
Anchoring Modularity in HTML 1

Claude Kirchner4

INRIA & LORIA3

Hélène Kirchner5

CNRS & LORIA3

Anderson Santana2 ,6

INRIA & LORIA3

Abstract

Modularity is a key feature at design, programming, proving, testing, and maintenance time, as
well as a must for reusability. Most languages and systems provide built-in facilities for encapsula-
tion, importation or parameterization. Nevertheless, there exists also languages, like HTML, with
poor support for modularization. A natural idea is therefore to provide generic modularization
primitives.
To extend an existing language with additional and possibly formal capabilities, the notion of
anchorage and Formal Island has been introduced recently. TOM for example, provides generic
matching, rewriting and strategy extensions to JAVA and C.
In this paper, we show on the HTML example, how to add modular features by anchoring mod-
ularization primitives in HTML. This allows one to write modular HTML descriptions, therefore
facilitating their design, reusability, and maintenance, as well as providing an important step to-
wards HTML validity checking.

Keywords: Modularization, parameterization, HTML, TOM, MHTML, formal island, feature
anchorage

1 With the support on the reverse network of excellence
2 Supported by capes
3 615, rue du jardin botanique, 54600 Villers-lès-Nancy, France
4 Claude.Kirchner@loria.fr
5 Helene.Kirchner@inria.fr
6 Anderson.Santana-de-Oliveira@loria.fr

Electronic Notes in Theoretical Computer Science 157 (2006) 133–146

1571-0661 © 2006 Elsevier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.051
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82121264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Claude.Kirchner@loria.fr
mailto:Helene.Kirchner@inria.fr
mailto:Anderson.Santana-de-Oliveira@loria.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Modularity is a key feature of programming environments at all stages of soft-
ware development, from users requirements analysis to maintenance. It is of
course the key feature of reusability policies and therefore a main concept in
any software library. With the raising time of safe and secure software, modu-
larity appears also as a fundamental feature to make possible the construction
of large certified software.

Modularity is thus present in many programming languages and proof
environments and we have now a fairly good understanding of the semantics
of the main modularity constructs. In particular in functional and algebraic
programming, the notions of importation, parameterization and visibility have
been given both categorical and operational semantics (e.g. [2,7,13]).

If from the theoretical point of view the situation is satisfactory, this is not
the case from the practical one, in particular because each language has its
own modularity features and semantics. Clusters in CLU, packages in Ada,
structures in ML, classes in C++ and Java are different constructs facilitating
modular programming. Some languages have quite sophisticated modularity
features, like CASL, OBJ and Maude, where the notion of view precisely for-
malizes the way parameters are instantiated or modules imported. Others,
like ELAN have a more elementary approach. Object-oriented languages like
Java take into account classes and inheritance. Functional languages, such as
ML, have also evolved towards modularity. Face to this variety of approaches,
we are thus in a situation where standard modularity features, mainly inde-
pendent of the language, would be greatly appreciated.

But modularity is not a universal feature of programming languages and
several of them lack of useful capabilities. For example, parameterization does
not exist in ASF+SDF nor C.

An extreme example in this case is HTML that has no importation nor
parameterization capability at all.

So either for standardization or for needed improvement, it is desirable to
have the capability of adding modularity features to an existing programming
language.

While we understand its usefulness, we have now to address the feasibility
of adding modularity primitives in a programming environment. This ques-
tion has been explored in [13] where an SML-like module system is presented
that can accommodate a variety of base languages, provided they satisfy mild
assumptions.

Another approach, independently developed, is the formal island paradigm
that comes into play in a simple and pragmatic context: indeed, it would be

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146134

nonsense to throw away the billions of code lines that are in use today in all do-
mains of human activities, nevertheless it is clear that all these software have
to be considerably improved in their logic, algorithmic, security and main-
tenance qualities. As introduced in TOM 7 [14,9] in particular for matching,
normalization and strategic rewriting, formal islands allow for the addition
to existing programming languages, of formal features that can be compiled
later on into the host language itself, therefore inducing no dependency on the
formal island mechanism.

