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Abstract

We consider a sub-leading twist chiral-odd pion fragmentation function and explore its contribution in single pion semi-
inclusive electroproduction. We evaluate the single beam-spin azimuthal asymejrand the double spin asymmetry
ALT in polarized electroproduction of pions from an unpolarized and transversely polarized nucleon, respectively. The beam
asymmetry is expressed as the product of chiral-odd;7andd and even distribution and fragmentation functions. The double
spin asymmetry contains information on the quark’s transversity distribution. In a quark—diquark—spectator framework we
estimate these asymmetries at 6 GeV, 12 GeV, and 27.5 GeV energies.
0 2004 Elsevier B.VOpen access under CC BY license,

PACS 13.87.Fh; 13.60.-r; 13.88.+e; 14.20.Dh

1. Introduction

One of the most interesting results in deep-inelastic spin physics has been the discovery of a class of chirally odd
quark distribution functions. That which has garnered most attention is the leading twist transversity distribution
hi1 which provides information on the quark transverse spin distribution in a transversely polarized nucleon [1,2].
Chiral-odd distribution functions are difficult to measure because they are suppressed in inclusive deep-inelastic
scattering. However, when two hadrons participate in the scattering process, the nucleon'’s transversity can be ac-
cessed; for example, in Drell-Yan scattering with transversely polarized protons [1,3]. Alternatively, transversity
can be probed in semi-inclusive deep-inelastic scattering (SIDIS) where outgoing hadrons are produced in the
current fragmentation region. This process [4] has been used as a filter to access transversity [5]. Here, the proba-
bility for a transversely polarized quark to produce a pion is probed. Other methods to probe transversity involving
semi-inclusive production oft hyperons, and of two pions have also been discussed in the literature [6-8].
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Some time ago, Jaffe and Ji [9] suggested that the nucleon’s transversity could be probed in polarized
electroproduction of pions from a transversely polarized nucleon. By comparison with the above mentioned Drell—
Yan and single-spin asymmetry approaches, their proposal is sub-leading in twist. However, since the measurement
involves merely one spinless particle in the final state it proves to be an interesting approach to probe the effects of
higher twist in addition to providing a window into the measurement of transversity. The asymmetry characterizing
this process consists of a linear combination of two terms, one chiral-even and one chiral-odd. To expose the
chiral-odd effect of interest [10], the competing chiral-even mechanism must be subtracted away.

In this Letter we will estimate the relative magnitudes of these two contributions to the double spin asymmetry
in the quark—diquark—spectator framework. In doing so, we explore the sub-leading twist chirally odd pion
fragmentation functiorE (in Ref. [9] it was denoted by1). On the other hand, as it will be shown below, that
chiral-odd fragmentation function can show up also in the SIDIS beam spin asymmetry (BSA) in addition to effects
considered by Levelt and Mulders [11]. The interest in the BSA for pion electroproduction in semi-inclusive deep-
inelastic scattering of longitudinally polarized electrons off unpolarized nucleon resides in the fact that the beam
probes the antisymmetric part of the hadron tensor, which is particularly sensitive to final state interactions. In
longitudinally polarized electron electromagnetic scattering, the BSA shows ugsis¢a asymmetry for the
produced hadron and is expressed as

)

Is < ko| |Pp|

wheres denotes the spin vector of the electron (the upper (lower) sign for right- (left-) handed eleatiofs), is
three-dimensional vector of incoming (outgoing) electron momentunPgnds the produced hadron’s transverse
momentum about virtual photon directiog; is the azimuthal angle of produced pions relative to the lepton
scattering plane, angls is the azimuthal angle of the target polarization vector (Fig. 1). This asymmetry is related
to the left—right asymmetry in the hadron momentum distribution with respect to the electron scattering plane,
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Fig. 1. The kinematics of SIDIS.
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which is 4/ times(sing). Heredo is a shorthand notation fato N ~¢"X /dx dy dz d?P, , andx, y, andz are the
standard leptoproduction scaling variables [11]. As will be shown in this Letter, the asymmetry is a superposition of
ex Hj, obtained in Ref. [11], antd{ « E. A similar result has been presented very recently by Yuan [12], where the
BSA has been phenomenologically studied in the extrema casgeE . By contrast, the BSA has been studied at
the other extreme:,x Hf [13,14] while in addition the bounds on this asymmetry were considered in [15]. Further,
the BSA has been considered solely from perturbative QCD effects at second osgldd6+18]. In Ref. [19] a
dynamical model for BSA similar to that used for the single target spin asymmetries [20] has been proposed.
This Letter is organized as follows. First, we calculate the sub-leading twist chiral-odd fragmentation fé#hction
defined by Jaffe and Ji [9], following the approachin [21,22]. Then we study its physical implications in filtering the
nucleon’s transversity properties by considering the double-spin asymmetryin polarized electroproduction of
pions from a transversely polarized nucleon. This process contains information on quark’s transversity distribution.
We also consider the single beam-spin azimuthal asymmétty, We perform order of magnitude estimates of
these asymmetries for HERMES and ongoing and upgraded JLAB energies [5,23]. With regardue estimate
that the chiral-odd effect is small and apparently its isolation from the chiral-even contribution would appear to be
challenging measurement.

