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ABSTRACT Information about muscle length is transmitted to the cerebellum from
muscle spindle receptors through the dorsal spinocerebellar tract (DSCr). The
"transinformation" about muscle length in single DSCT fibers was calculated from
steady-state spike trains by two different methods, assuming that the decoding
mechanisms use a frequency code. By the first method, the number of distinguish-
able muscle lengths (and thus the transinformation) was determined from the rate
of convergence of the mean frequency of firing (with increasing number of inter-
vals). The observation time necessary to estimate the mean frequency of the impulse
train with a certain accuracy was independent of the stretch level, even though the
number of intervals necessary to make this estimate was different at high and low
levels of stretch. By the second method an input frequency-output frequency matrix
was calculated. The transinformations and the rate of transinformation was thea
calculated from this matrix. There was an acceptable agreement in the estimates of
transinformation by the two methods. The rates of transinformation are signifi-
cantly increased by the particular time structure of the discharge patterns of the
nerve cells. Consequently, the loss of information due to the synaptic coupling is
appreciably reduced.

INTRODUCTION

The main functions of nerve cells are to transmit and to process information. Informa-
tion, which is obtained from the surroundings through sense organs, is transmitted to
the central nervous system through chains of nerve cells. Information is also conveyed
from one part of the nervous system to another and from the central nervous system
out to the effector organs through nerve cells. In the nervous system the information is
coded in trains of action potentials. The pattern in these spike trains is altered as the
signals traverse the different synapses in the chain.
The present paper tries to elucidate the first step of the transformations of the in-

formation content of the nervous signals which take place in a chain of neurons.
The main difficulty in investigations of this kind is obtaining a measure of the

amount of information. Different approaches have been attempted. Werner and
Mountcastle have tried two different methods (Mountcastle, Poggio, and Werner,
1962; Werner and Mountcastle, 1963; Werner and Mountcastle, 1965). (a) An es-

745



timator was established for the discriminability between two different trains of im-
pulses, based upon measurements of each individual interspike interval in the trains.
This statistical test was applied on signals from thalamic joint neurons. The reading
times necessary to reach "decision" could be used to establish a measure of the in-
formation content in the spike trains. (b) Some concepts of information theory were
applied to a stimulus-response matrix obtained from first-order "mechanoreceptive"
fibers, and the transmitted information was calculated on the assumption that the
signal is read in a frequency code. Darian-Smith, Rowe, and Sessle (1968) have used
a similar method on relay neurons in trigeminal nuclei.

Grusser, also applying information theory, estimated the maximum information
transmission rate in visual systems assuming a frequency code (Griisser, Hellner, and
Griisser-Cornehls, 1962; Griisser, 1962).

Other investigators have attempted a more theoretical application of information
theory to the study of nerve cells. Different coding schemes have been assumed by
MacKay and McCulloch (1952), Rapoport and Howarth (1960), and Stein (1967).
All these investigations, and especially the last, which was published while this work
was in progress, are highly relevant for the present problems.

In the present study, data from dorsal spinocerebellar tract (DSCT) cells which
are monosynaptically activated from primary endings of muscle spindles, have been
used (Jansen, Nicolaysen, and Rudjord, 1966). These data are well suited for such an
analysis for a number of reasons.

(a) The response of the input elements (primary fibers) to muscle stretch is well
known.

(b) The input elements are slowly adapting so that approximately steady-state
spike trains can be produced.

(c) Information about the length of the muscle is the content of the input signals
from primary endings which are statically extended.

Information about the muscle length can be considered as the content of the
signal from muscle spindle receptors statically extended (Matthews, 1964). This also
holds true for the second-order neuron under the present experimental conditions.
In each experiment one muscle was dissected free and stretched without affecting other
muscles. Some possible estimates of the amount of information about muscle lengths
that is conveyed to the cerebellum through the DSCT neurons are therefore developed.
The transinformations are calculated by two different methods assuming that the

decoding mechanism uses a frequency code. It is also assumed that all muscle lengths
from a slack muscle (0 mm) up to full extension (14 mm) are equiprobable. Other
(physiological?) stimulus distributions in the same length interval will, of course,
give smaller transinformations. The spike pattern in the DSCT neurons have been
investigated earlier (Jansen et al., 1966; Wall0e, Jansen, and Nygaard, 1969). There
is a strong negative serial dependency between neighboring intervals in these spike
trains. Both calculation methods were applied on the original sequence of interim-
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pulse intervals as generated by the DSCT neuron and on a random permutation of the
same intervals in order to study the effect of the interimpulse dependency on the
transinformation. The results from these two methods will be compared with each
other and with Werner and Mountcastle and Stein's results in the Discussion.

