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INTRODUCTION 

The object of this paper is to show how differential and integral calculus 
in many dimensions can be greatly simplified by using Clifford algebra. Here 
the necessary notations, definitions, and fundamental theorems are developed 
to make the calculus ready to be used. Those features of Clifford algebra 
which are needed for this task are described without pro0f.l 

The discussion of differentiation and integration omits without comment 
many important problems in analysis, because they are in no way affected 
by the special features of the approach advanced here. The object throughout 
is to show how Clifford algebra can be used to advantage. 

1. ALGEBRA 

The notion of a vector as a directed number can be made precise by intro- 
ducing rules for addition and multiplication of vectors which have a geometric 
interpretation. The rules governing vector addition and scalar2 multiplication 
are too familiar to require comment. By these operations an n-dimensional 
linear space GY,, , here called arithmetic n-space, can be generated from n 
linearly independent vectors. Appropriate rules governing multiplication 
of vectors can be arrived at by requiring that the product of any nonzero 
vector with itself be a positive scalar. The “square” of a vector a is written 

u2 = 1 a 12 > 0, U-1) 

where 1 a 1 is a positive scalar called the modulus (or magnitude) of a, and 
equality holds if and only if a = 0. With the exception of the commutative 
rule for multiplication, all the rules of scalar algebra can be applied to vectors 
without contradicting (1.1). Then, by multiplication and addition, a Clifford 

1 Further discussion of Clifford algebra together with applications to physics can be 
found in my book “Space-Time Algebra,” Gordon and Breach, New York, 1966. 

2 In this paper “scalar” always means “real number.” 
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Algebra ./Yn , here called the multivector algebra of &, , can be generated 
from the vectors in L& . To emphasize their relation to vectors, the elements 
of 4% are called muZtivectors. 

Far from being a defect as some might be inclined to think, the absence of 
universal commutativity for vector products is a great advantage. For the 
“degree of commutativity” in a product is a measure of the relative directiom 
of directed numbers. This is easily seen by decomposing the product of 
vectors a and b into a sum of commutative and anticommutative parts. 

ab=a*b+aAb, (1.2) 

where a -6 and a A b can be regarded as new kinds of multiplication, re- 
spectively called inner and outer products, and defined by the equations 

a * b = 4 (ab + bu) = 6 . a (1.3) 

a A 6 = i$ (a6 - bu) = - 6 A Q. (1.4) 

By virtue of (l.l), a * 6 is a scalar and may be interpreted as the usual 
“Euclidean” scalar product of vectors in G& . Subject to this interpretation, 
(1.2) shows that two vectors are collinear if and only if they commute, and 
they are orthogonal if and only if they anticommute. The products a . b and 
a A b were invented and given a geometrical interpretation by H. Grassmann 
more than one hundred years ago. Through (1.2) they imbue the noncom- 
mutative product ub and all of JY~ with geometrical significance. 

A multivector which can be factored into a product of K orthogonal vectors 
is called a simple k-vector. Since K orthogonal vectors also span a k-dimensional’ 
subspace of 02;, , it is apparent that to every simple k-vector there corresponds 
a unique k-dimensional subspace of C&, . In fact, every simple k-vector can be 
interpreted geometrically as an oriented volume of some k-dimensional 
subspace of G& . 

Any linear combination of simple k-vectors is called simply a k-vector. 
The terms “l-vectors” and “O-vector” are synonyms for “vector” and 
“scalar,” respectively. An n-vector of &,, is often called a pseudoscalar. 

The product aA, of a vector a with a k-vector A, consists of a (k - l)- 
vector plus a (k + I)-vector, denoted by a * A, and a A A, respectively, so 

aA,=a-A,+ahAk. (1.5) 

This is a straightforward generalization of (1.2), to which it reduces if k = 1. 
In general, the product of a simpler r-vector A, with a simple s-vector B, 
is more complicated than (1.Q but the (r + s)-vector part of the product 
A& is important enough to be given a symbol: A,. A B, , and a name: 
outer product of A,. with B, . 
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Any multivector A can be expressed as the sum of k-vectors A, , where 
k = 0, 1, 2 ,..., a. Thus, 

A = i A,. 
k=O 

(1.6) 

Equation (1.5) can now be generalized by introducing the definitions 

a-A=xa*A,, aAA=~ahA, (l-7) 

so that 
aA=a-A+ahA. (1.8) 

The reverse (or adjoint) of A, denoted by A+, can be obtained by expressing 
the simple k-vector components as products of vectors and reversing the order 
of multiplication. It follows that 

A+ = i (- l)W-1) A,. 

k=O 
(l-9) 

The scalar part of the product A+B is called the scalar product of multivectors 
A and B, and is written (A+B), , the subscript zero denoting O-vector (or 
scalar) part. This scalar product is symmetric and positive definite, the latter 
property being due to (1.1). 

