (E1; E2) in �. Observe
that the resulting loop based at v encloses a disk composed of commutation relations.
A commutation path in X̃ of order n is a concatenation of simple commutation paths
of order n with a common origin. For any vertex v∈ X̃ ; n≥ 1; and Eij; the stan-
dard commutation path in X̃ of order n is the commutation path from vEnij to vE

n
ab

corresponding to the standard commutation path in �.

The process of specifying the homotopies Bn mentioned above can now be continued.
The following lemma allows a translation of A “orthogonal” to the disk An.

Lemma 4.1. For each basic relation; there is some Exy that commutes with all of the
generators in the relation. Moreover; Exy can be chosen to be positive.

Proof. For relations (1) and (2) in Lemma 1.1, Eij is su�cient; for (3), Elk ; for (4)
and (5), Ekl; and for (6), Eji. By relation (1), it is possible to adjust the second
argument as needed so that both x and y have the same sign.

Remark. The preceding lemma does not hold when n=3:

De�nition. For each basic relator A in H , choose a positive generator E(A)xy such that
E(A)xy commutes with each edge in A. Then E(A)xy will be called orthogonal to A. When
a speci�c A is understood, the superscript on Exy will be omitted.

Let Exy be orthogonal to A. For each vertex v in A, there is a standard commutation
path from vEnab to vE

n
xy. Hence, the boundary of An together with AE

n
xy is comprised
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Fig. 2. The translate of A by Enxy and formation of sectors.

of “sectors” corresponding to each edge e of A. Speci�cally, if e has initial vertex
e0 and terminal vertex e1, the sector involving e has boundary eEnxy, the standard
commutation path from e1Enxy to e1E

n
ab, the edge path given by the standard slide of e

from e1Enab to e0E
n
ab; and the standard commutation path from e0Enab to e0E

n
xy. Because

standard commutation paths have been chosen, adjacent sectors attach coherently. (See
Fig. 2.)

Claim 4.1. Let A be a basic relator in H and e an edge in A: Then for all suf-
�ciently large n; the sector involving e with base on An is homotopically trivial in
X̃ \C:
That is; the translate of A together with the disks for the sectors outside of C yield

a disk Bn with @Bn= @An disjoint from C for all n su�ciently large.

To �ll in the sectors, we show �rst that the nth translate of e in its standard slide
and the translate of e by Enxy can be included into the boundary of a disk with a
convenient form.

Lemma 4.2. Suppose that e is a generator and [e; Eij] = [e; Exy] = 1. Then there
exists a sequence of generators Eij =E0−E1− · · ·−Er =Exy such that [e; Ep] = 1 and
[Ep; Ep+1]= 1 for all 0≤p¡r:

Proof. Without loss of generality, suppose that e=Eab; and let Z(Eab) be the vertices
in Star�(Eab). The statement holds trivially if either Eij or Exy =Eab. In the nontrivial
case, the claim holds because the subgraph of � restricted to the vertices Z(Eab)\Eab
is connected. See Fig. 3.
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Fig. 3. Z(Eab)\Eab.

Lemma 4.3. Suppose e is an edge in A with initial vertex e0 and terminal vertex
e1. Suppose also that e is translated by Enwz in its standard slide and that Exy is
orthogonal to A. Then there is a commutation path s in X̃ from e1Enwz to e1E

n
xy such

that e commutes with each edge in s: Hence; the loop based at e0Enwz with boundary
ese−1s−1 can be �lled in with basic commutation relations.

Proof. If Exy commutes with Ewz, then e, Exy, and Ewz commute pairwise. Hence,
the loop based at e0Enwz with boundary eE

n
xyE

−n
wz e

−1EnwzE
−n
xy can be �lled in with basic

commutation relations. Thus, s=EnxyE
−n
wz , a simple commutation path, su�ces. Observe

that this strip can be said to arise from �lling in the “box” spanned by e; Enxy; E
n
wz, since

the generators commute pairwise. In the general case, there is a commutation path s
from Ewz to Exy such that each edge in s commutes with e, by Lemma 4.2. The
resulting boxes attach coherently and provide the homotopy claimed.

Lemma 4.4. For all su�ciently large n; the strips given by Lemma 4.3 are disjoint
from C.

We prove Lemma 4.4 using the following lemma:

Lemma 4.5. Let E1; E2; E3 be positive generators that commute pairwise. Suppose
that K ⊂ X̃ is compact; and let Bn be the 3-dimensional box spanned by En1 ; E

n
2 ; and

E3. For all su�ciently large n; the projection under � of the strip with base En1 and
boundary En2E

−n
1 E3En1E

−n
2 E

−1
3 is disjoint from K .