METHODS

The data were obtained during the series of experiments reported earlier by Jansen et al.
(1966). A full description of the experimental arrangement is given in their paper. The muscles
used were deprived of motor innervation. The action potentials of DSCT neurons were re-
corded on a magnetic tape and later played back through an electric counter, which counted
the number of unitary time intervals (usually of 1.6 msec duration) that occurred between the
action potentials. These series of numbers were transferred to a Univac 1107 computer
via perforated paper tapes.

Three cells were selected on the basis of a large body of recordings from different cells.
These neurons were chosen because it had been possible to obtain records at many different
levels of activity. Altogether, spike trains corresponding to 79 different muscle lengths were
obtained from these three cells, 42 of them from one cell only. Most of the samples had a
duration of more than 10 sec corresponding to some 500-1000 intervals. One cell was acti-
vated by stretch of the tibialis anterior-extensor digitorum longus muscles, while the two
others were activated by stretch of the gastrocnemius-soleus muscle.

Investigations on the statistical properties of the spike trains from the same three cells have
recently been published (Wall0e et al., 1969).

RESULTS

To obtain a quantitative measurement of the transinformation conveyed by the DSCT
neuronal spike sequences, two different methods have been employed. The first
utilizes the increasing accuracy of the estimation of the mean frequency of an irregular
train of spikes with increasing observation time. The second depends on the estima-
tion of contingent probabilities between input and output signals, and is in principle
similar to the traditional method of information theory for analysis of a "noisy
channel". The relevant formulas can be found in Reza (1961).

Method I: Convergence of Mean Frequency of Firing

By this method the number of distinguishable muscle lengths is determined as a
function of the observation time. The amount of information about muscle length
which is conveyed to the cerebellum is then calculated. To estimate the number of
distinguishable muscle lengths, the following procedure is a possible approach.
Assume that the decoder has no knowledge of the muscle length at a certain

moment. From that time on the decoder receives a train of impulses and makes es-
timates about the mean frequency. The best estimate of the mean frequency after
reading two spikes is the reciprocal of the interimpulse interval. After reading n in-
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FiGuRIE 1 The mean frequency f~of n interimpulse intervals as a function of n. Stretch
about 2 mm. Solid line: intervals in normal order. Broken line: the same 150 intervals
randomly shuffled. Dotted line: mean frequency after 150 intervals. The first interval is the
same in both sequences.

tervals each with length t4, a possible estimate of the mean frequency is
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f,. wil converge towards the mean frequency when n -*o.Fig. 1 shows an example
offn as a function of n. The solid line showsfnas a function of n when the intervals
are read in original order; the broken line shows fm when the intervals are read in a
shuffled order. f Dseems to converge much faster when the intervals are read in normal
order. This was a regular finding.

This hypothesis was tested further. 150 interimpulse intervals from a steady-state
registration were read by the computer. fi, was calculated for all n from 1 to 150 for
the sequence of intervals in original order. Calfthis frequency fn(orig) . The computer
then made a random permnutation of all intervals t4 from i = 2 to i = 150, and cal-
culated f,. of the shuffled sequence. Call this frequency fit(Shuff). t in both sequences
were thus the same, andfl(orig) = fiequeff)n Furher fno(orig) f15O(,huff) 1 since the
shuffled sequence is composed of exactly the same 150 intervals.
The usual definition of convergence can be stated as follows: an infinite sequence

f fconverges towards f. if to every positive Af there exists one N, such that

I fw -e fb Affor all enf>N. (2
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It is possible to make a measure of the rate of convergence in the sequence fi, from 1
to 150 analogous to the condition of equation 2. Let Nmi. be the smallest number N
that fulfills the condition

Ifn-fi5I0< Afwhen n _ N (3)
To each positive value ofAf there corresponds one value ofNmin in the interval [1, 1501.
It is reasonable to say that fn(orig) converges faster than fn(shuff) when Nmi. is smaller
for the original sequence than for the shuffled sequence with the same Af. The meaning
of some of these definitions is illustrated in Fig. 2.

Let T be defined by equation 4

T= Z t,. (4)
i=1

To avoid influence from adaptation in the receptor, the first 0.5 sec of the record-
ings from a static stretch was disregarded. Nmin and T were calculated by the computer
for the next 150 intervals. The same calculations were carried out with the intervals
from t50 to t200, from t1oo to t26o0, and so on. This procedure was carried out through
all the registered intervals from one stretch level. Each sequence of 150 intervals was
thus overlapping the preceding sequence by 100 intervals.
The null hypothesis that Nmin from both sequences were equal, was rejected at the