2

2. The A 1 and Ay asymmetriesin the spectator framework

Here we focus on the chirally odd transverse momentum-dependent distribution and fragmentation functions,
e(x, pr) andE(z, —zkr). As mentioned in the introduction, the fragmentation functi(a, —zkr) arises when
a longitudinal polarized electron beam probes a transversely polarized nucleon. Quantitatively this is represented
in the joint produch(x) x E(z) that arises in the asymmeta( t which is accompanied with the more commonly
investigated chiral-even combinatiogy (x) x D1(z). On the other hand, the chirally odd distribution function
e(x) contributes in the combinatian(x) x HlJ-(z) in the beam asymmetry, wheHzf(z) correlates the probability
for a transversely polarized quark to fragment to a pion. This term is accompanied with the comeodzht
combinatiorhf(x) x E(z). The latter combination provides an additional term that fuels the beam asymmetry. The
function E (z, —zk7) is projected from the fragmentation mateik, P,) using the identity operator

M
= “2E(z.2%5), ®
k—=pPrjoky P

whereA(z, k7) is parameterized in terms of the relevant fragmentation functions

1
Az kp) = 4_/dk+ Tr(1A(k, Py))
L

1 afr _ M,
Az, kr) = 51 Da(e, —kp )i + Hi 2, —2kr) "2 D (e —ckp) 4. @
Similarly, e(x, p7) is projected from the distribution matrig(p, P),
1 B M
oW (x, pr) = E/dk Tr(1®(p. P)) = F‘f("’l’%)’ ©)
pt=xP* pr

which is parameterized as

1 .
O (x, pr) = E{fl(x, Pty +hi(x, pr)o®® pranigM 4 har (x, pr)iyso®ny e Stp

iy50°‘ﬂn pT M VspT
+hi (x, pr) Ty —|:e(x,p7)+g’T(x,pT)y5$T + g (x, pr) 4 ]},

M P+ M
(6)
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where we have used the shorthand naming convention [24,25]

(pTMjth(X, Pr)- (7)

We calculate these functions in the spectator model framework [26,27]. To address the log divergence [20,26,
28-31] that arises when calculating the moments of distribution and fragmentation functions that appear in asym-
metries, we introduce a Gaussian distribution in the transverse momentum dependence of the quark—spectator—pior
and quark—nucleon—spectator vertices [21,22,26]. This serves to smoothly cutoff the integratiomtiich kine-

matically parameterizes our knowledge of confining effects. For the fragmentation vertex we couple the on-shell
spectator, as a quark interacting with the produced pion (heregfter,P;) through the vertex function

hi, (x, pr) = Ahip (x, pr) +

01y (O P: X>=( )T(k%)U(k—Pﬂ,s), whereT (k) = iy fygme "% ®)

k—m
Here, f,4= (= f) is the quark—pion coupling aridis the momentum of the off-shell quark; andd’ = 1/(k§>,

are the intrinsic transverse momentum and its inverse mean square, respectivelyparnyis the off-shell quark

spinor. A similar analysis applies to the quark—nucleon—spectator vertex as it relates to the distribution function.
Using Egs. (3), (8), thé&r integrated chiral-odd twist-three fragmentation functio&' {3)

m  f2 1(1-272%( m2 12 26 A0
E(z)= — - —2b O r(0,26'A'(0)) }, 9
@ =202 2 {A’(O) Mt ( ©) ©)
whereA’(0) = 32 M2 + “72 - %mz. The T -even distribution functiong (x), #1(x), and fragmentation func-

tions, D1(z), Hf‘(z) are detailed in [21] and [22] (see also [33]). Similarly using Eqg. (5) zthentegrated chiral-
odd distributiore(x) function is

