
doi: 10.1016/j.procs.2015.12.179 

 

 
 
 
 
 
 
 

Modeling Biological Agents Beyond the 
Reinforcement-Learning Paradigm 

Olivier L. Georgeon, Rémi C. Casado, Laetitia A. Matignon 
Université Lyon 1, LIRIS, UMR5205, F-69622, France. 

Olivier.georgeon@liris.cnrs.fr, remi.casado@etu.univ-lyon1.fr, laetitia.matignon@univ-lyon1.fr 
 

Abstract 
It is widely acknowledged that biological beings (animals) are not Markov: modelers generally do not 
model them as agents receiving a complete representation of their environment’s state in input (except 
perhaps in simple controlled tasks). In this paper, we claim that biological beings generally cannot 
recognize rewarding Markov states of their environment either. Therefore, we model them as agents 
trying to perform rewarding interactions with their environment (interaction-driven tasks), but not as 
agents trying to reach rewarding states (state-driven tasks). We review two interaction-driven tasks: 
the AB and AABB task, and implement a non-Markov Reinforcement-Learning (RL) algorithm based 
upon historical sequences and Q-learning. Results show that this RL algorithm takes significantly 
longer than a constructivist algorithm implemented previously by Georgeon, Ritter, & Haynes (2009). 
This is because the constructivist algorithm directly learns and repeats hierarchical sequences of 
interactions, whereas the RL algorithm spends time learning Q-values. Along with theoretical 
arguments, these results support the constructivist paradigm for modeling biological agents. 

1 Introduction 
The Reinforcement-Learning (RL) paradigm [e.g., 1] often appears as the most natural approach to 
designing unsupervised non-symbolic agents. Indeed, the RL conceptual framework was intended to 
account for the general problem of learning to achieve goals from experience of interaction, without 
predefined knowledge of the world, and without predefined semantics attached to perception and 
action.  

In the RL paradigm, the agent’s goals are synthetized in the form of a reward function related to 
the environment’s states and transitions. RL techniques provide a sound theoretical basis for building 
agents that learn to maximize the discounted reward. At the core of the RL techniques is the elegant 
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theory of Markov Decision Processes (MDPs). Formulating a given task as an MDP requires that the 
agent can observe the complete state of its environment. Unfortunately, this is not the case of natural 
agents (animals), making MDPs not suited to model natural agents. In this paper, we examine how 
Non-Markov Reinforcement Learning (NMRL) techniques can apply to modeling natural agents, and 
we investigate an alternative model called the embodied model.  

2 The Reinforcement Learning paradigm 
Sutton & Barto [1] proposed the RL formulation reported in Figure 1. The Environment rounded 
rectangle represents the real world or a simulated environment. The representation of the state st 
(equally called state or state signal by Sutton & Barto) is a data structure that represents the state of 
the environment on time t.  

 

 

Figure 1: The agent-environment interaction in reinforcement 
learning [1, Figure 3.1]. On time t, the agent receives “some 
representation [st] of the environment’s state” [1, §3.1]. The 
agent chooses an action at. The action at changes the 
environment. The agent receives a reward rt+1 from the 
resulting environment. 

 
The dynamical system made of the agent and the environment is Markov if the next state signal st+1 

and the next reward rt+1 depend only on the previous state signal st and action at. This means that the 
state signal st constitutes a sufficient representation of the environment’s state to allow the agent to 
choose the actions that lead to the reward. In this case, the environment can be represented by a 
Markov Decision Process (MDP) specified by a distribution of probability T(st+1|st , at) that gives the 
probability to obtain any particular state st+1 given st and at. The reward rt+1 can be implemented 
through a distribution of probability (rt+1|st, at, st+1), or, more simply, a scalar function r(st, at, st+1). 

We found no arguments by RL theoreticians to justify the hypothesis that natural agents in the 
open real world can be modeled by MDPs. On the contrary, authors in psychology [e.g., 3] argue that 
perceiving the world consists of actively constructing a representation of the current situation through 
interaction, as opposed to directly receiving a representation of the world’s state. A long time ago, 
some philosophers even argued that natural beings had no access to reality “as such” (noumenal 
reality, Kant), which we may interpret, in modern terminology, as having no access to the system’s 
state, either considered internal or external to the agent. In this paper, we avoid the Markov hypothesis 
because we see no reason to believe that biological agents directly perceive their environment’s state 
(except, perhaps, within some controlled experiments, e.g., monkeys pressing levers for reward). 