1% level of significance by the signed-ranks test.
Similar results were found in all spike sequences of sufficiently long duration.
Nmin is dependent upon Af. A small Af gives a large Nmin and vice versa. For me-

dium values of Af, about 6 imp/sec, ("imp" for impulses), the difference between
the sequences fn(orig) and fn(8huff) is significant at the 5 % level, except in the extremely
short series (with less than 3-400 imp). Thus, judged from the values of Nmin, the
mean frequency seems to converge faster when the intervals are read in original
order than when the intervals are shuffled.
The mean Nmin was calculated for all stretch levels in three cells with Af = 4 imp/

sec. The mean Nmin was dependent upon the stretch level. In series with short average

fn

f \ t / \ KaM FIGURE 2 The mean frequency f as a
15i10 15 1 function of n. This figure illustrates the

,______ _______- L meaning of Af andNin.
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interimpulse intervals the mean Nmin was generally large, in series with long intervals,
Nmin was generally small. However, Fig. 3 reveals that the mean of the "observa-
tion time", T, is independent of the mean interval length in the series. Each stretch
level in this cell is represented by two points in this figure, an open circle, correspond-
ing to the shuffled series, and filled circle, corresponding to the original series.

Thus, the observation time necessary to estimate the mean frequency of the im-
pulse train with a certain accuracy is independent of the stretch level. Notice that the
number of impulses necessary to make this estimate is different in high and low levels
of stretch. Instead of estimating the mean frequency with a certain accuracy, the de-
coder might try to estimate the mean interval length with a certain accuracy. In this
case, neither the number of impulses, nor the observation time that is necessary,
would be independent of the stretch level.

Similar results were found for spike sequences of the two other cells, that were
examined, except at very low rates of firing, when the firing pattern is dominated by
the regular background activity of the cells (Wall0e, 1968).
The mean observation time T is a function of Af. A large Af gives a small T and
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FIGURE 3 FiGuRE 4

FiGuRE 3 The mean observation time T as a function of the mean interimpulse interval 7
in each stretch level. Af = 4 imp/sec. Data from one cell. Filled circles: intervals read in
normal order. Open circles: intervals read in shuffled order. Mean ~Tin the two populations
are 265 msec and 865 msec, respectively.
FIGURE 4 The mean ofthe mean observation times T as a function ofAf. Data from one cell.
Filled circles: intervals read in normal order. Open circles: intervals read in shuffled order.
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vice versa. Fig. 4 reveals that the relationship is simple and can be expressed by
the formula

T=a 5

where a is a constant, a is different for the shuffled and original sequences. Each pair
of points in Fig. 4 is calculated from sets of data similar to those presented in Fig. 3.
As mentioned earlier, the impulse frequency in the second-order neuron is a linear

function of the muscle length. Let I be the difference in impulse frequency in the neuron
between a fully extended muscle and the unstretched muscle. The problem is now to
estimate the number of distinguishable muscle lengths. It is possible to use

n = 2I S( 6)~2.Af(6
as a measure of this number. The number of distinguishable muscle lengths is a func-
tion of the observation time, and Af can be calculated from T by equation 5.

In other words, the total frequency range is divided into parts each 2 *Af wide. The
number of such parts is a possible guess of the number of distinguishable lengths in
the observation time T. This procedure is possible because Af corresponding to a
given T is independent of the muscle length.
T is the mean of the observation times calculated by equation 4. In approximately

half of the cases the mean frequency is within 4Af of the estimate based on the in-
tervals read in the time T. It is, of course, possible to use stronger criteria to deter-
mine the number of distinguishable lengths. One of the upper fractiles in the distribu-
tions of T (with constant Af) could be used instead of the mean. The calculations show
that the distribution histograms of T are unimodal and approximately symmetric.
Fig. 5 shows that the standard deviation in the distribution increases proportionally
with T. The slope of the line is similar in all three cells both in the original and the
shuffled sequences. If one of the upper fractiles in the distribution of T is used instead
of the mean, the constant a in equation 5 will thus have a larger value, but no other
change will be introduced. I will return to this point later.
From equations 5 and 6

IT
2a- (7)

Assuming that all muscle lengths from a slack muscle (0 mm) up to full stretch (14
mm) are equiprobable, the information H can be expressed as

IT
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FiGuRE 5 Standard deviations (SD) in the distribution of observation times T as a function
of the mean observation time. Data from one cell. Intervals read in normal order. SD P
0.63 T.

I and a are constants for a certain cell and can be determined experimentally. The
information that is transmitted, can thus be calculated as a function of the observa-
tion time, assuming that the decoder uses a frequency code.

a has been determined to 1.3 imp for the normal sequences and to 3.6 imp forthe
permutated sequences from Fig. 4 and similar figures. I is somewhat more uncertain.
One cell had a frequency range from about 20 imp/sec (corresponding to muscle not
stretched) to about 80 imp/sec (corresponding to fully extended muscle) in our ex-
periments. Another cell had a frequency range from 10 imp/sec to 65 imp/sec, and
the third cell from 30 imp/sec to 110 imp/sec. The corresponding values of I are thus
60, 55, and 80 imp/sec, respectively. The value I = 60 imp/sec will be used in the
calculations. But this is certainly an underestimate of the range of these neurons,
since they can be expected to fire at appreciably higher rates under physiological
conditions with intact fusimotor supply. Eide, Fedina, Jansen, Lundberg, and Vy-
klick§, (1969) have furthermore found a linear increase in firing frequency with
increasing transmembrane current up to more than 200 imp/sec.