M g2 {(1—x)(m+xM)(m+M)—m2(x+%)+A(0)(1+%)

e(x)=

4P+ (27)2 A(0)
2 m m m
— |:2b<(1—x)(m +xM)Yim+ M) —m (x + M) + A(O)(l+ M)) + (1—!— M>i|
x 240 (o, 2bA(O))}, (10)

whereg is the scalar diquark coupling [271(0) = (1 — x)m? + xA%? — x(1 — x)M?, while M andm are the
nucleon and quark masses, respectively. Choo@jﬁg = (0.4)2 Ge\? = 1/b, yields good agreement [21,22] be-
tweenf1(x) and the corresponding valence distribution of Ref. [32]. Additionally the chiral-even polarized function
is projected from Eq. (6),

M g2 [A=x)m+xM)(m+ M) — (m* = A0)(x+§)
8T = Zpr (271)2{ A(0)
- [2;;((1— X)(m + xM)(m + M) — (m? — A(O))(x + %)) + (x + %)}
x 240 (0, 2bA(0))}. (11)

The distribution and fragmentation functions enter cross section for one-particle inclusive deep-inelastic scattering
which is given by

’
do.eJrN%E +h+X 7'(0(2)1

2na?
- L 2MWH = Z—— %" 264, 12
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where the factorized [24] hadronic tensor is

1
2MWH"(q. P, Py) = /dsz d’kr 8%(pr +4q7 — kr) 7 T (ep, pr)Y" A kr)y']
+(CI<—>_‘],P«<_>V)7 (13)

andL,, is the well-known lepton tensor. To investigate the¢gsiBSA andg-independend 1 SIDIS cross section
we keep only those terms producing contributions to Eq.X(13)

21t “k M B
—erl
My,

AVl py  E 2flugtlP .S E
i QpTﬁhhf;+i 5””[(”]”7)( LDl+—hL )]

2Milre P sy p2 My E p
+l#|:x<gf — Z—A;Zg%)Dl + ﬁ;<h1 Zﬁ;zh”)“ (14)

Contracting the hadronic tensor with the helicity-dependent part of the leptonic tensor leads to the reduced cross
sections which contribute to Eq. (12)

P
2MWHY =2z/d211r d?kr 32(1’ - % —kr> X {—gfvf1D1+l

= / d®py d*kr 228%(Pyi — 2(py — k1))
1M
{[1+ (L— 2] ff(x, p3) DS (2, 2°k%) — 4y 1—yamkfyxe“(x,p%)HlLa(z,zzk%)

E¢ 2k2
+4r.yy/1 pryhm(x pﬁ%

E%(z, 2%k2
T B y/1— er(ngT(x p2) DS (2, 22%K2 ) + Myhs (x, p )%)} (15)

Here,k7, (pry) denote they component of the final (initial) parton transverse momentum vectoSapdenotes
thex component of the nucleon’s polarization vector. We project the weighted differential cross section integrated
over the transverse momentum of the produced hadron [25,34]

dU@+N»e’+h+X

Wiag = | a?PpwEe — 16
(W)as / W T dedZn, (16)

from Eq. (15) whereW = W (P, ¢, ¢s). The subscriptsAB represent the polarization of lepton and target
hadron, respectively/ for unpolarized L for longitudinally polarized and™ for transversely polarized particles.
From Eq. (12) the relevant reduced cross sections terms are

[1+(1-y)?

oyu = (Luu = ffl(x)Dl(Z)» (17)
4

ot = (Uit =2.IS7lv1-y — COS¢S |:MXgT(X)D1(Z) + Mpha(x )ﬁ} (18)

(I1PaLISiNg) | = hey/1— —MMh[xe(x)zH P+ Y WE®], (19)

1 To avoid ambiguities, we will use the same notations as in Ref. [24]. Also the terms proportional to the current quark mass are neglected.
2 Hereafter we omit: assuming that the cross section is given predominantly by scattering orctherk.
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wherehy(x) = hair (x) + h3 (l) (x), and the weighted cross section containpﬁe andk%—moments of the distri-
bution and fragmentatlon functions

2
p7 k
hy® () E/dz Pr ZA;zhL( %), H () EZZ/deT —ZA;zHlL(Z,ZZk%) (20)
h
In turn, the asymmetries for which we will give an estimate are the weighted integrals of a SIDIS cross section,
Eq. (16):

i d?Py | | Py |Sing(c< —0™ Py |sin
ALUEAL}G“ISMEI nL|Pni|sing (o o ):2(| nLl ¢>LU, 21)

