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Abstract

We consider a sub-leading twist chiral-odd pion fragmentation function and explore its contribution in single pion
inclusive electroproduction. We evaluate the single beam-spin azimuthal asymmetryALU and the double spin asymmet
ALT in polarized electroproduction of pions from an unpolarized and transversely polarized nucleon, respectively. T
asymmetry is expressed as the product of chiral-odd, andT -odd and even distribution and fragmentation functions. The do
spin asymmetry contains information on the quark’s transversity distribution. In a quark–diquark–spectator framew
estimate these asymmetries at 6 GeV, 12 GeV, and 27.5 GeV energies.
 2004 Elsevier B.V.

PACS: 13.87.Fh; 13.60.-r; 13.88.+e; 14.20.Dh

1. Introduction

One of the most interesting results in deep-inelastic spin physics has been the discovery of a class of ch
quark distribution functions. That which has garnered most attention is the leading twist transversity dist
h1 which provides information on the quark transverse spin distribution in a transversely polarized nucleo
Chiral-odd distribution functions are difficult to measure because they are suppressed in inclusive deep-
scattering. However, when two hadrons participate in the scattering process, the nucleon’s transversity c
cessed; for example, in Drell–Yan scattering with transversely polarized protons [1,3]. Alternatively, trans
can be probed in semi-inclusive deep-inelastic scattering (SIDIS) where outgoing hadrons are produce
current fragmentation region. This process [4] has been used as a filter to access transversity [5]. Here, t
bility for a transversely polarized quark to produce a pion is probed. Other methods to probe transversity in
semi-inclusive production ofΛ hyperons, and of two pions have also been discussed in the literature [6–8].
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Some time ago, Jaffe and Ji [9] suggested that the nucleon’s transversity could be probed in p
electroproduction of pions from a transversely polarized nucleon. By comparison with the above mentione
Yan and single-spin asymmetry approaches, their proposal is sub-leading in twist. However, since the mea
involves merely one spinless particle in the final state it proves to be an interesting approach to probe the e
higher twist in addition to providing a window into the measurement of transversity. The asymmetry charac
this process consists of a linear combination of two terms, one chiral-even and one chiral-odd. To exp
chiral-odd effect of interest [10], the competing chiral-even mechanism must be subtracted away.

In this Letter we will estimate the relative magnitudes of these two contributions to the double spin asym
in the quark–diquark–spectator framework. In doing so, we explore the sub-leading twist chirally od
fragmentation functionE (in Ref. [9] it was denoted bŷe1). On the other hand, as it will be shown below, th
chiral-odd fragmentation function can show up also in the SIDIS beam spin asymmetry (BSA) in addition to
considered by Levelt and Mulders [11]. The interest in the BSA for pion electroproduction in semi-inclusive
inelastic scattering of longitudinally polarized electrons off unpolarized nucleon resides in the fact that th
probes the antisymmetric part of the hadron tensor, which is particularly sensitive to final state interact
longitudinally polarized electron electromagnetic scattering, the BSA shows up as a〈sinφ〉 asymmetry for the
produced hadron and is expressed as

(1)〈sinφ〉 = ±
〈
s × k2 ·P h⊥
|s × k2| |P h⊥|

〉
,

wheres denotes the spin vector of the electron (the upper (lower) sign for right- (left-) handed electrons),k1 (k2) is
three-dimensional vector of incoming (outgoing) electron momentum andP h⊥ is the produced hadron’s transver
momentum about virtual photon direction;φ is the azimuthal angle of produced pions relative to the lep
scattering plane, andφS is the azimuthal angle of the target polarization vector (Fig. 1). This asymmetry is re
to the left–right asymmetry in the hadron momentum distribution with respect to the electron scattering pla

Fig. 1. The kinematics of SIDIS.
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(2)A=
∫ π

