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Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation
into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to
light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is
unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one
antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb,
have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences
are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem
complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least
three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step
Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and
spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa
Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is
only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
Diatoms (Bacillariophycea) are unicellular, eukaryotic algae that
carry out oxygenic photosynthesis and contribute nearly to one
quarter of global primary production [1]. The most remarkable feature
of diatoms is the highly patterned cell wall composed of amorphous
silica [(SiO2)n(H2O)]. Diatoms derived from a secondary endosymbio-
tic event. An as yet unknown eukaryotic host domesticated a
phylogenetically relate of red algae. This endosymbiosis event led to
the phenomenon that chloroplasts of diatoms are surrounded by four
membranes. Another characteristic of diatom chloroplasts is the even
arrangement of thylakoids in bands of three, instead of an organisa-
tion into stroma and grana lamellae (for reviews see [2,3]).
Consequently, photosystem (PS) I and PSII are not segregated as in
higher plants, which has been visualised by immuno-cytochemical
experiments [4]. Despite their biological relevance our knowledge
about diatom photosynthesis is relatively poor. In the last years the
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focus laid mainly on biochemical and spectroscopic analyses of the
light harvesting complexes (LHCs) of diatoms, the fucoxanthin-
chlorophyll proteins (Fcps), e.g. [5–8]. Although Fcps belong to the
group of cab proteins (chlorophyll a-binding proteins), their pigmen-
tation differs from LHCII of higher plants. Fcps bind fucoxanthin
instead of lutein, chlorophyll (Chl) c instead of Chl b, and their Chl a:
carotenoid stoichiometry is 1:1 in contrast to a 2:1 ratio in LHCII [9,10].
Furthermore, the hydrophilic loop regions connecting the transmem-
brane spanning helices of Fcps are shortened in comparison to higher
plant LHCs.

Fcps can be placed into three groups according to sequence
homologies. Group I, represented by e.g. the genes fcp 1–3 and 5 of
Cyclotella cryptica and fcp A–F of Phaeodactylum tricornutum, relates
with Fcps of brown algae. The gene fcp 4 of C. cryptica and their
homologues in Thalassiosira pseudonana and P. tricornutum, lhca and
lhcr, belong to group II and are related with a PSI associated, intrinsic
light harvesting protein Lhca-R1/2 of red algae and cryptophytes. The
third group shares homologies with LI818r-3 of Chlamydomonas
reinhardtii, a member of the LHC family, and is represented by the
genes fcp 6, 7 and 12 of C. cryptica [3,11–14]. Despite the knowledge
about various gene sequences of Fcps, the knowledge about Fcps on
protein level and their association with the photosystems remains
scarce. Since Fcps possess high sequence similarities, small differences
in molecular weight, and a strong hydrophobic character, it becomes a
challenge to differentiate between polypeptides by immunological
methods or sequencing. Still, in Cyclotella meneghiniana an FCP trimer
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and a higher oligomer have been isolated and the associated Fcp
polypeptides were identified [5,6]. The FCP trimer, named FCPa, is
mainly composed of 18 kDa subunits encoded by the fcp 2 gene. In
smaller amounts also 19 kDa subunits encoded by fcp 6 could be
identified. In the higher oligomer FCPb, probably a hexa- or nonamer,
only 19 kDa subunits were detected, encodedmost probably by the fcp
5 gene. Recently, trimeric and hexameric FCP complexes were also
described for P. tricornutumwith subunits encoded by the genes fcp C/
D and fcp E [8]. Thus, not only the pigmentation but also the assembly
into higher oligomeric states seems to distinguish FCP complexes from
e.g. higher plant LHCII trimers, although for LHCII heptamers of
trimers (icosienamers) have been described as well [15].

In this work, the association of Fcp polypeptides with the
photosystems, focussing on PSI, was studied by spectroscopical and
immunological means. Earlier reports by e.g. Brakemann et al. [16]
suggested a homogeneous distribution of Fcps despite the suggestion
of PSI specific antenna proteins from sequence comparisons. Here,
solubilised thylakoids of C. meneghiniana were separated into
functional FCP, PSII, and PSI complexes. Analysis of polypeptides
revealed a different subset of Fcps that are associated with the two
photosystems. In this way, it could be demonstrated that a protein
homologous to Fcp4 is tightly bound to PSI together with a so far non-
described 17 kDa Fcp polypeptide. These data were compared to a
similar approach in P. tricornutum, in order to demonstrate that the
organisation of photosystem specific Fcp light harvesting protein
complexes is species independent.

2. Materials and methods

2.1. Cell culture and preparation of pigment protein complexes

C. meneghiniana (Culture collection Göttingen (SAG), strain 1020-
1a, formerly C. cryptia according to SAG, personal communication)
was grown in ASP medium supplemented with 1 mM silica [17] under
a 16 h light (140 μE m−2 s−1) to 8 h dark cycle. Isolation of thylakoids
was performed as described in [5]. In brief, thylakoids were adjusted
to a concentration of 0.25 mg/ml Chl a+c, solubilised with 15 mM n-
dodecyl β-D-maltoside (DDM) for 20 min on ice, and loaded onto
discontinuous sucrose gradients. The gradients consisted of five
sucrose layers with concentrations of 40, 30, 25, 20, and 15% in buffer
B1 (25 mM Tris–HCl, 2 mM KCL, pH 7.4, 0.03% DDM). Thylakoids were
centrifuged for 22 h at 28.000 rpm (rotor: Beckmann SW 28) and 4 °C.
The separated pigment protein complexes were harvested and either
concentrated using filtration devices (Amicon) with a 30 kDa cut-off
or analysed directly. Chlorophyll concentrations of the samples were
determined spectroscopically according to [18] in 90% acetone.
Samples were stored at −20 °C.