3 Non-Markov Reinforcement Learning (NMRL)  
The main approach to implementing reinforcement learning in non-Markov processes is based on the 
theory of Partially Observable MDPs (POMDPs). POMDPs are MDPs in which the state is not 
observable, but another “observation” signal stochastically related to the state is available to the agent. 
Figure 2 presents a typical formalization of a POMDP adapted from Spaan’s article [2]. 

Yet, we are not satisfied with POMDPs for modeling natural agents in the real world because 
POMDPs use a Markov representation made by the designer a prior. In particular, if we don’t want to 
model natural agents as if they had access to a Markov state signal, we should not either model them 
as if they had access to a reward associated with a Markov state. The same arguments against 
modeling natural agents by MDPs (presented in Section 2) also incite us to doubt that their goal can be 
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modeled through a reward function of a Markov state. As an analogy, if we agree that a robot has no 
sensor (internal or external) that would provide it with a Markov state signal, then we should also 
agree that the programmer of the robot couldn’t program a reward function that includes a Markov 
state signal amongst its arguments. Therefore, we wish to avoid representing the agents’ goals by a 
reward function that contains a Markov state amongst its arguments. 

We acknowledge that POMDPs can be used to model agents whose goal is not directly related to 
the state of the environment. Some authors [e.g., 6] proposed tasks in which the agent seeks to perform 
rewarding behavioral patterns instead of reaching rewarding states. They do so by giving a decisive 
role to the at argument in the r(st, at, st+1) function. We call this kind of tasks interaction-driven tasks, 
in contrast with state-driven tasks in which the agent seeks to reach rewarding goal states. While 
POMDPs can be used to model interaction-driven tasks, we advocate an alternative model that 
eliminates the st and st+1 arguments from the reward function. Section 4 presents this model. Sections 5 
and 6 compare it with the POMDP model in example interaction-driven tasks. 

4 The embodied model 
The embodied model avoids the POMDP hypothesis that the environment is modeled as an MDP, and 
that the reward and the observation are functions of a Markov state. Not modeling the environment as 
a set of states implies removing the conceptual transition from state st to state st+1. It becomes then 
simpler to model the interaction cycle beginning with the action than with the observation, as 
illustrated by the black circle and triangle in Figure 3. Now, action at yields reward rt rather than rt+1 
(as is the case in Figures 1 and 2).  We elaborate on this conceptual inversion of the interaction cycle, 
and on interaction-driven agents, in previous papers [5; 6].  

Since the embodied model eliminates Markov states, it does not allow specifying the agent’s goals 
by referring to the environment’s states. Consequently, the embodied model only applies to 
interaction-driven tasks but not to state-driven tasks. This is acceptable for modeling natural agents, if 
we agree that natural agents do not seek to reach rewarding Markov states as we argued in Section 3.  
 

 

Figure 3: The embodied model. On time t, the agent chooses the 
action at (the black circle represents the conceptual beginning of the 
interaction cycle). The Environment’s Model computes the 
observation o't through the program env(at) involving arbitrary 
memory and computation, making o' not Markov. We note the 
observation “o'” to highlight an important difference with POMDPs: 
o' is not a function of a hidden Markov state as o is in a POMDP. The 
resulting reward rt is a function of the observation o't and possibly of 
the action at. (Technically, including at as an argument of r is not 
necessary since at can be passed through the environment as an 
attribute of o't, but we include it here for consistency with the POMDP 
model in Figure 2.) 

t 

 

Figure 2: Typical formalization of a POMDP. The Environment’s 
Model is an MDP that we can use to represent the real world. 
Similar to Figure 1, st denotes “some representation of the real 
world’s state”. Now, however, st is hidden to the agent. The agent’s 
input data only consists of a partial observation ot obtained through 
the distribution of probability (ot|st). The agent is not Markov 
because ot+1 may depend on observations and actions anterior to t. 
The reward rt+1 is a function r(st, at, st+1) as it is in MDP models, 
rather than being directly provided by the real world as it is in 
Figure 1. 
 

rt+1 

ot 

st st+1 
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5 Example interaction-driven tasks 
Singh, Jaakkola, & Jordan [6] proposed a task here called the AB task. The agent must alternate 
between two actions to receive a positive reward. Figure 4 presents the POMDP model of the AB task. 