0 dφ dσ − ∫ 2π
π

dφ dσ∫ π

0 dφ dσ + ∫ 2π
π dφ dσ

,

which is 4/π times〈sinφ〉. Heredσ is a shorthand notation fordσ �eN→ehX/dx dy dzd2Ph⊥, andx, y, andz are the
standard leptoproduction scaling variables [11]. As will be shown in this Letter, the asymmetry is a superpo
e �H⊥1 , obtained in Ref. [11], andh⊥1 �E. A similar result has been presented very recently by Yuan [12], wher
BSA has been phenomenologically studied in the extrema case ofh⊥1 �E. By contrast, the BSA has been studied
the other extreme,e �H⊥1 [13,14] while in addition the bounds on this asymmetry were considered in [15]. Fu
the BSA has been considered solely from perturbative QCD effects at second order inαs [16–18]. In Ref. [19] a
dynamical model for BSA similar to that used for the single target spin asymmetries [20] has been propos

This Letter is organized as follows. First, we calculate the sub-leading twist chiral-odd fragmentation funcE,
defined by Jaffe and Ji [9], following the approach in [21,22]. Then we study its physical implications in filteri
nucleon’s transversity properties by considering the double-spin asymmetry,ALT , in polarized electroproduction o
pions from a transversely polarized nucleon. This process contains information on quark’s transversity dist
We also consider the single beam-spin azimuthal asymmetry,ALU . We perform order of magnitude estimates
these asymmetries for HERMES and ongoing and upgraded JLAB energies [5,23]. With regard toALT , we estimate
that the chiral-odd effect is small and apparently its isolation from the chiral-even contribution would appea
challenging measurement.

2. The ALT and ALU asymmetries in the spectator framework

Here we focus on the chirally odd transverse momentum-dependent distribution and fragmentation fu
e(x,pT ) andE(z,−zkT ). As mentioned in the introduction, the fragmentation functionE(z,−zkT ) arises when
a longitudinal polarized electron beam probes a transversely polarized nucleon. Quantitatively this is rep
in the joint producth1(x) �E(z) that arises in the asymmetryALT which is accompanied with the more common
investigated chiral-even combination,gT (x) � D1(z). On the other hand, the chirally odd distribution functi
e(x) contributes in the combinatione(x) � H⊥1 (z) in the beam asymmetry, whereH⊥1 (z) correlates the probabilit
for a transversely polarized quark to fragment to a pion. This term is accompanied with the complemenT -odd
combinationh⊥1 (x) �E(z). The latter combination provides an additional term that fuels the beam asymmetr
functionE(z,−zkT ) is projected from the fragmentation matrix∆(k,Ph) using the identity operator

(3)∆[1](z,kT )= 1

4z

∫
dk+ Tr

(
1∆(k,Ph)

)∣∣∣∣
k−=P−π /z,kT

= Mh

P−π
E

(
z, z2k2

T

)
,

where∆(z,kT ) is parameterized in terms of the relevant fragmentation functions

(4)∆(z,kT )= 1

4

{
D1(z,−zkT )/n− +H⊥1 (z,−zkT )σ

αβkT αn−β
Mh

+ Mh

P−h
E(z,−zkT )+ · · ·

}
.

Similarly, e(x,pT ) is projected from the distribution matrixΦ(p,P ),

(5)Φ[1](x,pT )=
1

2

∫
dk− Tr

(
1Φ(p,P )

)∣∣∣∣
p+=xP+,pT

= M

P+
e
(
x,p2

T

)
,

which is parameterized as

Φ(x,pT )=
1

2

{
f1(x,pT )/n+ + h⊥1 (x,pT )σ

αβpT αn+βM + h1T (x,pT )iγ5σ
αβn+αSTβ

(6)

+ h⊥1s (x,pT )
iγ5σ

αβn+αpTβ
M

+ M

P+

[
e(x,pT )+ g′T (x,pT )γ5/ST + g⊥s (x,pT )

γ5/pT

M

]
· · ·

}
,
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where we have used the shorthand naming convention [24,25]

(7)h⊥1s(x,pT )≡ λh⊥1L(x,pT )+
(pT · ST )

M
h⊥1T (x,pT ).