Figs. 6 and 7 show the information as a function of the observation time calculated
from these assumptions.
Equation 8 and the figures reveal that the amount of information increases as a

logarithmic function of the observation time. When the observation time is doubled,
the information has increased by 1 bit.
The figures also show that the rate of information has a maximum nearobserva-

tion times of 115 msec in the original sequences and 330 msec in the shuffled sequences.
The corresponding information rates are 12.35 bits/sec and 4.40 bits/sec, respectively.
As mentioned, it is possible to use stronger criteria than T for the determination of
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FiGuRE 6 FIGURE 7
FIGURE 6 Transinformations calculated by different methods as functions of the observa-
tion time. Intervals read in normal order. : transinformations calculated by Method I.
* 0: transinformation calculated by Method II. -: transinformations calcu-
lated by Stein's formula. 0 0: Mountcastle and Werner's results from first-order touch
fibers (1965).
FIGURE 7 Transinformations calculated by different methods as functions of the observation
time. Intervals read in shuffled order. : transinformations calculated by Method I.
*--0: transinformations calculated by Method II. : transinformations calcu-
lated by Stein's formula.

the number of distinguishable muscle lengths. Fig. 5 reveals that the standard devia-
tion in the distribution of T is a linear function of T:

SD 0.63 T. (9)

97.5 % of the estimates based on the intervals read in the time T + 2sD are within
=1 Af of the mean frequency if the distribution is approximately normal. Call this ob-
servation time T2.5. The equation analogous to equation 14, when these stronger
criteria are used, will be

T2.5 = 2.26a ', (10)

and the information that is transmitted will decrease by log2 2.26 for all observation
times. The corresponding curves in Fig. 6 and 7 will thus be lowered by 1.2 bits.
The corresponding changes in the information rates will be a lowering of maximum
rates to about 5.4 bits/sec in the original sequences and 2.0 bits/sec in the shuffled
sequences, and an increase in optimum observation times to 250 msec and 800 msec,
respectively.

L. WALL0E Transmission of Information through Sensory Neurons
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The frequency range I was found to be about 60 imp/sec in one of the cells. This
might be an underestimate of the actual range. If I is increased from 60 to 120 imp/
sec, the number of distinguishable muscle lengths will be doubled. The curves in
Fig. 6 and 7 will thus be elevated I bit for all observation times. The maximum rate
will then be about 8.9 bits/sec for observation times near 170 msec for the shuffled
sequences and 25.6 bits/sec for observation times near 50 msec for the original se-
quences.
Neither of these two extreme changes in the assumptions changes the order of

magnitude of the results. The peak in information rate is higher, and the correspond-
ing observation time shorter, when the intervals are read in original order, than when
they are shuffled.

For the original sequences the maximum rate 12 bits/sec occurring with observa-
tion times of 115 msec, at least indicates the order of magnitude of the possible real
value.

Method II: Stimulus-Response Matrix

An input-output matrix was determined, and the transinformation and the rate of
transinformation were calculated from the matrix.
The starting point in these calculations is an assumption about a discrete number n

of possible muscle lengths. Later I shall show that the results are independent of n
as long as the number is not too small. These possible muscle lengths are assumed to
be equiprobable and represent the input to the channel. The mean impulse frequency
in a certain observation time is the output of the system. The frequencies belong to
one of a discrete number m of possible frequency groups. Again, I shall show that
the results can be extrapolated from m possible outputs to an infinite number, that is
to a continuous output.

n steady-state recordings of the activity in one second-order neuron were selected.
Ideally, the recordings should correspond to n equidistant muscle lengths and cover
the total length range of a muscle. The actual recordings had mean frequencies that
differed somewhat from the desired values. In each of the recordings all intervals t
were therefore multiplied by a correction factor. An example follows: in one calcu-
lation a recording with mean frequency 31.000 imp/sec was wanted, corresponding
to a mean t of 32.26 msec; the best recording available had a mean t of 32.41 msec;
each t in the recording was multiplied by 32.26/32.41 = 0.995. All the correction
factors used were in the interval from 0.9 to 1.1.
From one of the n recordings, intervals were counted and added by the computer

until the accumulated interimpulse time was equal to or just greater than a preset
reading time d. Let dk be the accumulated intervals. The mean impulse frequency in
the time dk was calculated by the computer and arrayed in the appropriate frequency
group Ft . The computer repeated this procedure until all intervals in the recording
were used. The number of elements in the different frequency groups F1 were nor-
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TABLE I