Pigment protein complexes of P. tricornutum and pea thylakoids
were purified according to [19]. Chlorophyll concentrations of the
samples were determined spectroscopically according to [18,20] in
90% or 80% acetone, respectively.

2.2. Further purification of isolated PSI complexes

2.2.1. Gel-filtration
50 μl of purified and concentrated PSI complexes with a Chl

concentration of approx. 0.4 mg/ml were applied to a Superdex 200
(GE Healthcare) gel-filtration column 10/300 GL (Amersham Bios-
ciences) connected to an Äkta Purifier P-900 (AmershamBiosciences).
Elution was carried out with buffer B1 at a flow rate of 0.5 ml/min
and controlled spectroscopically at three different wavelengths (λ1=
437 nm, λ2=530, λ3=700 nm).

2.2.2. Discontinuous sucrose gradient centrifugation
For further analysis, PSI fractions were resolubilised at a Chl a

concentration of 0.2 mg/ml using different detergents, and again
fractionated on a sucrose gradient consisting of the same sucrose
layers as described above with the exception of the 40% sucrose layer,
which was omitted. Detergents used were 240 mM β-heptyl
glucopyranoside (HG), 75 mM n-octyl β-D-glucopyranoside (OG),
20 mM n-nonyl β-D-glucopyranoside (NG), 3% (w/v) Triton X-100,
and a combination of 10 mM n-nonyl β-D-glucopyranoside (NG) and
37.5 mM n-octyl β-D-glucopyranoside.

2.3. Characterisation of purified pigment protein complexes

2.3.1. Gel electrophoresis
15% Tris–Tricine Gels were cast according to [21]. Depending on

their Chl concentration, samples were either precipitated in acetone
before or directly denatured in Rotiload® (Roth) for 20 min at room
temperature (RT). Gels were either stained with Coomassie Blue G
250 or were silver stained.

2.3.2. Western blot
Unstained gels were incubated in cathode buffer (25 mM Tris–HCl,

40 mM glycine, 10% methanol at pH 9.4) for 15 min and then blotted
onto PVDF membranes (Roth) previously incubated in anode buffer II
(25 mM Tris–HCl, 10% methanol, pH 10.4). Both were enclosed by a
sandwich of 3MM Chr Whatman paper (Schleicher & Schüll), wetted
with either cathode buffer, anode buffer II or anode buffer I (0.3 M
Tris–HCl, 10% methanol, pH 10.4). Transfer was carried out for 1 h at
1.5 mA/cm2 in a semi-dry transfer cell (BioRad Trans-blot SD).
Immunodetection was performed using the ECL Plus kit (Amersham
Biosciences) according to the manufacturer's instructions. Antibodies
directed against higher plant reaction centre II PsbD (α-D2) and
against Fcp2 (α-Fcp2), Fcp4 (α-Fcp4), Fcp6 (α-Fcp6) [22], and all Fcp
polypeptides (α-ccFcp) [23] of C. cryptica were kind gifts from Dr. D.
Godde, (University of Bochum) and Dr. E. Rhiel (University of
Oldenburg), respectively. Antibodies were diluted in PBS (137 mM
NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.4 mM KH2PO4) containing
5% (w/v) dry milk (Roth), except forα-Fcp4, which was diluted in PBS
only. Dilutions usedwere 1:2000 (α-D2,α-ccFcp),1:1000 (α-Fcp2,α-
Fcp6), and 1:200 (α-Fcp4).

2.3.3. HPLC
Concentrated samples were extracted using 90% methanol and

analysed according to [9].

2.3.4. Spectroscopy
Absorbance spectrawere recorded between 350 nm and 750 nm at

room temperature with 1 nm band pass and 1 cm optical path length
using a Jasco spectrophotometer (V 550). Fluorescence spectra were
measured with a Jasco fluorometer (FP-6500) at room temperature
(RT) and 77 K, respectively. Band passes of 3 nm were used both on
emission and excitation side. A rhodamine B spectrum served as a
reference for the correction at the excitation side and the photo-
multiplier was corrected using a calibrated lamp spectrum. Emission
spectra were taken upon excitation at λex=440 nm or λex=465 nm
andmeasured from λem=600 nm to λem=800 nm. For the excitation
spectra, emission was recorded at λem=675, λem=687 nm, or
λem=717 nm upon excitation from λex=400 nm to λex=600 nm.
For direct comparison of different fractions, samples were adjusted to
the same Chl a concentration (absorbance of 0.03 at the QY band of Chl
a) in buffer B1. In case of 77 K measurements samples were diluted in
buffer B1 containing 60% glycerol.