We calculate these functions in the spectator model framework [26,27]. To address the log divergence
28–31] that arises when calculating the moments of distribution and fragmentation functions that appear
metries, we introduce a Gaussian distribution in the transverse momentum dependence of the quark–spec
and quark–nucleon–spectator vertices [21,22,26]. This serves to smoothly cutoff the integration inkT which kine-
matically parameterizes our knowledge of confining effects. For the fragmentation vertex we couple the
spectator, as a quark interacting with the produced pion (hereafter,Ph = Pπ ) through the vertex function

(8)〈0|ψ(0)|P ;X〉 =
(

i

/k−m
)
Υ

(
k2
T

)
U(k − Pπ , s), whereΥ

(
k2
T

)= iγ5fqqπ e
−b′k2

T .

Here,fqqπ (≡ f ) is the quark–pion coupling andk is the momentum of the off-shell quark,kT andb′ = 1/〈k2
T 〉,

are the intrinsic transverse momentum and its inverse mean square, respectively, andU(p, s) is the off-shell quark
spinor. A similar analysis applies to the quark–nucleon–spectator vertex as it relates to the distribution f
Using Eqs. (3), (8), thekT integrated chiral-odd twist-three fragmentation function isE(z)

(9)E(z)= m

P−
f 2

4(2π)2
1

z

(1− z)2
z2

{
m2
π

Λ′(0)
− 2b′m2

πe
2b′Λ′(0)Γ

(
0,2b′Λ′(0)

)}
,

whereΛ′(0)= 1−z
z2 M2

π + µ2

z
− 1−z

z
m2. TheT -even distribution functionsf1(x), h1(x), and fragmentation func

tions,D1(z), H⊥1 (z) are detailed in [21] and [22] (see also [33]). Similarly using Eq. (5), thepT integrated chiral-
odd distributione(x) function is

e(x)= M

4P+
g2

(2π)2

{
(1− x)(m+ xM)(m+M)−m2

(
x + m

M

)+Λ(0)(1+ m
M

)
Λ(0)

−
[
2b

(
(1− x)(m+ xM)(m+M)−m2

(
x + m

M

)
+Λ(0)

(
1+ m

M

))
+

(
1+ m

M

)]

(10)× e2bΛ(0)Γ
(
0,2bΛ(0)

)}
,

whereg is the scalar diquark coupling [27],Λ(0) = (1− x)m2 + xλ2 − x(1− x)M2, while M andm are the
nucleon and quark masses, respectively. Choosing〈p2

T 〉 = (0.4)2 GeV2= 1/b, yields good agreement [21,22] b
tweenf1(x) and the corresponding valence distribution of Ref. [32]. Additionally the chiral-even polarized fun
is projected from Eq. (6),

gT (x)= M

4P+
g2

(2π)2

{
(1− x)(m+ xM)(m+M)− (m2−Λ(0))(x + m

M

)
Λ(0)

−
[
2b

(
(1− x)(m+ xM)(m+M)− (

m2−Λ(0))
(
x + m

M

))
+

(
x + m

M

)]

(11)× e2bΛ(0)Γ
(
0,2bΛ(0)

)}
.

The distribution and fragmentation functions enter cross section for one-particle inclusive deep-inelastic sc
which is given by

(12)
dσ1+N→1′+h+X

dx dy dzd2Ph⊥
= πα2y

2Q4z
Lµν2MWµν = 2πα2

Q2y

∑
a

e2
aσ

a,
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where the factorized [24] hadronic tensor is

2MWµν(q,P,Ph)=
∫
d2pT d

2kT δ
2(pT + qT − kT )

1

4
Tr

[
Φ(xB,pT )γ

µ∆(zh,kT )γ
ν
]

(13)+ (q↔−q,µ↔ ν),

andLµν is the well-known lepton tensor. To investigate the sinφ BSA andφ-independentσLT SIDIS cross section
we keep only those terms producing contributions to Eq. (13)1

2MWµν = 2z
∫
d2pT d

2kT δ
2
(

pT −
P h⊥

z
− kT

)
×

{
−gµν⊥ f1D1+ i 2t̂

{µkν}T
Q

M

Mh

xeH⊥1

− i 2t̂{µpν}T
Q

Mh

M
h⊥1

E

z
+ i 2t̂ [µεν]ρ⊥ pTρ

Q

[
(pT · ST )

M

(
xg⊥T D1+ Mh

M
h⊥1T

E

z

)]

(14)+ i 2Mt̂ [µεν]ρ⊥ STρ

Q

[
x

(
gT − p2

T

2M2g
⊥
T

)
D1+ Mh

M

E

z

(
h1− p2

T

2M2h
⊥
1T

)]}
.