STIMULUS-RESPONSE MATRIX CALCULATED FROM ONE CELL
Number of muscle lengths n = 4, frequency group size 3.0 imp/sec, reading time d = 100 msec. Intervals

read in normal order. The numbers in the matrix are relative frequencies multiplied by 10,000.
Frequency group number

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Pk

1 0 1 89 1701 689 13 0 0 0 0 0 0 0 0 0 0 0 0 2500
2 0 0 0 14 541 1676 230 41 0 0 0 0 0 0 0 0 0 0 2500
3 0 0 0 0 0 111 1327 575 376 66 44 0 0 0 0 0 0 0 2500
4 0 0 0 0 0 0 13 13 278 370 582 529 410 172 53 40 13 26 2500
ql 0 0 89 1714 1239 1799 1570 629 654 437 626 529 410 172 53 40 13 26 10000

n Number of dk
observations

1 197 108.47 msec H(X) = 2.00000 bits
2 185 110.23 msec H(Y) = 3.31149 bits
3 113 112.98 msec H(X, Y) = 3.76609 bits
4 189 123.14 msec I(X, Y) = 1.54540 bits

Observation time k = 113.70 msec

malized corresponding to the condition Pk = l/n. The mean observation time dR was
also calculated. The mean observation time dk is, of course, greater than the reading
time d, which is a parameter in the calculations.

This procedure was repeated in all recordings, and the result was an input-output
matrix as shown in Table I. The entropies of the input, H(X), of the output, H(Y),
of the matrix, H(X, Y), and the transinformation I(X, Y) were calculated. The rate
of transinformation I(X, Y)/fk was also calculated.
The transinformation and the rate of transinformation are functions of the number

of muscle lengths, n, the number of frequency groups m, and the reading time d.
Each of these functional relationships were studied in both the original sequences
and the shuffled sequences.

(a) The reading time d and the number of muscle lengths n were kept constant,
and the number m of frequency groups was varied. Figure 8 shows the results from
one set of calculations with d = 100 msec and n = 7. The transinformation is shown
as a function of the size of frequency groups Ft . The transinformation increases as
the frequency groups decrease in size. When the size of each group Ft decreases,
the number of groups increases. The calculations are carried out with group sizes
ranging from 0.4 imp/sec to 3.5 imp/sec. The regression line through the calculated
points is extrapolated from group size 0.4 imp/sec to 0 imp/sec. The validity of this
extrapolation is, of course, dubious. It is equivalent to a change from discrete to
continuous output. However, from the theory it is known that I(X, Y) generally re-
mains finite even when H(X), H (Y) are infinite, and the figure really suggests this
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extrapolation. With increasing group size the transinformation decreases asymp-
totically towards zero. However, in the group size range 0.4 imp/sec-3.5 imp/sec the
relationship is approximately linear. Similar results were found with other values of
n and d. The number of muscle lengths n was varied from 4 to 25, and the reading
time d was varied from 0 msec to 1000 msec. In this range of the parameters, the
transinformation decreases approximately linearly with the frequency group size
from 0.4 imp/sec to 3.5 imp/sec. The slopes of these lines were also similar to the
lines in Fig. 8. Thus, accepting the extrapolation, the difference in transinformation
between a discrete output with frequency group size of 0.8 imp/sec and a continuous
output is approximately 0.05 bits. The frequency groups size was kept constant at
0.8 imp/sec in all the rest of the calculations.

(b) The number of muscle lengths n was varied while the reading time d and the
frequency group size were kept constant. The results from one set of calculations
with reading time d = 1000 msec are shown in Fig. 9. The abscissa in the figure is
the "stimulus uncertainty," i.e., log2 n. The figure reveals that the transinformation
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is only a little less than the possible maximum up to a stimulus uncertainty near 3
bits. Then the transinformation levels off to a constant value as the stimulus un-
certainty increases. Similar results were found with other values of the reading
time d between 30 msec and 1000 msec. Again, it is tempting to extrapolate the re-
sults to an infinite number of groups, that is to a continuous rectangular input
distribution.

(c) The number of muscle lengths n and the frequency group size were kept con-
stant while the reading time d was varied. Figs. 6 and 7 show the result of one set of
calculations with n = 7. The abscissa is the actual mean observation time dk. The
figures reveal that the transinformation increases as a function of the observation
time, at least above 50 msec. The transinformation calculated from the original se-
quence of intervals increases rapidly and reaches a plateau corresponding to observa-
tion times near 500 msec. A further increase in observation time gives only a small
additional increase in the transinformation. When the intervals are read in shuffled
order, the transinformation for a given observation time is much smaller. The trans-
information increases more slowly with the observation time and reaches the maxi-
mum value later. The rate of transinformation increases with decreasing observation
time and reaches a plateau value of 25 bits/sec near observation times of 50 msec in
the normal sequences.