2.3.5. Mass spectrometry
Bands of interest were cut out from silver stained gels and

freeze-dried. After destaining and in-gel digestion with trypsin, the
pellet was resuspended in 5 μL 5% (v/v) DMSO/5% (v/v) formic
acid and peptides were separated by nano-HPLC and analysed by
LC-ESI-MS/MS as described [24,25]. The mass spectrometer was



Fig. 1. Schematic representation of a sucrose gradient after fractionation of thylakoids
solubilised with DDM (a) or a PSI sample of C. meneghiniana re-solubilised with a
mixture of NG and OG (b). Pigmented bands are indicated. The inset in (a) depicts a
Western blot of the sucrose gradient fractions B, C, and D and thylakoids of pea (+) as
positive control. The antibody used was directed against the PSII subunit PsbD. 4 μg Chl
of all samples was loaded, except for fraction B (0.5 μg Chl).

Fig. 2. Absorbance and fluorescence spectra of purified pigment protein fractions B (solid lin
350 nm and 750 nm of fractions are shown. Samples were adjusted to about the same Chl a Q
light was set to 440 nm. 77 K fluorescence excitation spectra measured at 675 nm are rep
measured at 675 nm (black, solid line) and 717 nm (grey, dotted line) are shown in the inset.
(d). The same excitationwas used for the spectra shown in (e) of fraction D and Dgf1 (obtaine
D excited at 465 nm can be seen in (f). Fluorescence emission and excitation spectra shown i
the wavelengths of the emission maxima are indicated.
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cycling between one full MS and MS/MS scans of the four most
abundant ions. After each cycle, these ions were excluded from
analysis for 10 s.

Data analysis was done using the Proteome Discoverer software
(Version 1.0) from Thermo Electron Corp. including the SEQUEST
algorithm [26]. Detection of a modification of 16 Da on Met
representing its oxidized form was enabled. Peptide mass tolerance
was set to 1.5 Da in MS mode. In MS2 mode, fragment ion tolerance
was set up to 1 Da. The parameters for all database searches were set
to achieve a false discovery rate (FDR) of not more than 1% for each
individual analysis. Thereby, the Proteome Discoverer software
(Version 1.0) generates a reversed “decoy” database from the chosen
database and any peptide passing the initial filtering parameter that
was derived from this decoy database is defined as a false positive.
Then, it automatically adjusts the minimum Xcorr filter for each
individual charge state (+1, +2, +3) separately in order to optimally
meet the predetermined target FDR of 1% based on the number of
random false positive matches from the reversed “decoy” database.
Data were searched against a combined diatom database of C. cryptica
e), C (dotted line), and D (dashed line). In (a) the absorbance spectra recorded between
y absorbance. Room temperature fluorescence emission spectra are shown in (b). Actinic
resented in (c). For comparison the 77 K fluorescence excitation spectra of fraction D
77 K fluorescence emission spectra of fractions B and C excited at 440 nm can be seen in
d after gel-filtrating fraction D, solid line). 77 K fluorescence emission of fractions B and
n (c–f) were normalised to 1 at their Chl a Qy or Soret bands, respectively. In (d) and (e)



Fig. 3. Elution profile of an analytical gel-filtration chromatography of the PSI fraction D.
Elution was controlled by measuring absorbance at three different wavelengths:
437 nm (solid line), 530 nm (dashed line), and 700 nm (dotted line). For better
visualisation the absorbance at 437 nm is depicted on the left y-axis, whereas the two
other wavelengths were plotted according to the right y-axis. Eluted peaks were named
Dgf1 and Dgf2.

Fig. 4. SDS-PAGE (panel a) and Western blots (panel b) of isolated pigment protein
fractions B, C, and D. Marker proteins (M), 18 kDa and 19 kDa Fcp polypeptides
(arrowheads), and PSI core subunits PsaA/B (arrow) are indicated in panel a. In panel b
the antibodies used (α-ccFcp, α-Fcp2, α-Fcp4, and α-Fcp6) are indicated on the left
side. The samples contained 4 μg Chl each, besides fraction B (0.5 μg Chl).
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(http://www.uniprot.org/), T. pseudonana (http://genome.jgi-psf.
org/Thaps3/Thaps3.home.html) and P. tricornutum (http://genome.
jgi-psf.org/Phatr2/Phatr2.home.html).

3. Results

3.1. Isolation of pigment protein complexes and spectroscopic analysis

To analyse the association of Fcp polypeptides with the photo-
systems, thylakoids of C. meneghiniana solubilised with 15 mM DDM
were separated by discontinuous sucrose gradient centrifugation. A
scheme of the resulting separation of pigment protein complexes is
shown in Fig. 1a and resembles the results published by [27]. Fraction
A consisted mainly of free pigment and was not considered further.
Fraction B represented the free FCP pool. No differentiation was made
concerning the upper phase consisting of FCPa trimers and the lower
phase consisting of FCPa trimers and FCPb higher oligomers [6].
Fractions C and D were green fractions and thus seemed to consist of
photosystems. Western blot analysis revealed a strong reaction of
fraction Cwith an antibody directed against the PSII core subunit PsbD
(see inset Fig. 1), whereas no reaction was observed in the other
fractions B and D. Thus, PSII is solely located in fraction C and fraction
D is completely devoid of PSII. All three fractions were analysed
spectroscopically (Fig. 2). For comparison the three samples were
adjusted to the same Chl a concentration. The absorbance spectrum of
fraction B represented a typical FCP with Chl a peaks at 442 and
671 nm, a broad carotenoid shoulder including fucoxanthin extending
the absorbance up to 580 nm, and Chl c peaks at 465 nm and 645 nm
[5–8]. Fraction C showed a similar Chl a absorbance, with a Qy peak
slightly shifted towards 673 nm. Absorbance of Chl c and fucoxanthin
were hardly visible in the spectrum. Fraction D gave a similar
spectrum as fraction C but showed a broadened Qy band of Chl a
with a maximum at 679.5 nm, thus resembling a PSI spectrum.
Fluorescence emission spectra recorded at the same Chl a concentra-
tion with excitation at 440 nm measured between 600 and 800 nm
showed great differences between the three samples (Fig. 2b).
Whereas fraction B fluoresced strongly at 676 nm, fluorescence of
fraction C was shifted towards 680 nm and reduced by 68% in
comparison to fraction B. Fraction D however, showed a decrease of
fluorescence of about 95% and a shift towards 680 nm. As expected,
the 77 K fluorescence excitation spectrum of fraction B measured at
675 nm showed transfer from the pigments Chl a, Chl c, and
fucoxanthin towards Chl a (Fig. 2c). Although the absorbance
spectrum of fraction C showed little fucoxanthin, energy transfer
from this pigment to Chl a was still visible, whereas this was almost
not the case for fraction D.