At the price of a rigorous anchoring, that provides the link between the host
language data structure and the formal objects, the formal island approach
gives the possibility (i) to extend the expressivity of the language with higher-
level constructs at design time, (ii) to perform formal proof on the formal
island constructions, (iii) to certify the implementation of the formal island
compilation into the host language [12].

In addition to these benefits, what makes formal islands even more attrac-
tive is that they are shared between several implementations made in different
programming languages. For instance, TOM provides matching, normaliza-
tion and strategic rewriting in Java (this is jTOM), in C (this is cTOM) or in
CAML (mlTOM).

To set-up the general definition of Modular Formal Island is a difficult goal
and a first work towards making TOM modular for algebraic specifications in
the vein of CASL has been done in [10].

The purpose of this paper is to present another step for anchoring modu-
larity in an existing language and to illustrate the approach with HTML. This
allows writing modular HTML descriptions, therefore facilitating their design,
reusability, and maintenance, as well as providing an important step towards
HTML validity checking. While we only deal in this paper with the HTML
case, one important interest of the proposed approach is to set-up the basis
for a generic method.

In order to make precise our objectives, we use in Section 2 a running
example of a one block HTML page and show how we would like it to be de-
composed in self-contained reusable modules. We then present in Section 3 the
modularity features added to HTML and give in Section 4 its operational se-
mantics, thus making clear the compilation process. Related work and further
extensions are addressed respectively in Section 5 and Section 6.

7 tom.loria.fr

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 135

2 Motivating example

Let us first consider an illustrative example of how modularity can be useful
to the construction and maintenance of web sites.

Commonly, web pages composing a web site share some contents. This
is related either to standard information that appears on every page, or to
navigability issues, for example, sets of links leading to other pages on the
site.

The current trend among web designers is to avoid the use of frames 8 ,
which allows one to set fixed content from different HTML files on the same
browser window, as a form of reuse. Especially for web sites built with no
use of scripting languages, webmasters have literally to “copy and paste” the
static information from one page to another. Consequently, updates become
an error prone and annoying task.

A typical web site layout is shown in Figure 1. All pages that follow the
home (index) page would share the same code for page header, menu, and
page footer. The interaction of a visitor with the links contained on the list
of pointers on the left, brings a similar page where the “contents” box, as
indicated in the figure, displays the varying information, according to the
subject of that page.

Fig. 1. A typical web site layout

Having the capability to isolate each piece of repeated code, web sites

8 http://www.w3c.org/TR/REC-html40/present/frames.html

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146136

writers could (semi-)automatically compose a new web page from separate
sources. In the example above, the page should be broken into reusable named
modules for the page heading, navigation menu, and for the page footer.

Moreover, introducing parameters would allow reusing a similar page for-
mat for another user, facilitating uniform presentation of web sites.

As a third concern, in this context, each repeated piece of code could be
checked only once to be well-formed from an HTML point of view.

Our goal is now to give a practical answer to these concerns, through the
proposal of a formal language and its anchoring process in HTML.

3 The Modular HTML language

In this section we present the Modular HTML (MHTML) language and the main
elements of its operational semantics. For this purpose, we use the algebraic
specification formalism to express both the syntax and the semantics of the
language. Similar approaches have been used for example in the reflective
definition of OBJ-3 or the definition of Full Maude [6] as well as a module
algebra for ASF+SDF [1]. Nevertheless, no sophisticated knowledge about
algebraic specifications is required to understand the mechanism on which
this execution model is based.

The MHTML language is a combination of the regular HTML markup with
structuring primitives that allows the composition of documents through the
reuse of existing code fragments. The principles that have guided its design
are simplicity and genericity.

Modules

A first concern in modularization is how to define a self-contained piece
of reusable code that represents a module. Our approach leaves to the user
the task of defining the desired degree of granularity, since we do not restrict
the modules to be exactly valid HTML code. Actually, any well-formed set
of HTML markup can be considered as a module. For example, by using
the %module primitive, we can define a reusable “menu” that can be made
available for all pages of a web site in the following manner:

Example 3.1 The left menu of the web page in Figure 1 is described in the
following module.
%module menu

Home
Research Interests
Recent Work
Projects
Conferences

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 137

Publications
Curriculum Vitae

By convention and in order to facilitate access to modules, we restrict to
one module per file, and impose that module and system file containing it
have the same names. Thus a module called foo, will be found in a system
file called foo.mhtml.