These results were similar in all three cells for different values of n.

With observation time less than 50 msec the results are somewhat anomalous. The trans-
information increases somewhat as the observation time decreases. The most probable ex-
planation of these results is that the method is useless for small reading times. Some other
findings gave similar indications. The actual mean observation time dk was always greater
than the preset parameter d. The difference was about 15 msec for all reading times from 80
msec and upwards. Below 80 msec the difference increases and was 23 msec for d = 0 msec.
The intervals were added by the computer until the accumulated interimpulse time dk was
greater than the preset reading time d. Thus the computer always read a whole number of
intervals. When d was small, the transinformation was probably overestimated by this pro-
cedure. It never happened that no impulse was fired in the observation time.

DISCUSSION

The main problem in this paper has been to estimate the amount of information
about the muscle length which is transmitted from the primary endings in the muscle
spindles to the cerebellum through one DSCT neuron. Assuming a frequency code,
the amount of information which has been transmitted from the muscle to one DSCT
neuron has been calculated. Whether this information actually is conveyed to the
next cell in the pathway, is dependent upon the decoding mechanism in this cell.
Some support can be given to the frequency assumption and thus to the validity

of the estimates of transinformation.
(a) The DSCT neurons seem to decode the signals from the primary afferent
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fibers according to a frequency code. This is apparent in the model which has been
proposed for the synaptic mechanisms in the DSCT cells (Wall0e et al., 1969).

(b) The DSCT fibers terminate as mossy fibers on the granule cells in the cere-
bellar cortex. With reasonable assumptions about the synaptic mechanisms in the
granule cells (similar to the mechanisms in the DSCT cells), it has been shown that
the firing rate of the granule cells will increase approximately linearly with the input
frequency (Wall0e, 1968).
The transinformations have been calculated by two different methods.
Figs. 6 and 7 show the similarity and the difference between the results obtained.

The only common assumption of the two methods is that of frequency coding. Each
method is also based on a number of additional assumptions. Considering the num-
ber of different assumptions involved, the results show a high degree of similarity.
The transinformations are probably overestimated for short observation times by
the stimulus-response matrix method. The reason is that the computer neither starts
nor stops the observation period in the middle of an interspike interval, but always
reads a whole number of intervals. On the other hand, the transinformations are
underestimated for short observation times by the frequency-convergence method.
The transinformations calculated by this method are apparently zero for short ob-
servation times. But even very short intervals will carry some information (Stein,
1967).
The frequency-convergence method overestimates the transinformations for long

observation times. The reason is that the linear relationship found between 1/Af
and the observation time (Fig. 4) is not valid for long observation times.
From Fig. 6 it is reasonable to conclude that the transinformation is very small for

short observation times, up to 30 msec or more. With longer observation times the
transinformation increases steeply to about 2 bits. The increase is much slower for
observation times greater than 200 msec. The rate of transinformation has a peak
value of the order 20 bits/sec with observation times near 100 msec (with 50 msec
and 150 msec as reasonable limits). This value shows that the firing pattern conveys
enough information to distinguish four different muscle lengths if the signal is read
in a frequency code with observation times of 100 msec. With observation times of
1000 msec the rate of transinformation is less than 4 bits/sec, corresponding to 16
different muscle lengths. Thus the decoder will have maximum efficiency if it uses
the information which arrives every 100 msec.
The transinformations are also dependent upon the stimulus uncertainties. With

only a few possible stimulus intensities, equivalent to a small input uncertainty, all
information was transmitted. The transinformation is near the maximum value up
to stimulus uncertainties about 3 bits, and it levels off at a value about 2.6 bits as
presented in Fig. 9.

These results are in close agreement with Mountcastle and Werner's results from
first-order touch fibers. Beyond a stimulus uncertainty of about 2 bits, information
transmission levelled off at a maximum value in their investigation.
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There is also a surprising similarity between these findings and the information
transmitting capacities of humans determined by the method of absolute judge-
ments. In a variety of sense continua the human capacity as regards stimulus intensity
is between 2 and 3 bits of information (Garner, 1953; Miller, 1956; Garner, 1962).
The present results show that with a constant observation time not more than a
maximum value of information is transmitted, no matter how great the number of
stimulus intensity levels is. With observation times less than 1000 msec, not more
than 6-7 different intensity levels could be distinguished in the neuronal response.
The results also show that it can make sense to calculate transinformations even

if the number of possible categories in the response has to be chosen arbitrarily. The
transinformations are only to a small degree dependent on one particular choice of
response categories (Fig. 8). This result has in fact been an unstated assumption in
most transinformation calculations from psychophysical experiments and also in
Werner and Mountcastle's calculations.