Since the fluorescence yield of PSI complexes at RT is known to be
very low [28] we measured the fluorescence emission of all fractions
at 77 K. Upon excitation at 440 nm, fraction B showed a strong Chl a
peak at 676 nm. The same was true for fraction C with the exception
that the Chl a peak was split into a 676 nm and a stronger 687.5 nm
signal resembling a typical PSII spectrum at 77 K (Fig. 2d) [29].
Fraction D showed a maximum at 676 nm, a shoulder at 688 nm and a
second peak at 717 nm (Fig. 2e). It is noteworthy to mention that all
three fractions exhibited also a slight Chl c emission, indicating a
partial decoupling of Chl c from Chl a inside the co-purified Fcp
antenna. Since fraction D showed a subset of different Chl a emitters,
the participating pigments inducing the longer wavelength compo-
nents had to be identified. Therefore the fluorescence excitation of
fraction D was repeated with emission measured at 688 nm and
717 nm. In contrast to the measurements before, in both cases transfer
from Chl c and a carotenoid, probably fucoxanthin, was detected (a
comparison between fraction D measured at 675 nm and 717 nm is
shown in the inset of panel c). These pigments clearly belong to an Fcp
antenna. To be sure that no free Fcp not properly bound to the PSI
complex in fraction D contaminated the spectra, and in order to find
out which of the detected emission peaks were caused by Fcps, an
analytical gel-filtration chromatography was performed (see Fig. 3).
Elution resulted in the separation of two peaks, named Dgf1 and Dgf2.
The main peak Dgf1 was eluted first and showed absorption at all
detection wavelengths, 437 nm, 530 nm, and 700 nm. Dgf2 showed
absorption only at 437 nm and 530 nm. It was suggested that the first
peak represents PSI, whereas the second peak represents polypep-
tides, which were washed off, probably Fcps. When analysed
spectroscopically, the absorbance spectrum of Dgf1 resembled that
of fraction D, whereas the concentration of Dgf2 was too low to
analyse it properly (data not shown). A Chl a Qy absorbance at
approximately 670 nm could be estimated, but no further analysis of
this sample was performed. 77 K fluorescence measurements of Dgf1
revealed Chl amaxima at 688 nm and 717 nmwhen excited at 440 nm
(Fig. 2e), and no Chl c emission was observed. The 676 nm peak
detected in fraction D was not visible, and therefore this signal was
interpreted as fluorescence that originated from partially uncoupled
Fcp polypeptides, which were removed by gel-filtration. The presence
of uncoupled and most probably unfunctional Fcp polypeptides
became also visible when exciting fraction D at 465 nm, i.e. into the
Chl c absorption band, causing a very obvious Chl c emission.
However, Fcps properly bound were also present in fraction D, since
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Fig. 5. SDS-PAGE (panel a) and Western blots (panel b) of purified fractions derived
from resolubilisation of fraction D and further separation by sucrose density
centrifugation. In panel a, silver stained fractions NGOG1 and NGOG2 (lanes 2 and 3)
are presented. As a control fraction D was used (lane 1). All samples contained 4 μg Chl.
Marker proteins are indicated (M) and PsaA/B proteins are marked with an arrow. In
panel b the respective Western blots are displayed. Antibodies used were α-ccFcp, and
α-Fcp4. A Western blot using α-ccFcp against pigment protein complexes of P.
tricornutum isolated by ion exchange chromatography is depicted in panel c showing
the Fcp polypeptide distribution in a PSI-FCP complex (lane 1), free FCP fraction (lane
2), and a PSII containing fraction (lane 3). 1 μg of Chl was loaded for each sample, except
for the FCP complex (0.5 μg).
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similar maxima at 718 nm and 688 nm were exhibited (Fig. 2f), and
the 676 nm signal became a shoulder which was hardly visible. Thus,
by exciting the bound Fcp antenna in fraction D, energy is transferred
towards PSI and subsequently emitted at 688 nm or 717 nm. The latter
emissionmaxima cannot be due to Fcps having the same properties as
the main FCP complexes, since fraction B showed a different emission
maximum.