Imports

Secondly, a common need in the context of reuse is to access symbols de-
clared by other modules. This can be achieved through the %import primitive,
The effect of the import primitive at compile time is a textual expansion of
the document. The imported module is inserted at the position the %import

mark is found, repeated headers will be ignored, only the main module header
is kept. In the case where the imported module has itself importations, this
process is recursively performed.

Another important concern is to force the imported modules to be well-
formed HTML. Alternatively it would be desirable to import valid HTML
code, meaning that the imported code should satisfy all the requirements
from the W3C current HTML specification [15]. This is achieved by another
feature of the language which introduces the notion of theory, close to the
notion of type. Setting in MHTML that a module mod is well-formed (resp.
valid) is achieved by the declaration mod :: WellFormedHTML (resp. mod ::

ValidHTML). At compile time, in the HTML case, this property is checked by
calling the appropriate HTML tools.

The example below illustrates these issues considering the web site pre-
sented in Section 2:

Example 3.2 The web page of Figure 1 is written as the following module.
%module page1
<html>
<head>
<link href="styles.css" rel="stylesheet" type="text/css" />
<title>Home Page</title>

</head>
<body>

%import header :: WellFormedHTML
<div class="header">

<h1 class="title">Research Interests</h1>
</div>

<div class="menu">
%import menu :: WellFormedHTML

</div>
<div class="content">

%import contents :: WellFormedHTML
</div>
<div class="footer">

%import footer :: WellFormedHTML

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146138

</div>
</body>

</html>

Templates

The language also provides a template mechanism, that extends the lan-
guage with parameterized modules. In this case, actual parameters are ex-
pected to be other modules, that in their turn, may be required to conform
to a certain theory. In the HTML case, we currently simply consider these as
either valid or simply well-formed HTML. Again, the parameters are trans-
formed into a textual expansion when the preprocessor composes instances of
such templates. The following example shows the definition of a parameterized
MHTML module:

Example 3.3 For reusing the structure of the web page of Figure 1, the
following template is provided:
%module template1 [

Title
Header :: WellFormedHTML
Menu :: WellFormedHTML
Contents :: WellFormedHTML
Footer :: WellFormedHTML]

<html>
<head>
<title>%use Title</title>

</head>
<body>

%use Header
<div class="header">

<h1 class="title">Research Interests</h1>
</div>
<div class="menu">

%use Menu
</div>
<div class="content">
%use Contents

</div>
<div class="footer">
%use Footer

</div>
</body>

</html>

This template can generate a new instance with the following instantiation:

Example 3.4 Actual module names are substituted to parameters to obtain
an appropriate instance of the previous template:
%module publications
%import template1 [myHomePage

myPageHeeader
myBookmarks
myPublications
myPageFooter]

Figure 2 presents the syntax used in the examples above.

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 139

Module ::= %module 〈moduleName〉 (“[”Param+ “]”)∗ Body

Body ::= ([Import][Use] [HTML])∗

Import ::= %import 〈moduleName〉 [Paraminst+] [“::”Theory]

Param ::= 〈paramName〉 [“::” Theory]

Paraminst ::= 〈moduleName〉

Use ::= %use 〈paramName〉

Theory ::= WellFormedHTML | ValidHTML

HTML ::= Any HTML code with the clear exception of the primi-
tives listed above

Fig. 2. Syntax for the generic structuring constructs

4 Semantics, anchoring and compilation

We are now ready to describe how the modular features provided in MHTML can
be compiled into HTML. From an implementation point of view, the compiler
accepts as input an MHTML program, consisting of native code combined with
the modularity primitives of the language described in Section 3 and gener-
ates pure native code as output. For describing this compilation process, we
choose to write an algebraic specification with rewrite rules, implemented in
ELAN 4 [11]. In this way, we also provide the operational semantics of our
MHTML language. Outlines of this specification are given in Figure 3. This
is similar to (but indeed simpler than) the rules given in [6] to describe the
(more elaborated) modularity features of the Maude language.