(A+B), = i (A$B,), = i (BIA,), = (B+A)o 
k=O k=O 

(A+A), = f (Ask), = f A,$Ak 2 0. 
k=O k-0 

The modulus (or norm) of A is defined by the equation 

I A I = [(AtA),]* = rkto I A, I?]’ b 0. 

(1.10) 

(1.11) 

We have 1 A 1 = 0 if and only if A = 0. A multivector with unit modulus 
is said to be unitary. Any multivector A can be expressed as a scalar multiple 
of a unitary multivector A. 

A=IAIA. (1.13) 



316 HESTENES 

The scalar product has many important properties. For instance, every 
scalar determinant of rank R can be expressed as the scalar product of two 
K-vectors, and all the properties of determinants follow automatically from 
properties of multivectors algebra. 

There are two unitary pseudoscalars in An corresponding to the two 
possible orientations of an n-dimensional unit volume in G&, . Denote by i the 
pseudoscalar representing the unit volume with positive orientation. The 
product iA is called the dual of A. In &‘a, the “cross product” a x b 

introduced by J. Willard Gibbs is the dual of the bivector a A b. When 
proper account is taken of the usual sign conventions, this duality is expressed 
by the equation 

a A b = i(a x b). (1.14) 

With this definition, the entire vector algebra of Gibbs is seen as a subalgebra 
of&Y,. 

2. GEOMETRY 

Intuitive geometrical notions such as “continuous,” “straight,” “distance,” 
and “dimension” require a special language for precise expression. To meet 
this need, multivector algebra is cultivated here. 

The points of E UC a I’d can n-space &n can be put into one-to-one correspond- 
ence with the vectors of G&, . So it is convenient to use a vector x as a name 
for the point to which it corresponds. A vector used as a name for a point is 
called the coordinate of the point. 

The correspondence between ~5’~ and GZ& gives much more than names. 
Points in c!?~ are named for the purpose of describing the properties of 
geometric objects (point sets) in &n . The multivector algebra &n provides a 
grammar and vocabulary designed to simplify such descriptions. For instance, 
the distance between two points x1 and xa in &n is simply the modulus 

I x2 - Xl I Y and trigonometrical relations for discrete point sets in c?~ are 
readily computed with multivector algebra. It is worth remarking that &n 
can also be used to describe non-Euclidean geometries if only an appropriate 
change is made in the definition of scalar product. 

This paper is concerned with continuous surfaces in c?~ . Let 9’ be a 
smooth K-dimensional surface in ~9~ . A multivector function (or multivector 
field) on 9 is a mapping of 9’ into &Yn . Let x1 , x2 , x2 ,... be a sequence of 
points in 9’ converging a point x in 9. The unit vector 

n(x) = lim 
xi - x 

t-m 1 xi - x 1 (2.1) 
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is said to be tangent to Y at X. The surface Y is k-dimensional if and only 
if there are k linearly independent vectors tangent to 9 at each point of 9. 
By multiplication and addition, these vectors generate a multivector algebra 
Jz’~(x) which, of course, is a subalgebra of ~4’~ , A multivector function on Y 
with values in JH~(x) at x is said to be tangent to 9’ at X. A multivector 
function is said to be tangent to Y if it is tangent at every point of Y.3 

A surface can be characterized by the multivector functions tangent to it. 
If a smooth k-dimensional surface Y is orientable, there are exactly two 
unitary k-vector functions tangent to 9, each corresponding to one of the 
two orientations which can be given to 9. So tangent to each point x of an 
oriented k-dimensional surface there is a unique unitary k-vector V(X) 
characterizing the orientation of Y at x. Call V(X) the tangent of Y at x. 
Call the dual of v(x) the normal of Y at x. 