3.2. Polypeptide analysis

Fractions B, C, and D were separated by SDS-PAGE (Fig. 4a).
Fraction B showed the typical pattern of Fcp polypeptides for this
fraction, two dominant bands at 18 and 19 kDa. One band at
approximately the same size was found in fraction C together with
several bands between 40 and 25 kDa which probably resemble the
core subunits of PSII. Fraction D seemed to contain a PSI complex
showing a double band around 65 kDa (PsaA/B) and several bands
below 20 kDa which could be Fcps as well as smaller PSI subunits (for
comparison see: [19,30]). The same samples were analysed by
Western blot with an antibody against all Fcp polypeptides of C.
cryptica (α-ccFcp) (Fig. 4b). Signals at 18 kDa and 19 kDa confirmed
the presence of two differently sized polypeptides in fraction B [5].
The same was true for fraction C. In fraction D the antibody reacted
with three different Fcp polypeptides. 19 kDa and 18 kDa signals were
detected, resembling the signals in fractions B and C. The third band
was located below the 18 kDa band. To elucidate which Fcp
polypeptides belong to the three different fractions, the experiment
was repeated with antibodies against Fcp2, Fcp4, and Fcp6 of C.
cryptica. Fcp2 belongs to class I Fcps with a predicted molecular
Table 1
Pigment ratios of pigment protein complexes purified by discontinuous sucrose gradient ce

Chl c Diadinoxanthin (DD) Diatoxanthi

B 0.181±0.019 0.188±0.013 0.237±0.02
D 0.015±0.001 0.068±0.008 0.096±0.01
NGOG1 0.008±0.002 0.043±0.004 0.035±0.00
NGOG2 0.005±0.000 0.034±0.002 0.033±0.00

Values represent mol pigment/mol Chl a. Ratios are given as mean±standard deviation of 6
preparations (D) and of 3 measurements on 1 preparation (NGOG1/2), respectively.
weight of 18.4 kDa [3]. In fractions B and C the antibody detected a
single 18 kDa band, whereas fraction D showed no signal at all.
Completely different results were obtained when using the α-Fcp4
antibody, which should detect a protein of 18.1 kDa. Whereas strong
signals were detected in fractions B and D, fraction C only showed a
faint band of the wrong molecular weight. Thus, the latter is most
probably due to a cross reaction of the antibody. In contrast, the α-
Fcp6 antibody reacted mainly with the 19 kDa polypeptides of the
fractions B and C (predicted MW of Fcp6: 19.2 kDa). Again minor
unspecific signals at 18 kDa were detected in fractions B and C, but no
reaction at all was observed in fraction D. None of the antibodies used,
besides the α-ccFcp antibody, detected the 17 kDa band in fraction D.
In summary, fraction B contained all polypeptides probed, whereas
fraction C showed strongest signals for Fcp2 and Fcp6. In fraction D,
only Fcp4 could be identified. The presence of the latter was also
checked by tandem MS. LC-ESI-MS/MS analysis of tryptic digested
peptides from this band along with a combined diatom database
yielded the peptide FSDFVPIDFLR (charge: 2; Xcorr: 3,26; FDR≤1%).
Its MS/MS spectrum is shown in Figure S1 (supplemental material).
The peptide identified the polypeptide as Lhca4 from T. pseudonana
(JGI protein ID: 33606), a member of the Lhca clade of the LHC
superfamily, i.e. a PSI associated LHC homologous but not identical to
fcp 4 of Cyclotella. Unfortunately, only the sequence of one of the four
copies of similar Fcp4 genes identified [11] in Cyclotella is available in
the data base. The known Fcp4 sequence is more similar to Lhcr3,
which was also annotated in T. pseudonana (JGI protein ID: 18077).
However, again sequences of the Lhca clade yield the strongest
homology towards Lhcr3. Figure S2 of the supplementary material
shows a sequence comparison of the Lhca4 and Lhcr3 proteins from T.
pseudonana with the known sequence of Fcp4, and the fragment that
was used for antibody production [22]. From this, we have to conclude
that an Fcp4-like protein exists in Cyclotella, which is according to the
data obtained by LC-ESI-MS/MS more similar to Lhca4 than Lhcr3 but
still detected by the α-Fcp4 antibody. This protein is found in PSI, but
not in PSII.

3.3. Further purification of PSI

To elucidate how the Fcps of fraction D are structurally organised
and how strongly they are bound to PSI, a method was developed to
sequentially remove the Fcp polypeptides from the PSI complex.
Therefore, fraction D was resolubilised with different detergents e.g.
HG, OG, NG, and TX 100 and then again ultracentrifuged on a
discontinuous sucrose gradient. Independent of the detergents, the
ultracentrifugation always resulted in the splitting of the sample into
two green bands (schematically drawn in Fig. 1b). Fractions were
named after the detergent used and “1” for the upper band and “2” for
the lower band. None of the chosen treatments allowed for the
isolation of a PSI complex devoid of Fcps (detected immunologically,
data not shown). Exemplarily, results for resolubilisation with a
mixture of NG and OG are presented. After harvesting these fractions
and separation by SDS-PAGE one could observe the loss of the PsaA/B
subunits (∼65 kDa) in the upper fraction NGOG1 (Fig. 5a, lane 2), but
several bands below 20 kDa were preserved. In contrast, the lower
fraction NGOG2 (lane 3) nearly reflected the band pattern of fraction D
ntrifugation measured by reverse phase HPLC.