Contracting the hadronic tensor with the helicity-dependent part of the leptonic tensor leads to the reduc
sections which contribute to Eq. (12)

σa =
∫
d2pT d

2kT z
2δ2(P h⊥ − z(pT − kT )

)

×
{[

1+ (1− y)2]f a
1

(
x,p2

T

)
Da

1

(
z, z2k2

T

)− 4λey
√

1− y 1

Q

M

Mh

kTyxe
a
(
x,p2

T

)
H⊥a1

(
z, z2k2

T

)

+ 4λey
√

1− y 1

Q

Mh

M
pTyh

⊥a
1

(
x,p2

T

)Ea(z, z2k2
T )

z

(15)+ 4λey
√

1− y 1

Q
ST x

(
MxgaT

(
x,p2

T

)
Da

1

(
z, z2k2

T

)+Mhh
a
1

(
x,p2

T

)Ea(z, z2k2
T )

z

)}
.

Here,kTy (pTy) denote they component of the final (initial) parton transverse momentum vector andST x denotes
thex component of the nucleon’s polarization vector. We project the weighted differential cross section int
over the transverse momentum of the produced hadron [25,34]

(16)〈W 〉AB =
∫

d2Ph⊥W
dσ1+N→1′+h+X

dx dy dzd2Ph⊥
,

from Eq. (15) whereW = W(Ph⊥, φ,φS). The subscriptsAB represent the polarization of lepton and tar
hadron, respectively,U for unpolarized,L for longitudinally polarized andT for transversely polarized particle
From Eq. (12) the relevant reduced cross sections terms are2

(17)σUU = 〈1〉UU = [1+ (1− y)
2]

y
f1(x)D1(z),

(18)σLT = 〈1〉LT = λe|ST |
√

1− y 4

Q
cosφS

[
MxgT (x)D1(z)+Mhh1(x)

E(z)

z

]
,

(19)
〈|Ph⊥|sinφ

〉
LU = λe

√
1− y 4

Q
MMh

[
xe(x)zH

⊥(1)
1 (z)+ h⊥(1)1 (x)E(z)

]
,

1 To avoid ambiguities, we will use the same notations as in Ref. [24]. Also the terms proportional to the current quark mass are n
2 Hereafter we omita assuming that the cross section is given predominantly by scattering on theu-quark.
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whereh1(x)= h1T (x)+ h
⊥(1)
1T (x), and the weighted cross section contain thep2

T - andk2
T -moments of the distri

bution and fragmentation functions,

(20)h
⊥(1)
1 (x)≡

∫
d2pT

p2
T

2M2h
⊥
1

(
x,p2

T

)
, H

⊥(1)
1 (z)≡ z2

∫
d2kT

k2
T

2M2
h

H⊥1
(
z, z2k2

T

)
.

In turn, the asymmetries for which we will give an estimate are the weighted integrals of a SIDIS cross s
Eq. (16):

(21)ALU ≡A
|Ph⊥|sinφ
LU ≡

∫
d2Ph⊥|Ph⊥|sinφ(σ← − σ→)

1
2

∫
d2Ph⊥(σ← + σ→)

= 2
〈|Ph⊥|sinφ〉LU

σUU
,

(22)ALT ≡
∫
d2Ph⊥(σ←(φS)+ σ→(π + φS)− σ←(φS)− σ→(π + φS))∫
d2Ph⊥(σ←(φS)+ σ→(π + φS)+ σ←(φS)+ σ→(π + φS)) =

σLT

σUU
.