3. INTEGRATION 

Let f be a multivector function defined on a smooth r-dimensional surface 
V. Define the directed integral off over V by the formula 

S/f =I, h(x) f (x) = bz f do,(x) f (xi). 
2=1 

(3.1) 

This differs from the usual definition of a Riemann integral only in one 
important respect. Both dv and dv(x,) are directed volume elements. The 
magnitudes 1 dv 1 and 1 dv / are to be understood as the usual Riemunn 

measures of volume. The direction of a volume element at x is characterized 
by the unitary simple r-vector v(x) tangent to V at the point x. This can be 
expressed by writing 

dv(xJ = I Llv(x,) 1 V(Xi) (3.2a) 

dv(x) = I dv(x) I v(x). (3.2b) 

So it is clear that the directed integral off is equivalent to the Riemunn integral 

of vf- 

Therefore, the details to the limiting process in (3.1) can be handled by the 
techniques of Riemann integration theory. 

3 For brevity, the effects of discontinuities in a surface are not discussed here. 
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The directed integral (3.1) is a nontrivial generalization of the Riemann 
integral which makes essential use of multivector algebra. The significance 
of this generalization can be seen in complex variable theory, for the integral 
with respect to a complex variable is a l-dimensional directed integral, and it 
is this feature which makes the theory so powerful. In another paper it will 
be shown that complex variable theory can be regarded as a special case of the 
multivector calculus developed here. 

At a deeper level, “directed integration” is founded on a generalization 
of measure theory which uses “directed measure” instead of “scalar measure.” 
A “directed measure” associates a direction and a dimension as well as a 
magnitude to a set. Thus, it may be said that the directed integral (3.1) makes 
use of “directed Riemann measure” rather than the usual “scalar Riemann 
measure.” 

The volume 1 Y 1 of the surface Y is 

IV1 = jydvd= j ldvl. 
Y 

One can also associate a “directed volume” with the surface 71r given by the 
integral sY dv. From the definition (3. l), it follows that the directed volume 
of any closed surface vanishes. This is expressed by the equation 

$ dv =O, (3.5) 

where $ indicates that the integral is over a closed surface. Clearly, (3.5) 
obtains because on a closed surface “directed volume elements” occur in 
pairs with opposite orientations which cancel when added. 

Because multivector multiplication is noncommutative, (3.1) is not the 
most general form for a directed integral. The appropriate generalization is 

(3.6) 

where, of course, f and g are multivector functions defined on Y. 

4. DIFFERENTIATION 

Let A be a nonzero simple r-vector in .Mn , and f some multivector function 
defined on &n . The “(left) derivative off with respect to A (evaluated) at x” 
is denoted by Vf(x) and defined as follows: 

(4.1) 
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where 

(1) a = 1 A I-IA. 

(2) A smooth open r-dimensional surface Y has been chosen which 
passes through x “tangent to A,” i.e., so that A = D(X), the tangent of Y 
at x. 

(3) The integral off is taken over the boundary, aY, of Y. The orienta- 
tion of the (r - 1)-vector da = 1 da 1 a describing a volume element of 8Y 
is chosen so that the vector n(x’) = D+(x’) a(x’) is the outward normal at a 
point x’ of ar. 

(4) The limit is taken by shrinking Y and its volume 1 Y” 1 to zero at the 
point x. 

A discussion of the extent to which the choice of Y and the process of 
shrinking is arbitrary is too involved to give here. 

To get at the significance of the operator V, let us look at some special 
cases and then ascertain its general properties. 

On the basis of (4.1) no meaning can be attached to the derivative with 
respect to a scalar, so the simplest example is the derivative with respect to 
some vector n. In this case, 7” is an oriented curve with arc length s = 1 Y I 
passing through the point x with tangent proportional to tl. The boundary 
of Y consists of the end points, xi and xp , of the curve. To evaluate the 
integral over W’-, appeal must be made to the definition of the integral (3.1), 
which shows that limiting process is unnecessary since the surface in question 
consists of only two points. A point is a O-dimensional surface, so its volume 
element is a O-vector. Use of Riemann measure requires that the volume 
element at x2 have unit wieght, i.e., da(x,) = 1. The volume element at xi 
must have opposite orientation to be consistent with (3.5), so du(x,) = - 1. 
Thus 

s duf = 44fW + 4%>f(Xl> 
av 

= fW - f(xA (4.2) 

and (4.1) can be written 

(4.3) 

The right side of (4.3) is recognized as the average of left and right derivatives 
with respect to arc length. 