n (DT) Fucoxanthin β-carotene DT/(DD+DT)

3 0.935±0.081 0.012±0.008 0.56±0.03
9 0.137±0.019 0.122±0.010 0.58±0.06
8 0.068±0.006 0.006±0.001 0.44±0.06
1 0.067±0.003 0.060±0.003 0.49±0.00

measurements on 2 independent preparations (B), 10 measurements on 3 independent
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(lane 1), albeit with different strengths of the various bands. To
characterise these sucrose gradient fractions further, they were
compared to fractions B and D by HPLC analysis. The resulting
pigment stoichiometries are presented in Table 1. The data for fraction
B resembled the results published in [5,9], although with a slightly
reduced amount of Chl c, which might be due to the fact that the 10%
sucrose layer was omitted and thus only a mixture of FCPa and FCPb
was obtained. Significantly lower amounts of Chl c, fucoxanthin,
diadinoxanthin and diatoxanthin with respect to Chl a were found in
fraction D. Fucoxanthin was decreased by a factor of ∼7, whereas
diadinoxanthin (DD) and diatoxanthin (DT) decreased only by a factor
of ∼2.5. Still, the de-epoxidation rate in both samples was nearly the
same (∼0.6). As expected for a PSI fraction, the β-carotene ratio in D
was increased by a factor of ten. In the resolubilised fractions NGOG1

and NGOG2, all the pigments were reduced further. In both fractions
the Chl c:Chl a ratio was below 1% and fucoxanthin was reduced to
approximately 7%. However, fraction NGOG2 still contained ten times
more β-carotene than NGOG1. Absorbance and fluorescence spectra of
the resolubilised fractions led to comparable characteristics of NGOG2

if compared to fraction D. NGOG1 rather resembled a spectrum of a
damaged FCP with a blue-shifted absorbance of Chl a at 672 nm, a
reduced amount of Chl c as well as a noticeable Chl c fluorescence
emission around 645 nm (data not shown). This effect held true for all
upper bands collected in the resolubilisation experiments, indepen-
dent from the detergents used. Taken together with the results from
SDS-PAGE it was concluded that NGOG2 represents a further purified
PSI complex, although not completely devoid of Fcps, whereas NGOG1

contains the Fcp polypeptides, which were removed but also lost their
abilities of excitation energy transfer.

Again the samples were checked by Western blot (Fig. 5b).
Incubation with the α-ccFcp antibody showed that after resolubilisa-
tion with NGOG the typical Fcp 18/19 kDa signal remained in fraction
NGOG1 with a stronger reaction at 19 kDa. Interestingly, a strong
18 kDa signal can be seen in fraction NGOG2, together with the signal
at 17 kDa. Since neitherα-Fcp2 norα-Fcp6 reactedwith fraction D, we
only used α-Fcp4 here. If incubated with the α-Fcp4 antibody, the
18 kDa signal was detected in both NGOG fractions. Still, the reaction
in NGOG2 was more pronounced compared to NGOG1.

Since Fcp6 was only found in fraction C, i.e. the only PSII containing
fraction, and a reaction with α-Fcp4 was only strongly visible in
fraction D, i.e. PSI, we had to conclude that the distribution of these
polypeptides differs between the photosystems. To check whether
this is species independent we repeated parts of the experiments with
P. tricornutum. Recently, the separation of thylakoids by ion exchange
chromatography has been published [19]. An Fcp-binding PSI-
complex, an FCP fraction, and a PSII containing fraction were isolated
and the authors could prove a different composition of Fcp polypep-
tides in the PSI-FCP complex in comparison to the FCP fraction. Both
fractions were taken as controls in a Western blot experiment
together with the PSII containing fraction. As the antibodies α-Fcp2,
4, and 6 are species specific, only the α-ccFcp antibody could be used
(Fig. 4c). As expected, in the PSI-FCP fraction two signals around
18 kDa were detected, whereas only one signal was detected in the
FCP fraction. In contrast, the PSII containing fraction inhabited a single
Fcp band with higher molecular weight than the two other samples.

4. Discussion

Discontinuous sucrose density centrifugation of solubilised thyla-
koids of C. meneghiniana led to the separation of five pigmented
fractions. In earlier publications the first three bands, a fraction
consisting mainly of free pigment (fraction A) and two FCP fractions
(herein considered as fraction B, consisting of trimers and higher
oligomers) have been analysed thoroughly [6]. In this study, the
photosystems and their associated Fcps laid in the focus of interest.
First of all, it had to be clarified if the latter two green bands (fractions
C and D) were mixtures of PSII and PSI or if the photosystems were
separated, as had been reported before [16]. A Western blot
experiment proved that the PSII core subunit PsbD was entirely
located in fraction C. Absorbance spectra confirmed this result. Both
fractions showed a decreased content of fucoxanthin in comparison to
the FCPs and a red shift of the Chl Qy band. This red shift was most
prominent in fraction D (band 4) and the whole peak was broadened
in comparison to all other fractions. Furthermore, fraction D exhibited
a strong quench in fluorescence, a unique feature of PSI.