It is possible to apply Stein's formulas (1967) for the information capacity on the
DSCT data.

Stein has derived approximate equations for the transinformation in a nerve fiber from
theoretical considerations. His starting point is a renewal process (Cox and Miller, 1965).
He makes assumptions about the probability distributions of the input stimuli, and calculates
the transinformation. The information capacity is defined as the maximum value of the trans-
information considering all possible stimulus distributions. Stein shows that

I = log2{[t/(27re)Ii fg 4fa (20)

is an approximate expression for the information capacity. It becomes increasingly accurate
for large values of the observation time t. Iu is the mean interspike interval, and a2 the vari-
ance. ,s is the lower value and A. the upper value of the interval. a is defined by equation 21:

a ERlk, (21)
k-2

where Rlk is the serial correlation coefficient between interval No. 1 and k. Rlk , and therefore
also a, may be a function of ,u.

The information capacity is defined as the maximum transinformation, consider-
ing all possible distributions of the input. However, Stein has shown that these opti-
mum distributions are approximately rectangular, and his information capacities
can thus be compared with the present transinformations.

Stein's formulas are applied on the DSCT data in the following manner. The curve
in Fig. 7 is plotted according to equation 20 with a = 1. The experimentally deter-
mined relation a = 0.4 ,u is used in the formula. Equation 22 was the resulting equa-
tion.

I = Y log2 t + log2 1.21 (,AO 1/2 _ S)-1/2 (22)
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lAo and A. are chosen from one of the three cells. IAo is put equal to 12 msec (corre-
sponding to an upper frequency limit of 83 imp/sec), and lAs equal to 50 msec (cor-
responding to a lower frequency limit of 20 imp/sec). I is more sensitive to changes
in ,Ao than in 8. If the maximum frequency is doubled, corresponding to a juo of
6 msec, I will increase by about 0.9 bits for all values of t. The curve in Fig. 6 is
plotted according to equation 20 with the same assumptions and the same choice of
parameters as above. In addition a was estimated by equation 21. The estimates for
R12 and R13 of the present material are acceptably accurate (Wall0e et al., 1969). R12
is to some degree dependent upon ,u with low numerical values corresponding to low
activity in the nerve (large ,u). For higher levels of activity R12 is approximately
constant for most values of u. As a first approximation R12 =-0.6 is chosen for all
1A. In an autoregressive Markov chain with R12 = -0.6, R,3 should be +0.36, R14
should be -0.216, etc. In this case

0c

Z Ri = -0.375,
k=2

and consequently a = 0.25.

However, Walloe et al. (1969) have shown that an auto-regressive Markov chain is a bad
description of the experimental results. R13 in the train of impulses is probably about 0.25, not
0.36. The higher order serial correlation coefficients can only be guessed from the 10 experi-
mental determinations of Rlk with k from 4 to 20. The results from one train of impulses is
shown in Fig. 10. The train contained about 1600 intervals, that is 78 parts with 20 intervals
each. All Rkl with k from 1 to 19, 1 from 2 to 20, and k < 1, are calculated, and the accumu-
lated sum is plotted as a function of n. The expected values for an autoregressive scheme with
the same R12 is also plotted. The first point on the curve is calculated from R12, R23, etc. up
to Rig 2o, i.e., 19 different values of R. The next point is in the same manner calculated from
18 additional values, and so on. It is difficult to make guesses about Lk=2 R1k from this
figure. However, all the 10 long stretch levels that have been investigated, give rise to curves
similar to Fig. 10. The sum fluctuates around -0.45 for all k from 4 and upwards. One pos-
sible guess of Ek=2 Rlk therefore is -0.45, which gives a = 0.10. The transinformations in

n

kz2 Rlk

-0.3 =

-OS J/ FIGURE 10 E-2 Rik as a function of
n*. Solid line: experimental data. Broken
line: expected values for an autoregres-
sive process with the same value of R12.

l, , , , , , , , , , , , Explanation of symbols: see text.-0.7
a lo 12 14
n

BIOPHYSICAL JOURNAL VOLUME 10 1970

2 4 6

760



Fig. 6 are calculated from equation 20 with a = 0.10. Since a is supposed to be independent
of At, the equation is similar to equation 22 with addition of A = -½ log2 a. With a = 0.10,
A = 1.66 bits, and with a = 0.25, A = 1.00 bit. Small changes in E2 Rlk from 0.45 towards
greater negative values have great influence on A. When the sum approaches -0.50, A in-
creases towards X . The curve in Fig. 6 is therefore only a rough estimate where the shape of
the curve is more important than the numerical values of the transinformations.

Figures 6 and 7 show that the transinformations obtained by Stein's formulas are
in reasonable agreement with the results obtained by the two other methods.