It is desirable to eschew such expressions as df/ds for “derivative with 
respect to arc length” and aflax for “partial derivatives with respect to the 
(scalar) coordinate x,” because they contain irrelevances. Different as they 
appear, they refer to one and the same limiting process. The derivative at x 



320 HESTENES 

depends only on the direction at x along which the limit is taken and not 
on any particular curves passing through the point. The essentials are 
expressed by the notation 0, f. 

The operator 0, may sometimes be awkward to use because the li on 
the right of (4.3) d oes not commute with other multivectors. In such cases 
the “scalar differential operator” a, = 6V, may be recommended. Never- 
theless, V, is more fundamental than a, because of its generalization by (4.1). 
A comparably simple generalization of a, does not exist. 

The derivative with respect to a pseudoscalar is expecially important. The 
same result is obtained for all pseudoscalars, so it is convenient to drop the 
subscript and write V. 

Call V the gradient operator, to agree with common parlance when V 
operates on a scalar. The gradient is a “vector differential operator,” so, 
by virtue of (1.8), 

Vf=V*fj-VAf. (4.4) 

Call V *f the divergence off and V A f the curl off, to agree with the 
terminology of vector and tensor analysis. For the special case of a vector field 
on &a , (1.4) can be used to get 

VAf=iV Xf. (4.5) 

Another familiar differential operator easily obtained from V is the laplacian 
Vs. In fact, every differential operator on G?~ can be expressed as some operator 
function of V. 

One can think of VA as the gradient operator for the subspace of &n 
determined by A. However, if A is a function of x, the subspace will depend 
on the point at which the derivative is evaluated. Let it be understood that, 
unless otherwise specified, VA j has the value V,(,)f(x) at x, that is, the deri- 
vative off at x is taken with respect to the value of A at x. 

The general properties of the operator V, follow from the definition (4.1). 

v-, = v, 

vet = VA for positive scalar A 

VAB = V, + V, if AB=AAB 

VAVB = - VBVA if AB=AAB and V,B 

V,(f +gj = V*f + v‘4g 

v/dfg) = (vAf )g if g constant. 

(4.6) 

(4.7) 

(4-Y 

V,A = 0 

(4.9) 

(4.10) 

(4.11) 
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The operator equations (4.6) and (4.7) express the fact that VA depends 
only on the direction of A and not on the orientation or magnitude of A. 
Equations (4.8) and (4.9) h s ow how “gradient operators for orthogonal 
subspaces of c+‘~” are related, and they determine how “laplacians” for ortho- 
gonal subspaces “combine”: 

(VA=)2 = VA2 + VB2. (4.12) 

Equations (4.10) and (4.11) hardly need comment. 
The convention that VA differentiates only to the right can be awkward 

because of the noncommutivity of multiplication. If the convention is retained, 
it is convenient to have a mark which indicates differentiation both to the left 
and right when desired. Accordingly, the definition 

This definition admits a simple form for the “Leibnitz rule” for differentiating 
a product: 

g 74f = (g Y4)f + dLf ). (4.14) 

On the right, only the function inside the parenthesis is to be differentiated. 
The proof of (4.14) uses the identity 

(4.15) 

where f = f(x) is the value f at the point where the derivative is to be 
taken, and f’ = f(d) is the value off at a point x’ on i3Y; likewise for the 
other quantities. The last term on the right of (4.15) is identically zero 
because of (3.5). In the limit, the next to the last term on the right of (4.15) 
vanishes and the remaining terms give (4.14). 

The relation of VA to the gradient is shown by the following: 

V = A-IAV = A-l(A . V + A A V) 

v = VA -/- vi, 

VA = A-IA . V 

ViA = A-lA A V. 