If analysed at 77 K fraction D also showed an increased far red
fluorescence at 717 nm when excited at 440 nm. Such a fluorescence
maximum was attributed to PSI in the spectra of whole diatom cells
and isolated PSI complexes [28]. This effect was only observed in
fraction D, since fractions B and C exhibited only Chl a maxima at
wavelengths shorter than 700 nm. In addition, peaks at 676 nm and
688 nm were observed, as already reported for C. cryptica by
Brakemann and et al. [16]. When Chl c was excited, the 688 nm
peak became even stronger, together with the 717 nm peak, whereas
the 676 nm emission was strongly reduced. After removing Fcps that
were only loosely bound by gel-filtration, the latter signal got lost
completely. This led to the interpretation that the 676 nm emission in
fraction D is due to those Fcp polypeptides. However, since Chl c
excitation led to an enhancement of both the 688 nm and the 717 nm
emission bands, some Fcps were properly bound to PSI in fraction D.

None of our further attempts of purification led to PSI cores
completely devoid of Fcp polypeptides, and Fcps isolated by these
methods from PSI complexes were all impaired in excitation energy
transfer. Thus, we cannot directly identify the origin of the long
wavelength emissions at 688 nm and 717 nm, which could arise from
the Fcps specifically bound to PSI or from the core itself. However, in a
recent publication decay-associated spectra (DAS) of a PSI-FCP
complex of the diatom Chaetoceros gracilis led to the conclusion that
only the longer wavelength components are located within the PSI
core [31]. Only the DAS component with the shortest wavelength at
685 nm could be attributed to Fcps by comparison to DAS of isolated
FCP complexes. If both the 688 nm and the 717 nm emission
maximum would belong to core chlorophylls, we would have to
assume a 100% energy transfer from the Fcps into the cores at 77 K,
because no other emission maxima are found. Since this is unlikely,
our data support the idea that the 688 nm emission is due to Fcp
polypeptides closely bound to the PSI cores.

The 77 K spectra of fraction C resembled those described for higher
plant PSII, where the 687.5 nm emission is attributed to the core
complex, thus pointing to the similarity of PSII among all organisms
[32].

Analysis by HPLC revealed that the known pigment values of FCPs
have been preserved in fraction B. Smaller changes were certainly due
to changes in the isolation procedures, i.e. fraction B was a pooled
mixture of FCPa trimers and FCPb higher oligomers since a 10%
sucrose layer was omitted [5,9]. Concerning the data of the PSI fraction
D, quite large differences can be seen in comparison to other PSI
preparations of diatoms. If one interprets the fucoxanthin/Chl a ratio
as a measure of the Fcp antenna size of PSI complexes, the antenna in
fraction D (∼14%) is relatively small. Ratios of 50% and 31%
fucoxanthin were reported for P. tricornutum and 24% for C. gracilis
[19,31,33]. This discrepancy is even increased if the Chl c/Chl a ratios
are considered. Whereas for P. tricornutum and C. gracilis ratios of 8%,
5.8%, and 9% are reported, in fraction D only a ratio of 1.5% was
determined. In contrast, the added ratios of the diatom specific
xanthophyll cycle pigments, diadinoxanthin (DD) and diatoxanthin
(DT), were approximately 17% in fraction D, whereas 13% where
reported for C. gracilis and 2.4% [19] and 6.5% for P. tricornutum [33].
Besides species related differences, the different pigment stoichiome-
tries are certainly caused by the stronger light regime used during the
cell culturing of C. meneghiniana (140 μEm−2 s−1) in comparison to P.
tricornutum (40 μE m−2 s−1) and C. gracilis (13 μE m−2 s−1).
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Therefore, a rearrangement in size and pigmentation of the light
harvesting antennae of PSI has to be expected. This assumption is
hardened by the fact that the de-epoxidation rates (DT/DD+DT, a
measurement that correlates with non-photochemical quenching) in
fraction D as well as in fraction B were 3 to 4 times higher than those
reported for FCPs isolated under low light regimes, but comparable to
high light FCPs [5,27].

There has been an ongoing discussion whether the two photo-
systems of diatoms share one antenna system, or if two separate light
harvesting systems exist, as in higher plants and green algae [6,11,34].
The first theory might be supported by the fact that there is no
segregation of thylakoids into grana and stroma regions, and therefore
no separation of the two photosystems. On the other hand, sequence
homologies relate Fcp4 of C. cryptica to a PSI associated Lhc protein of
red algae [11]. Therefore, one could interpret Fcp4 to be part of a PSI
specific light harvesting antenna. In several publications, mainly
concerning the light harvesting properties of diatoms, the isolation of
PSI or PSII enriched fractions was reported [7,8,28]. However, specific
analyses of Fcp polypeptides in photosystem fractions were not
performed. Also the recent isolation of PSI and PSII complexes from C.
gracilis only proved a coupling of Fcp polypeptides to both
photosystems, but did not provide any information about differences
or similarities of these Fcps [31,35]. Solely, Brakemann et al. [16]
studied the association of Fcp polypeptides towards PSI and PSII
isolated by sucrose density centrifugation and Deriphate-PAGE in C.
cryptica. In their work, two Fcp polypeptides were identified in both
photosystems and in an FCP fraction using an antibody directed
against all Fcp polypeptides of C. cryptica with apparent molecular
weights of 18 kDa and 22 kDa. Furthermore, Fcp2 and Fcp4 at 18 kDa
were identified in both photosystems via specific antibodies. Thus, it
was suggested that indeed both photosystems share the same antenna
system.