ELAN 4 shares the syntax definition of SDF [5]. HTML code is represented
by the sort HTML. The next rules can be read as follows:

• The first rule, establishes that modules with no further structuring con-
structs than %module should be transformed into HTML code.

[] translate (%module m html) => html

• The couple of rules below state that any importation without parameters
nor theories should start a recursive call to the translate function, and as
result will insert the produced HTML at the position where the %import

mark was found

[] translate (%module m %import m1 html) => translate(load(m1)) html
[] translate (%module m html %import m1) => html translate(load(m1))

• The following rules have a similar effect as the previous ones, but they ensure
that the modules being imported conform to a certain theory, through the

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146140

module mhtmlTranslate

imports basic/ElanLayout

basic/BuiltinBool

mhtmlSyntax

exports

context-free syntax

translate(Module) -> HTML

translate (Module , ParamList) -> HTML

HTML HTML -> HTML

load(ModuleName) -> Module

satisfies(Module, Theory) -> BuiltinBool

hiddens

variables

"m"[0-9]* -> ModuleName

"x"[0-9]* -> ParamName

"p"[0-9]* -> ParamDecList

"i"[0-9]* -> ParamList

"html"[0-9]* -> HTML

"th"[0-9]* -> Theory

rules

[] translate (%module m body) => translate(body)

[] translate (%module m %import m1 html) => translate(load(m1)) html

[] translate (%module m html %import m1) => html translate(load(m1))

[] translate (%module m html %import m1 :: th) => html translate(load(m1))

if satisfies(load(m1), th)

[] translate (%module m %import m1 :: th html) => translate(load(m1)) html

if satisfies(load(m1), th)

[] translate (%module m %import m1 [i] html) =>

translate(load(m1), i) html

[] translate (%module m %import m1 [i] :: th html) =>

translate(load(m1), i) html if satisfies(load(m1), th)

[] translate (%module m [x p] html %use x , m2 i) =>

translate (%module m [p] html translate(load(m2)) , i)

[] translate (%module m [x :: th p] html %use x, m2 i) =>

translate (%module m [p] html translate(load(m2)) , i)

if satisfies(load(m2), th)

Fig. 3. Rewrite rules for the MHTML compiler

satisfies function.

[] translate (%module m html %import m1 :: th) =>
html translate(load(m1))
if satisfies(load(m1), th)

[] translate (%module m %import m1 :: th html) =>
translate(load(m1)) html
if satisfies(load(m1), th)

• The next two rules deal with the importation of parameterized modules, in
this case a second version of the translation function is activated to treat
the actual parameters.

[] translate (%module m %import m1 [i] html) =>
translate(load(m1), i) html

[] translate (%module m %import m1 [i] :: th html) =>

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 141

translate(load(m1), i) html
if satisfies(load(m1), th)

• The following rules run through lists of formal parameters to verify them
against actual parameters, and perform the corresponding substitutions
wherever the parameter occurrence was found

[] translate (%module m [x p] html %use x, m2 i) =>
translate (%module m [p] html translate(load(m2)) , i)

[] translate (%module m [x :: th p] html %use x, m2 i) =>
translate (%module m [p] html translate(load(m2)) , i)
if satisfies(load(m2), th)

A prototype was developed to implement an early version of the MHTML

compiler. As concrete syntax we use XML tags to represent the primitives
introduced previously, such that %module construct becomes <module> ...

</module>, and similarly for the other constructs. We have restricted the
host language to the XHTML-1.0-Strict set [16]. The compiler is a TOM
program that uses the left hand side of the rules above as XML patterns,
which once matched during a traversal in the source code, initiate an action
that performs the transformation specified in the corresponding right hand
side of the rule 9 . Currently, the limitation is the absence of theories and
respective verifications they require.