(4.16) 

(4.17) 

(4.18) 

409/24b6 
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5. THE FUNDAMENTAL THEOREM OF CALCULUS 

Letf be a multivector function defined on an oriented r-dimensional surface 
Y in 8% with tangent v. Call Vf the tangential derivative off on Y. These 
things being understood, the fundamental theorem can be stated as follows: 

The integral of the tangential derivative off over V is equal to the integral 

off over the boundary of V. As an equation, 

1, dv V,f = I,, daf- 

Note that this formula is independent of the dimension of Y and of the space 
in which Y’- is imbedded. A major motivation for the formulation of integra- 
tion and differentiation in this paper has been to achieve as simple and general 
a statement of the fundamental theorem as possible. For instance, the “l-vec- 
tor property” of V, is appropriate because it relates integrals over 7cr and 
?W-surfaces which differ by one dimension. Furthermore, the definition of 
the derivative (4.1) has been made as similar to (5.1) as possible. 

Various special cases of the fundamental theorem are called Green’s 
theorem, Gauss’ theorem, Stoke’s theorem, etc. But the general theorem is so 
basic that it deserves a name which describes its scope. 

A proof of the fundamental theorem is obtained by establishing the follow- 
ing sequence of equations 

(5.2) 

The analytical details of the proof do not depend on the dimension of Y; 
they differ in no essential way from details in the proofs of special cases of the 
theorem. Such proofs have been given on many occasions, though seldom 
with the utmost generality, so no further comment is needed here.4 

To illustrate the felicity and generality of (5.1), the integration theorems 
of Gibbs’ “vector calculus” in Es can easily be derived. 

If Y’Zs is a 3-dimensional region in 8s ? then one can write 

dv = 1 dv 1 i, V, = V, da = in 1 da 1 , 

’ For a careful discussion of the problems involved, see M. R. Hestenes, Duke 
Math. J., 8,300 (1941); A. B. Carson in “Contributions to the Calculus of Variations,” 
p. 457. Univ. of Chicago Press, Chicago, Ill., 1938-1941. 
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where n is the outward normal to Ya . Since the pseudoscalar i is constant, it 
can be “factored out,” and (5.1) becomes 

If f = C+J is a scalar function, then (5.3) becomes 

If f = E is a vector field, then (1.2), (1.14), (4.4), (4.5) can be used, and O-vec- 
tor and 2-vector parts on each side of the equation can be equated separately 
to get 

If Ya is a 2dimensional surface, then one can write 

dv = - in I da I , da = dx 

V, = (in)-1 (in) * V = - ini(n A V) = in(n X V), 

where dx is the differential of the coordinate x of a point on aYa , and n is the 
“right-handed normal” to the surface Ya . So (5.1) becomes 

[ysldaln xVf=$dccf. 

If f = v is a scalar, then 

(5.4) 

If f = E is a vector, then, as before, O-vector and 2-vector parts in (5.4) 
can be separately equated to get 

s, 1 da 1 n . (V x E) = $ & . E 

j,, 1 da I (n x V) x E = $ dx x E. 



324 HESTENES 

If v1 is a curve in 6s with endpoints a and 6, then one can write 

dv = dx, dvV, = dx . V. 

So (5.1) becomes the familiar formula 

j,ldxevf = j*df=f(b) -f(a). 
a 

(5.5) 

In spite of the ease with which the formulas of vector analysis can be derived, 
it is even easier to use (5.1) as it is or sometimes the special forms (5.3), (5.4), 
or (5.5). 

For each choice of a particular function f, (5.1) yields a formula relating 
integrals over Y to integrals over 8% For instance, if v is a k-vector and x 
is the coordinate of a point in c?~ , then 

V,x = k. (5.6) 

So, if -Y is an k-dimensional surface, then 

I dv = $ $ dax. (5.7) 
Y 

Because of (3.5), th is integral is independent of the choice of origin. If Y’” 
is a flat surface, then its tangent v is constant, so 

If W is an (r - 1)-dimensional sphere with radius R and area 1 a%‘- 1 , then 
(5.8) reduces to 

(5.9) 

Many other useful consequences of (5.7) can be easily found. 
Actually, because of the noncommutivity of multiplication, (5.1) is not the 

most general form of the fundamental theorem. The necessary generalization 
can be written 

j,g dv o,f = javg daf9 (5.10) 

where it is understood that dv is not differentiated by 0, . More explicitly, 
since 

o,v = (- l>,-1 v 8,) (5.11) 
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(5.10) can be written 

j,g dv v,f + (-- I>,l I, k OS) dvf = javg daf, (5.12) 

The fundamentals have been set down. A complete geometric calculus 
of multivector functions is now waiting to be worked out along lines similar 
to the calculus of real and complex functions. 