This is in contrast to the results presented herein. Fcp2 and Fcp6
were solely found in FCP and PSII. On the other hand none of these
polypeptides was found in PSI, where the α-Fcp4 antibody reacted
strongly with an 18 kDa polypeptide. The differences in the results
compared to Brakemann et al. [16] are most probably due to several
reasons: First, light conditions during growth were different, since we
used high light conditions, known to change the amount of the
different antenna proteins [5]. Second, we chose milder solubilisation
conditions, i.e. a detergent to Chl a ratio of 60:1 instead of 100:1. Third,
the immunoblots presented by Brakemann et al. [16] show very faint
signals in case of PSI, which might have led to an underestimation of
the differences compared to the other fractions obtained.

Our results concerning the Fcp polypeptides found in the PSII
fractions, Fcp2 and Fcp6, resemble the composition published for the
trimeric FCPa complexofC.meneghiniana, grownunder similar light and
nutrient conditions [5]. Fcp6 is a homologue of LI818r-3 of C. reinhardtii
and it is known that the mRNA levels of both increase abruptly upon
illumination [36,37]. Currently, a photoprotectivemechanism of LI818r-
3 is discussed [38]. Since the expression of Fcp polypeptides in the FCP
fraction and the PSII fractionwere similar, it is supposed that parts of the
FCPa complexes are closely associated with PSII.

The inner PSI antenna consisted of at least three different Fcp
polypeptides with molecular weights of 19 kDa, 18 kDa, and
approximately 17 kDa. The 18 kDa polypeptide is not represented by
Fcp2but byapolypeptideof theFcp4group. Strongreactionwith theα-
Fcp4 antibody, directed against the C-terminus of the known Fcp4
sequence, proved this point. However, LC-ESI-MS/MS analysis did not
reveal Fcp4, but a homologous Lhca4proteinof T. pseudonana. Since the
genome of Cyclotella is not sequenced, but several fcp 4 genes were
identified [11], we have to assume that an Fcp4-like protein with high
similarity to Lhca4 of T. pseudonana exists in Cyclotella as well. Also the
re-solubilisation with NG plus OG could not remove this Fcp4-like
polypeptide entirely from PSI, although it was also detected in the
photosystem free NGOG1 fraction. Furthermore, the immuno-reaction
of theα-Fcp4 antibody in the PSI fractionwas as strong as the reaction
of the α-ccFcp antibody, in contrast to e.g. fraction B. Thus, the Fcp4
polypeptide seems to constitute the major fraction of the 18 kDa Fcp
proteins in the PSI fraction and is strongly bound to the complex.

The 17 kDa Fcp signal was only visible in fractions D and NGOG2.
Thus, it is evenmore strongly bound to PSI compared to Fcp4. Since no
gene encoding an Fcp of this size was found so far in Cyclotella, the
shorter size could be due to degradation or to post-translational
modifications. However, we could not identify any FCP-like protein in
this band by LC-ESI-MS/MS (data not shown). Thus, the 17 kDa Fcp
polypeptide is an Fcp protein due to the reaction with the α-ccFcp
antibody, but further research will have to clarify whether its
appearance is due to degradation, posttranslational modification or
whether it is an Fcp protein not identified so far.

The 19 kDa Fcp polypeptide found in the PSI fraction could not be
detectedbyanyof the specific antibodies andneither byLC-ESI-MS/MS
analysis (data not shown). In contrast to the FCP and PSII fractions, we
can exclude Fcp6. The only other FCP described for Cyclotella with a
similarmolecularweight is Fcp5. From its sequence, Fcp5 can beplaced
into the samegroupas Fcp1, 2, and3, and it is theonlyconstituentof the
oligomeric FCPbcomplex. Since the19kDapolypeptidewas completely
removed from the PSI core fraction NGOG2 (Fig. 4b), it is less tightly
bound to PSI than Fcp4 and an interaction between PSI and Fcp5, i.e.
FCPb complexes can be proposed.

From our data we conclude that C. meneghiniana possesses two
different light harvesting antenna systems for PSI and PSII. This seems
to be species independent, since high resolution SDS-PAGE and
Western blots of PSI, FCP and PSII fractions isolated from P. tricornutum
also showed that Fcp polypeptides of different molecular weight were
associated with the two PS fractions. In C. meneghiniana the PSII light
harvesting antenna resembles the polypeptide composition of the
trimeric FCPa complex, whereas PSI binds an unknown 17 kDa Fcp
polypeptide, an Fcp4 polypeptide, and the less tightly bound 19 kDa
Fcp5, representing a possible linker to the FCPb oligomer. These data
are supported by fluorescence measurements showing strong simi-
larity between the isolated FCP complexes and the uncoupled antenna
in the PSII fraction, but differences in the case for PSI. In the case of PSI
it was shown that the associated Fcps are capable in transferring
energy from Chl c towards two emitting Chl a pools. In FCP complexes,
some of the Fcp polypeptides seem to be interchangeable upon
changes in illumination [5]. A similar adaptation concerning the
polypeptides more closely associated with the photosystems might
also explain the differences to what was described for C. cryptica [16].

Still, attempts have to be made to characterise those Fcp
polypeptides that could not be detected by specific antibodies.
Identifying their sequences on genetic and on protein level will be
necessary to complete our understanding of the organisation and re-
organisation due to light adaptation of the light harvesting system in
different species of diatoms.
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