   

 
 

Figure 4: The AB task modeled as a two-state (S1 and S2) POMDP, 
adapted from [6]. The agent has two actions A and B; one will 
deterministically swap the environment to the other state, whereas the 
other action has no effect on the state. If the agent jumps to the other state, 
it receives reward +1, otherwise -1. Both states generate the same 
observation o, which makes o uninformative. The optimal policy consists 
of alternating action A and B. 
 

The AB environment can be implemented according to the embodied model through the program 
o't  env(at) {if at-1  at then o't  o'1 else o't  o'2}; r(o'1) = 1, r(o'2) = -1. Note that observations o'1 
and o'2 do NOT constitute partial representations of the state of the hidden MDP: each state S1 
and S2 would give rise to either o'1 or o'2 depending on the action, making o't alone uninformative 
about the state, just as o in the POMDP proposed by Singh et al. (Figure 4).  

Georgeon, Ritter & Haynes [7] proposed an extension of the AB task, here called the AABB task. 
The agent must repeat the same action only twice in a row to receive a positive reward; otherwise it 
receives a negative reward. The AABB task could be modeled as a 4-state, 1-observation POMDP, but 
we implemented it within the embodied model through the program o't env(at) {if at-2 at and at-1 =
at then o't  o'1 else o't  o'2}; r(o'1) = 1, r(o'2) = -1.  

6 Non-Markov Reinforcement Learning (NMRL) experiment 
In a POMDP, since the agent’s observations are not sufficient to uniquely identify the state, a direct 
mapping of observations to actions (i.e., memory-less policy) will not achieve an optimal behavior. 
For instance, in the AB task, there are two memory-less deterministic policies: always execute A and 
always execute B. The best memory-less stochastic policy will choose either action 50% of the time. 
None of these memory-less policies are optimal. For an agent to consider optimal decision in a 
POMDP, memory is needed. Incorporating some form of memory in the agent was among the first 
solutions to deal with NMRL agents [2]. The idea is to construct a Markov or nearly-Markov signal 
from historical sequences composed of observations received and actions taken by the agent. It is then 
possible to use classical RL algorithms, such as Q-learning [e.g., 8], to compute an optimal 
deterministic mapping of historical sequences to actions. 

If the considered POMDP has a relatively small order (i.e. the knowledge of an history of length 2 
or 3 is sufficient to predict the evolution of the system), then it will be possible to construct a Markov 
signal based on memory. But with higher orders, or large observation sets, the algorithm suffers from 
the growth of the state space. Some algorithms [e.g., 9; 10] are searching historical sequences with 
minimal length to construct memory-based observations for the optimal decision. These historical 
sequences are composed of non-ambiguous elements. 

Dutech [9] called the historical sequences Observation-Action Trajectories (OATs). An OAT of 
order n is a series of n consecutive observations and actions plus a final observation: o1.a1… 
on.an.on+1., with o1… on+1 O and a1… an A. In the POMDP representations of the AB and AABB 
tasks, the set of observations is O = {o}, and the set of actions is A = {A, B}. The algorithm performs 
Q-learning using the set of current OATs as the set of states, increasing n until the agent manages to 
master the task satisfactorily. To increase n, only the most used or ambiguous OATs are extended; 
ambiguous OATs are those whose Q-values are close and converge slowly [9; 10]. 
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Our implementation of this algorithm works as well when we model these tasks according to the 
embodied model. In this case, however, it is more logical to construct Action-Observation Trajectories 
(AOTs) than OATs because of the conceptual inversion of the interaction cycle. An AOT of order n is 
a sequence a1.o'1… an.o'n , with a1… an A and o'1… o'n O'; A = {A, B}, O' = {o'1, o'2}. Note again 
that using o' instead of o makes little difference because the next choice is determined by the previous 
actions.  