3 [d2Pyi (0= +07) ouu

A= LEPILO @) + 0T (T +s) =0T (gs) —0T (T +¢5) _ ot 22)
[d?Pyi(c<(ps) + 07 (m +¢s) + 0 (¢ps) + 07 (T +ds)) ouu’

Hereo < (¢s), (67 (r + ¢5)) denote the cross section with anti-parallel (parallel) polarization of the beam and
for a transversely polarized target. In numerical calculations we assume 100% beam and target polarization and
cosps =1

The curvesin Figs. 2, 3, and 4 are calculated at 27.5 GeV, 12 GeV, and 6 GeV beam energies by integrating over
the kinematic ranges corresponding tt § y < 0.85, 02 > 1 Ge\?, andE,; > 2.0 GeV. In Fig. 2, the asymmetry
ALy of Eq. (21) forz ™ production on a proton target is presented as a functionaridz. The dashed and dot-
dashed curves correspond to contribution of the two terms of Eq. (19), respectively, and the full curve is the sum

of the two. From Fig. 2 one can see that the contribution of the second term of Echi(ﬁ'i}(x)E(z), to the beam
spin asymmetry is negligible whereas the first teém)HL(l)(z) dominates. This is to be contrasted with the

result obtained in Ref. [12], where thedependence of thﬂs'”¢ results solely from the ratio af (z) to D1(z)
calculated in the chiral quark model [35]. In Fig. 3, the BSAU, is presented. The dashed curve corresponds to

the full asymmetry at 6 GeV beam energy and similarly, the full curve corresponds to 12 GeV beam energy. It is
apparent that decreasing the beam energy results in an increasing BSA, which is consistent with it being a twist-
three effect, suppressed 8)(1/ Q). In Fig. 4, the asymmetry 1(x) of Eq. (22) forz* production as a function
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Fig. 2. ALy for =1 production as a function of andz at 27.5 GeV energy. The dashed and dot-dashed curves correspond to contribution of
the first and second terms of Eq. (19), respectively, and the full curve is the sum of the two.
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Fig. 3. ALy for =T production as a function of andz at 6 GeV and 12 GeV energies. The dashed curve corresponds to 6 GeV and the full
curve to 12 GeV energies.
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Fig. 4. A 1 for 7+ production as a function of andz at 27.5 GeV energy. The dashed and dot-dashed curves correspond to the contributions
of the two terms of Eq. (18), respectively, and the full curve is the sum of those two. The thin curve corresponds to 6 GeV and the thick curve
to 12 GeV energies, respectively.

of Bjorkenx andz is presented. The dashed and dot-dashed curves correspond to the contribution of the chiral-
even—even and chiral-odd—odd terms of Eq. (18), respectively, and the full curve is the sum of the two. The thin

and thick curves correspond to 6 GeV and 12 GeV beam energies, showing the total asymmetry. The contribution
of the term responsible for transversityAnt is suppressed due to the pion mass and the fagtorFrom Fig. 4

one can conclude that the isolation of the chiral-odd effect containing information on quarks transversity from the

term, g7 D1, would to present a challenging measurement.
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3. Conclusion

The double transverse spin asymmetry which proves to be an interesting observable to probe the effects of
higher twist in addition to providing a window into the measurement of transversity has been considered in
the quark—scalar-diquark framework [21,22]. In this connection, we have explored the twist-three chiral-odd
pion fragmentation function and subsequently estimated the double-spin asymmetry with longitudinally polarized
electrons scattered on transversely polarized nucleons. This asymmetry contains the product of a chirally odd twist-
two transversity distribution and a twist-three fragmentation function. At HERMES [5] and ongoing and upgraded
JLAB [23] energies this chiral-odd effect is estimated to be fairly small which makes its isolation from the chiral-
even mechanism challenging. In addition the beam spin azimuthal asymmetry, which also contains this sub-leading
twist chirally odd fragmentation function, has been calculated for HERMES and JLAB kinematics. It is shown
that in the simple quark—diquark model the effects of the twist-three chirally odd fragmentation are suppressed.
Consequently, the measurements of BSA can provide valuable information on the |&adddfragmentation
function,HlL, a favored candidate for filtering the transversity properties of the nucleon.

The approach presented in this Letter takes into account only up quarks. However, the inclusion of axial-vector
diquarks may essentially affect the asymmetries [36]. The extension of our results for down quarks and estimates
of BSA and double spin asymmetries for and=? is a subject of further studies.
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