Proof of Lemma 4.5. Each generator maps to an elementary matrix whose e�ect on
a matrix T is to add one column of T to another, and all generators are positive. The
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Fig. 4. The remaining loops to consider, commutation loops.

vertices in the strip correspond to En1E
k
2 , E

n
2E

k
1 , E

n
1E

k
2E3, and E

n
2E

k
1E3, where 0≤ k ≤ n.

By Lemma 2.2(3) the projection under � of the nth strip is disjoint from �(K) for all
n su�ciently large, and hence the strip itself is disjoint from K .

Proof of Lemma 4.4. Here an arbitrary vertex v∈ X̃ is the origin of the cube instead of
1∈ X̃ : Premultiplying all vertices by v−1 translates v to the identity and is an isometry
of X̃ . Ewz is positive by de�nition of standard slides, e may be taken in its positive
sense, and Exy may be assumed positive by Lemma 4.1. Lemma 4.5 applies to yield a
strip disjoint from v−1C: Translating back by v is also an isometry of the space, and
the translated strip is disjoint from C.

Observe that the sector under consideration has been partially �lled in by disks that
are disjoint from C for all n su�ciently large, and that the loops remaining are com-
posed of commutation paths in X̃ . Speci�cally, a commutation path from the terminal
vertex vEnwz of the translate of e in its standard slide to vE

n
ab, as part of the standard

slide; a path from vEnab to vE
n
xy by using the standard commutation path; and �nally,

a commutation path from vEnxy to vE
n
wz as given by the previous proposition. There is

likewise a loop based at the initial vertex of the translate of e in its standard slide.
(See Fig. 4.)
If these commutation loops can be contracted by disks that are disjoint from C for

su�ciently large n; Bn will be speci�ed: Bn consists of the translate of A by Enxy; the
strips from the translates of the edges of A to their translates by Enxy, and contracting
disks for the two commutation loops in each sector.
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5. Attaching 2-cells to the commutation complex and construction of homotopies

Lemma 5.1. Suppose that �n is a loop in X̃ with basepoint on the nth slide of A
such that �n corresponds to a loop in �. Then there is a disk �n with @�n= �n such
that �n is disjoint from C for all n su�ciently large.

Proof. First we consider triangles in the commutation complex. If E1; E2; E3 is a loop
in the commutation complex, then the generators commute pairwise. If v is the origin of
the loop in X̃ , then the loop has initial vertex vEn1 and boundary E

n
2E

−n
1 En3E

−n
2 En1E

−n
3 .

We let �n be the disk with the same boundary and origin vEn1E
n
2E

n
3 . Observe that �n

is obtainable by �lling in the cube spanned by En1 ; E
n
2 ; E

n
3 with origin v. The argument

from Lemma 4.4 shows that for all su�ciently large n; �n is disjoint from C. This
construction can obviously be extended to any triangulable loop in the commutation
complex.

Convention. If a homototopy corresponding to a loop � in � has been speci�ed, a 2-
cell is added to � with boundary �. By the previous remarks, each triangle in � bounds
a disk. Showing that � is simply connected in this sense means that a commutation
loop of order n in X̃ can be contracted; these contractions will be shown to be disjoint
from C for all su�ciently large n.

To complete the speci�cation of homotopies, � is regarded as having the following
arrangement. For each j positive, {Eij:Eij; E �ij}=Kj is a complete graph on six vertices,
and

⋃
jKj includes all the vertices in �. Thus, � can be considered a tetrahedron with

“vertices” Kj; and loops in � decompose into three kinds, up to a homotopy in � given
by the previous convention:
(1) Loops in a single Ki;
(2) Loops between Ki and Kj, i 6= j;
(3) Loops involving Ki; Kj; Kk ; i; j; k distinct.

Type (1) loops can be triangulated since Ki is a complete graph.
For Type (2), consider a loop between Ka and Kb. Since these graphs are both

complete, the loop may be assumed to have the following form: E1a − E2a − E3b −
E4b−E1a; E �–j here indicates the positive generator E �– �—; its inverse. Now E1a 6=Eba; E �ba
since [E1a; E4b] = 1. Suppose that E1a=Eca. Then E3b commutes with Eca, allow-
ing a triangulation, unless E3b=Ecb; Eab; E �ab; but the last two violate the condition
[E3b; E2a] = 1. Hence, E3b=Ecb=E1b. Since E2a commutes with Eca and Ecb, it fol-
lows that E2a=E �ca; Eda; E �da. The argument just made can be repeated to show that
E2a=E4b. When E2a=E �ca; E �da then all elements commute with Eda, giving a trian-
gulation; when E2a=Eda, all elements commute with E �d �a, also giving a triangulation.
Thus, when E1a=Eca; the loop can be triangulated, and the same happens if E1a=E �ca;
Eda; E �da:
For Type (3), suppose the given the loop to be E1a−E2a−E3b−E4b−E5c−E6c−E1a:

Now, Eda commutes with E1a; E2a;Edb commutes with E3b; E4b; and Eda; Edc commutes
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Fig. 5. Reduction of Type (3) loop.

with E5c; E6c; and E �d �c commutes with E6c; Edc; and Eda. Thus, the hexagon can be sub-
divided by triangles, squares of Type (2), and the loop Eda − Edb − Edc − E �d �c. (See
Fig. 5.)
Inserting Eac inside this loop yields two more triangles since Eac commutes with all

the elements in the loop except Eda. The following lemma shows that a suitable �n
exists for the loop Eac − Edb − Eda − E �d �c:

De�nition. If Eij; Ekl are such that k = i or k = �–; then there is a near commutation
relation between Eij; Ekl; denoted Eij ∼ Ekl.

The loop Eac−Edb−Eda−E �d �c thus consists of two triangles involving a near com-
mutation relation, Eac ∼ Eda − E �d �c − Eac; and Eac − Edb − Eda ∼ Eac: The �rst triangle
will be treated in detail, since the second can be handled in a similar way.

Lemma 5.2. (1) The path (EdaE−n
dc )

nE−n
ac in X̃ is a path from Enac to E

n
da in X̃ with

origin 1; and may hence be said to correspond to the near commutation relation
Eac ∼ Eda:
(2) The loop (EdaE−n

dc )
nE−n
ac E

n
�d �c
E−n
da E

n
acE

−n
�d �c
is a loop of order n with origin 1∈ X̃

corresponding to the triangle Eac − E �d �c − Eda ∼ Eac.

Proof. (1) By relation (3) of Lemma 1.1., E−1
ac EdaEac=EdaE

−1
dc . Since Edc commutes

with Eac; E−2
ac EdaE

2
ac=EdaE

−2
dc . It follows that E

−n
ac EdaE

n
ac=EdaE

−n
dc and hence that

E−n
ac E

n
daE

n
ac=(EdaE

−n
dc )

n. Thus, a path in X̃ of order n from Enac to E
n
da is (EdaE

−n
dc )

nE−n
ac :

(2) The �rst part of the loop is given by part (1). The remainder of the loop is
En�d �cE

−n
da E

n
acE

−n
�d �c
See Fig. 6.
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Fig. 6. Loop in X̃ involving near commutation relation.

Lemma 5.3. Suppose that �n is a loop in X̃ with basepoint on An and origin v corre-
sponding to the loop Eac − Edb − Eda − E �b �c − Eac in �. Then for all su�ciently large
n; �n is homotopically trivial in X̃ \C:

Proof. Lemma 5.2(1) gives a near commutation path from vEnac to vEnda. This
divides �n into two triangles, as indicated before the statement of Lemma 5.2(1). By
Lemma 5.2(2) the loop arising from the triangle Eac − E �d �c − Eda ∼ Eac involves only
Eda; Edc; Eac; and E �d �c: Since E �d �c commutes with Eac; Eda; and Edc; �

′
n can be taken to

be the disk with the boundary given in Lemma 5.2(2) and origin EnacE �d �cE
n
da: Observe

that �′n is obtainable by �lling in the “cube” spanned by E
n
ac; E

n
da; E

n
�d �c
. To show that

this disk is disjoint from C for all n su�ciently large, we note that every vertex p
in �′n satis�es p=E

r
daE

s
acE

t
dcE

u
�d �c
; with at least one of r; s; u= n. By the argument from

Lemma 4.4 and Lemma 2.3(3), p =∈C for all su�ciently large n.
The case is essentially the same for the triangle Eac ∼ Eda−Edb; since Edb commutes

with Eac; Eda; and Edc; and a disk �′′n is obtained. The disks �
′
n; �

′′
n attach coherently and

provide a disk �n with @�n= �n that is disjoint from C for all n su�ciently large.

The disks Bn have now been speci�ed and are disjoint from C for all su�ciently
large n.

5. Conclusion

A brief word is in order about why the arguments given do not resolve the case
when n=3. Two key points present some di�culty. First, it is not the case that some
generator commutes with all the generators in each basic relator. Thus, it is not possible
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to cap the slides of basic relators in the way we have done for n=4. Second, the
commutation complex for Out F3 is connected, but it is not clear whether 2-cells
arising from the presentation for Out F3 could be attached in such a way as to make the
commutation complex simply connected. It is natural to wonder, nevertheless, whether
the commutation complex serves as a means of showing simple connectivity at in�nity
for any other groups.
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