In our experiments, the agent mastered the AB task with AOTs of order n = 1, and the AABB task 
when enough AOTs had reached n = 2. This is because the AOTs must cover the task’s temporal 
dependency to allow the agent to make the right decision. Figure 5 plots the results obtained in the 
AABB task. Table 1 shows the Q-values obtained on step 840 when the agent had learned the task. 
These results are consistent with Dutech’s [9]. Due to lack of space, the results using OATs in the 
POMDP model are not reported in this article but are similar. 

 

 
Figure 5: Results of the AOT algorithm applied to the AABB task: average over 30 runs (blue), best run (green), 
and worst run (black). X-axis: steps 0 to 840. Y-axis: total reward over the last 20 steps. Each stage begins with a 
phase of detection of the most ambiguous AOTs (dark grey 40 × Stage # steps, uniform Q-learning,  = 0.1,  = 
0.9). Next 160 steps (light grey): learns the Q-values for these AOTs (  = 0.1). Next 40 steps (white): full greedy. 
After each stage, the three most ambiguous AOTs are extended (n  n + 1, beginning with n = 1). Stage 3: the 
agent masters the AABB task from step 820 on, receiving the best average reward possible (0), when enough 
AOTs have reached order n = 2. 
 
Table 1: Most significant AOTs (columns) and their Q-values for each action (lines) learned on step 840. Q-
values are the discounted expected reward for choosing a given action. The full greedy policy consists of 
choosing the action that has the greatest Q-value in the context of a particular AOT. 
 

           
          
          

7 Conclusion 
We have shown that both the POMDP model and the embodied model can be used to represent the AB 
and the AABB tasks. This comparison is intended to help readers—specifically from the RL 
community—better understand the similarities and differences between the two models. Results show 
that both models work using historical sequence RL algorithms.  

The POMDP model and the embodied model differ conceptually by the fact that the embodied 
model materializes two commitments: a) the reward function does not include a Markov state amongst 
its arguments, and b) the observation o' does not constitute a partial representation of the 
environment’s state. These commitments allow easily transferring the agent’s algorithm to a robot 
whose sensors do not return a Markov state signal. However, they imply that the robot’s goals consist 
of performing rewarding behaviors rather than reaching rewarding states. 

In 2009, Georgeon, Ritter, & Haynes [7] studied the AB and AABB tasks following a 
constructivist approach based upon the embodied model. They proposed an algorithm that can learn 
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the AABB task in less than 20 interaction cycles [7, Figure 1]. This makes a striking difference with 
the 820 cycles needed by the historical sequence RL algorithm reported in Figure 5. This difference 
comes from the fact that the constructivist algorithm [7] directly focuses on recording and repeating 
sequences of interactions, while the historical sequence RL algorithm needs time learning Q-values.   

Together with Georgeon, Ritter, & Haynes’s paper, this paper allows comparing two paradigms of 
agent modeling: the RL paradigm (in this paper, using the POMDP model or the embodied model) and 
the constructivist paradigm ([7], using the embodied model). We conclude that both paradigms can be 
used to model biological agents. The chosen paradigm, however, may impact how the designer 
designs the algorithms. The philosophy of the RL paradigm consists of transforming a non-Markov 
task into a Markov task by constructing states based upon sequences of interactions (OATs or AOTs), 
and then applying Markov techniques (e.g., Q-learning). The philosophy of the constructivist 
paradigm consists of recording hierarchical sequences of interactions (inspired by Piaget’s 
sensorimotor schemes [11]) and reusing these sequences directly.  

While the two paradigms are possible, the present study incites us to support the constructivist 
paradigm and the embodied model for modeling biological agents because of the following reasons: a) 
the constructivist paradigm proved more efficient in learning the AABB task; b) we find the embodied 
model more elegant because it does not require referring to Markov states and to the next interaction 
cycle (t+1); and c) the constructivist paradigm and the embodied model better comply with cognitive 
theories [e.g., 11], constructivist epistemology, and philosophy.  

Future studies may investigate other NMRL techniques (e.g., actor-critic) in other interaction-
driven tasks (e.g., stochastic tasks), but we expect that they would not significantly contradict our 
conclusions as long as these techniques are based on a reward function that includes a Markov state, 
and on observations that are partial representations of the environment’s states.  
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