These rewrite rules provide an outline of the compilation of MHTML to
HTML. When completed with the full description of the instantiation pro-
cess, this specification provides a normalization process that compiles MHTML

into HTML. Compared to the implementation of formal islands provided for
matching and rewriting in TOM, this process is simpler from several points
of view. With the modularity primitives introduced here, there is no need
for an anchoring dealing with the structure of terms. This could change when
considering, for example, dependent types. So rather than a “deep” anchoring
involving the structure of terms as used in [12], we need here only a “shallow”
one dealing with the module content. Another difference is that we do not
have to certify the compilation process in the same way: in [12], the match-
ing compilation has to be certified, taking into account the properties of the
anchoring. In our case, the verification process will concern the validation of
the importations and of the parameter instantiations, leading in particular the
way to another use of type systems for HTML [4].

9 The source code and examples can be found at http://tom.loria.fr/applications.php#Xml

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146142

5 Related Work about HTML

Restricting our attention to the specific question of anchoring modularity in
HTML, the question arises to identify the improvements provided by our ap-
proach with respect to the web site development process. First of all, MHTML

provides the following main advantages:

• It is independent of the web server hosting the web site.

• It is not necessary to process the language via a GUI, like in WYSIWYG
HTML editors. This greatly simplifies the maintenance process. It could
also be used by the underlying GUI environment to produce modular and
hopefully human readable code.

• It has a lightweight compilation process.

• It is easy to learn.

• It does not need to be executed every time the site is accessed.

• Finally, we should emphasize that, as for any anchorage, it does not induce
any dependence on the language extension, as all the anchored language
features are compiled into the target language.

The lack of HTML modularity has of course already drawn attention and
we can mention the following web related works.

The JWIG project[3] provides an implementation of a language aimed at
designing interactive web services. It is based on a session centered execution
model of requests made through the web. As a secondary result, it provides
a template language for dynamic web page construction. This language al-
lows the definition of gaps, that may be filled with HTML code. Surely, the
approach provides reuse of HTML code, but it is dependent on the whole
environment to do simple structuring tasks.

In [8] a complete management environment with a language is developed
to attack the management problems that appear in the implementation of
data intensive web sites. The system combines a query language to specify
the site’s structure and content with a template language for its HTML rep-
resentation. Although reusability is not the main concern of this work, the
template language offers flexibility and extensibility to the creation of the site,
it presents the same disadvantage as the previous one.

With respect to scripting languages like PHP, ASP, PERL, etc, this ap-
proach has the advantage of being simple and straightforward for the user.
Another advantage of MHTML when compared to scripting languages or server
side includes, available in Apache for example, is that it does not need to
be re-executed every time the root module is accessed via the web. More-
over we believe, although this has not yet been considered, that MHTML can be

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 143

combined with other languages in the development of web sites.

Similar forms of template mechanisms are provided by a number of WYSI-
WYG HTML editors. This restricts the re-use of HTML because the user
depends on a graphical environment to generate a new web page from existing
templates, whereas the same functionality can be obtained in MTML through
a simple text editor. It is also obviously possible for the user to design his page
in his favorite WYSIWYG editor, and after, determine what are the parts he
would like to reuse from that page in MHTML.

6 Conclusion

The approach described in this paper is part of a much larger enterprise to-
wards the invasive and dependence-less diffusion of formal methods and alge-
braic methodology through the concept of Formal Islands. For example, on
one hand matching and strategic rewriting may help to model large pieces of
code. On the other hand, modularity is of fundamental use in the structura-
tion of large software.

We have developed the idea of modular anchoring on the example, sim-
ple but useful, of the HTML language. Introducing quite simple primitives
for importation and parameterization, we have shown how this can define a
modular extension of HTML. The compilation process has been outlined using
ELAN 4.

This is of course a preliminary work and we are actively working on deep-
ening several points. First an implementation of MHTML in on its way and
we naturally chose as implementation framework TOM itself. This allows us
to play with the concept and to validate our initial ideas (and to clean up
some of our web pages!). Second and quite importantly, verification tools
specific to HTML should be used or developed. One can think of course, as
we mentioned before, to the (X)HTML code validation as provided by the
W3C tools. Furthermore, the formal island mechanism allows to check for
mutual dependency between MHTML modules, for example to avoid circularity
problems. Specific type systems will also be developed to ensure desirable
properties. For example and as for algebraic languages, structured data types
could be statically typed using prescriptive type systems. Also, the intro-
duction of views for parameter validation will require for their verification to
perform non-trivial proofs and the experience gained again from the algebraic
specification community will be of great interest here. We may also think to
specific verification tools for HTML, like checking the reachability of linked
objects. Of course HTML is a very specific and elementary language. A natu-
ral extension will concern XML, in particular for the logic and semantic web,

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146144

and modularity features will be of great use in projects like Rewerse 10 .