Hereσ←(φS), (σ→(π + φS)) denote the cross section with anti-parallel (parallel) polarization of the beam
for a transversely polarized target. In numerical calculations we assume 100% beam and target polariza
cosφS = 1.

The curves in Figs. 2, 3, and 4 are calculated at 27.5 GeV, 12 GeV, and 6 GeV beam energies by integra
the kinematic ranges corresponding to 0.1� y � 0.85,Q2 � 1 GeV2, andEπ � 2.0 GeV. In Fig. 2, the asymmetr
ALU of Eq. (21) forπ+ production on a proton target is presented as a function ofx andz. The dashed and do
dashed curves correspond to contribution of the two terms of Eq. (19), respectively, and the full curve is
of the two. From Fig. 2 one can see that the contribution of the second term of Eq. (21),h

⊥(1)
1 (x)E(z), to the beam

spin asymmetry is negligible whereas the first term,e(x)H
⊥(1)
1 (z), dominates. This is to be contrasted with t

result obtained in Ref. [12], where thez dependence of theAsinφ
LU results solely from the ratio ofE(z) to D1(z)

calculated in the chiral quark model [35]. In Fig. 3, the BSA,ALU, is presented. The dashed curve correspond
the full asymmetry at 6 GeV beam energy and similarly, the full curve corresponds to 12 GeV beam ener
apparent that decreasing the beam energy results in an increasing BSA, which is consistent with it being
three effect, suppressed byO(1/Q). In Fig. 4, the asymmetryALT(x) of Eq. (22) forπ+ production as a function

(a) (b)

Fig. 2.ALU for π+ production as a function ofx andz at 27.5 GeV energy. The dashed and dot-dashed curves correspond to contribu
the first and second terms of Eq. (19), respectively, and the full curve is the sum of the two.
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Fig. 3.ALU for π+ production as a function ofx andz at 6 GeV and 12 GeV energies. The dashed curve corresponds to 6 GeV and t
curve to 12 GeV energies.

(a) (b)

Fig. 4.ALT for π+ production as a function ofx andz at 27.5 GeV energy. The dashed and dot-dashed curves correspond to the contri
of the two terms of Eq. (18), respectively, and the full curve is the sum of those two. The thin curve corresponds to 6 GeV and the th
to 12 GeV energies, respectively.

of Bjorkenx andz is presented. The dashed and dot-dashed curves correspond to the contribution of the
even–even and chiral-odd–odd terms of Eq. (18), respectively, and the full curve is the sum of the two. T
and thick curves correspond to 6 GeV and 12 GeV beam energies, showing the total asymmetry. The con
of the term responsible for transversity inALT is suppressed due to the pion mass and the factor 1/z. From Fig. 4
one can conclude that the isolation of the chiral-odd effect containing information on quarks transversity f
term,gT D1, would to present a challenging measurement.
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3. Conclusion

The double transverse spin asymmetry which proves to be an interesting observable to probe the e
higher twist in addition to providing a window into the measurement of transversity has been consid
the quark–scalar-diquark framework [21,22]. In this connection, we have explored the twist-three chi
pion fragmentation function and subsequently estimated the double-spin asymmetry with longitudinally po
electrons scattered on transversely polarized nucleons. This asymmetry contains the product of a chirally o
two transversity distribution and a twist-three fragmentation function. At HERMES [5] and ongoing and up
JLAB [23] energies this chiral-odd effect is estimated to be fairly small which makes its isolation from the
even mechanism challenging. In addition the beam spin azimuthal asymmetry, which also contains this sub
twist chirally odd fragmentation function, has been calculated for HERMES and JLAB kinematics. It is
that in the simple quark–diquark model the effects of the twist-three chirally odd fragmentation are supp
Consequently, the measurements of BSA can provide valuable information on the leadingT -odd fragmentation
function,H⊥1 , a favored candidate for filtering the transversity properties of the nucleon.

The approach presented in this Letter takes into account only up quarks. However, the inclusion of axia
diquarks may essentially affect the asymmetries [36]. The extension of our results for down quarks and e
of BSA and double spin asymmetries forπ− andπ0 is a subject of further studies.
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