Fig. 6 reveals a striking similarity between Mountcastle and Werner's results
from first-order touch fibers and the results from a similar stimulus-response matrix
method applied on the DSCT cells. Mountcastle and Werner's results are plotted in
Fig. 6 only. These results are replotted from Fig. 22 in their report (1965). The four
points represent transinformations calculated with 14 different stimulus levels
(equivalent to a stimulus incertainty of 3.8 bits). Other possible choices from their
figures would give similar curves.

Considering the number of different assumptions involved in the four sets of calcu-
lations presented in Figs. 6 and 7, the results show a high degree of similarity.

Figs. 6 and 7 show that the transinformations and the rates of transinformation
are smaller and the maximum rate occurs later in the shuffled series than in the normal
series of intervals. The difference in transinformation is about 1.5 bits independent
of the observation time. This extra information is only available to the granule cells if
the signals from one DSCT fiber are read at a time. The corresponding histological
requirement appears to be provided for by the rather unique synaptic arrangements
of the cerebellar glomeruli. Thus, the particular time structure of the signal in the
DSCT neurons may have physiological significance.
An interesting question is, "How much information is lost in the synapse between

a first-order fiber and a second-order fiber, again assuming a frequency code and a
certain observation time?" It is not possible to give a final answer to this question
from the available experimental data. However, some rough estimates can be made.
A numerical example based on Stein's formulas may illustrate the situation.
The coefficient of variation in the primary afferents from deefferented muscle spindles
is about 0.04 and approximately independent of the mean frequency. With an ob-
servation time of 200 msec, each primary afferent transmits about 4.6 bits of infor-
mation ( = 12 msec, A = 50 msec, a = 1, a = 0.04 js).
About 15 first-order neurons converge on one second-order neuron (Wall0e et al.,

1969; Eide et al., 1969). If these 15 neurons were operating as 15 independent chan-
nels, the information received by one second-order neuron would be the sum of the
information conveyed by the 15 first-order neurons, that is about 70 bits. If the 15
spindle afferents transmit the same kind of information (i.e. muscle length), but the
firing patterns still are completely independent, the second-order neuron will receive
an amount of information equivalent to a record 15 times as long from one first-
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order cell. In other words, the reading time necessary to obtain a certain amount of
information is reduced by a factor of 15. 15 spindle afferents from the same muscle
transmit about 6.6 bits in 200 msec. Stein's formulas reveal that the effective coef-
ficient of variation in the second-order neuron is one-third of the numerical value, or
about 0.13. With an observation time of 200 msec, each DSCT neuron thus trans-
mits about 3.0 bits of information (Fig. 6, broken line). Apparently, the loss in the
synapse is about 3.6 bits. i.e., more than half of the information is lost. However, the
physiological loss is probably less than this.

Firstly, each primary afferent fiber transmits its information to a number of DSCT
cells. The degree of divergence in the system is not known, and quantitative estimates
cannot be made at present. However, the firing pattern in these DSCT neurons are
neither independent nor completely dependent of each other. Consequently, the in-
formation transmitted through M DSCT cells, partly activated from the same pri-
mary afferents, will be less than equivalent to a record M times as long as that from
one afferent, but greater than the information transmitted through only one DSCT
cell.

Secondly, the firing pattern in the primary afferent fibers is much more irregular
in preparations with intact efferent innervation to the spindles, than in preparations
with deefferented spindles.
Some information is, of course, bound to be lost in the transmission from first-

order neurons to second-order neurons, if not otherwise because some impulses will
happen to arrive in the refractory periods of the second-order neurons.

Other kinds of information may be lost in the synapses. The signal in each pri-
mary afferent may contain precise information about the local conditions near that
particular spindles. One of the main functions of this synapse may indeed be to
"average" the signals from different spindles.

In psychophysical studies the relation between a just-noticeable stimulus incre-
ment (AS) and stimulus intensity (S) has been determined experimentally for many
stimulus continua in man. The function relation AS/S = f(S) is called the Weber
function of the system. The information from the muscle spindles is not brought to
consciousness, and it is consequently not possible to determine a Weber function for
the system. However, in the physiological range of muscle lengths, the frequency in
the second-order neuron increases linearly with the length. With a constant Af in
equation 12, the observation times were equal for all muscle lengths. Other possible
reading mechanisms suggested did not result in equal observation times. It is a fair
assumption that this sensory system has a constant sensitivity for all muscle lengths.
Thus, these results suggest that the central nervous system is capable of discriminat-
ing between states separated by an equal increment in spike frequency. Further, these
results indirectly give support to the assumption that information about muscle
lengths is coded in a frequency code. These results are also in close agreement with
Werner and Mountcastle's (1965) findings from first order touch fibers in the cat.
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