Acknowledgement

This paper benefits of the many fruiful discussions we had with Pierre-Etienne
Moreau, Horatiu Cirstea and Antoine Reilles, in particular on formal islands.
We also thanks the anonymous referees for their constructive comments on
the first version of this paper.

References

[1] Bergstra, J. A., J. Heering and P. Klint, Module algebra, Journal of the ACM 37 (1990),
pp. 335–372.

[2] Bidoit, M., D. Sannella and A. Tarlecki, Architectural specifications in Casl, Formal Aspects
of Computing 13 (2002), pp. 252–273.

[3] Christensen, A. S., A. Moller and M. I. Schwartzbach, Extending Java for high-level Web service
construction, ACM Trans. Program. Lang. Syst. 25 (2003), pp. 814–875.

[4] Cirstea, H., E. Coquery, W. Drabent, F. Fages, C. Kirchner, J. Maluszynski and B. Wack,
Types for web rule languages : a preliminary study, Technical report (2004).

[5] Deursen, A., J. Heering and P. Klint, “Language Prototyping,” World Scientific, 1996, iSBN
981-02-2732-9.

[6] Durán, F., “A Reflective Module Algebra with Applications to the Maude Language,” Ph.D.
thesis, Universidad de Málaga, Spain (1999), http://maude.csl.sri.com/papers.

[7] Durán, F. and J. Meseguer, Structured theories and institutions, in: M. Hofmann, G. Rosolini
and D. Pavlović, editors, Proceedings of 8th Conference on Category Theory and Computer
Science, Edinburgh, Scotland, September 1999, Electronic Notes in Theoretical Computer
Science 29 (1999), pp. 71–90, http://www.elsevier.nl/locate/entcs/volume29.html.

[8] Fernandez, M., D. Florescu, A. Levy and D. Suciu, Declarative specification of web sites with
strudel, The VLDB Journal 9 (2000), pp. 38–55.

[9] Guyon, J., P.-E. Moreau and A. Reilles, An integrated development environment for pattern
matching programming, in: 2nd eclipse Technology eXchange workshop - eTX’2004, Barcelona,
Spain, Electronic Notes in Theoretical Computer Science, Brian Barry and Oege de Moor,
2004.

[10] Hrvatin, S., Structuration pour les spécifications à base de règles : Etude et mise en œuvre pour
TOM, Rapport de DEA, Université Henri Poincaré - Nancy 1 (2004).

[11] Kirchner, C. and H. Kirchner, Rule-based programming and proving : the ELAN experience
outcomes, in: Ninth Asian Computing Science Conference - ASIAN’04, Chiang Mai, Thailand,
2004.

[12] Kirchner, C., P.-E. Moreau and A. Reilles, Formal validation of pattern matching code, in:
A. Felty, editor, Proceedings of the PPDP’05 conference (2005).

[13] Leroy, X., A modular module system, Journal of Functional Programming 10 (2000), pp. 269–
303.

10 rewerse.net

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146 145

http://maude.csl.sri.com/papers
http://www.elsevier.nl/locate/entcs/volume29.html

[14] Moreau, P.-E., C. Ringeissen and M. Vittek, A Pattern Matching Compiler for Multiple Target
Languages, in: G. Hedin, editor, 12th Conference on Compiler Construction, Warsaw (Poland),
LNCS 2622 (2003), pp. 61–76.

[15] Raggett, D., A. L. Hors and I. Jacobs, Html 4.01 specification (1999),
http://www.w3.org/TR/REC-html40/.

[16] W3C, Xhtml 1.0 the extensible hypertext markup language (second edition) (2002),
http://www.w3.org/TR/REC-html40/.

C. Kirchner et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 133–146146

http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/

	Introduction
	Motivating example
	The Modular HTML language
	Semantics, anchoring and compilation
	Related Work about HTML
	Conclusion
	Acknowledgement
	References

