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Abstract 
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derived module recollemen ts of 
(1991) 21 l-232. 

A necessary and sufficient criterion is given for the existence of recollements of unbounded 
derived module categories of rings. The criterion is applied to several previously investigated 
situations. 

1. Introduction 

Recently, derived module categories of rings, in particular of finite-dimensionak 
algebras, have attracted interest in connection with the following two topics: 

Firstly, Happel, who introduced the concept of derived module categories of 
algebras into representation theory, gave a description of the process of tilting in 
terms of derived equivalences [7]. Rickard [ 141 generalized this result by showing 
that derived equivalences correspond to what he calls tilting complexes. (The 
problem to develop a Morita theory for derived module categories was suggested 
by Cline, Parshall and Scott in their paper [2] where they already gave a partial 
converse to Happel’s work.) Thus, derived equivalences can be viewed as very 
general forms of the well-known Morita-equivalences. 

Secondly, Cline, Parshall and Scott (cf. [ 131) used the definition of recollement 

of triangulated categories, given by Beilinson, Bernstein and Deligne in their 

work on perverse sheaves [l] as a generalization of a well-known situation in 
topology, to obtain what they call stratification of certain derived module 
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categories, in particular for the so-called quasi-hereditary algebras which pla r an 
important role in the Cline-Prashall-Scott program [13] dealing with the Kazh- 
dan-Lusztig conjecture and its modular analogue. 

The aim of this note is to provide a link between the two concepts of tilting 
complexes and recollement of derived module categories of rings. Using Rickard’s 
theorem WC prove the following __ __ rain result which gives a necessary and sufficient 

criterion for the existence of recollement situations (for notation and definitions 
we refer to Section 2; all rings we are dealing with are supposed to have an 
identity 1): 

Theorem. Let A be any ring. Then the derived module category D-(Mod-A) 
admits recollement relative to the derived module categories of two rings B and C, 

D-(Mod-B)s D-(Mod-A)s D-(Mod-C) , 

if and only if thrre exist two partial tilting complexes 9 in K’(Proj-A) and 6 in 
K “( P, ) which satisfy: 

(I) End,(%)= B, 
(II) End,(G) z C, 

(III) Horn>& %) = 0, 
(IV) W nc’ = (0). 

The proof of this theorem will be given in Section 3; the main ingredients are an 
application of Rickard’s results and a description of subcategories of D-(Mod-A), 
which appear as images respectively kernels of functors in the recollement 
situation, as perpendicular categories to the partial tilting complexes $8 and 6. 

For rings of finite global dimension the bounded derived module category is of 
much more interest than the unbounded one. In this case we show in Section 4 
that the analogue of the above theorem also holds for these categories. However, 
without assumptions on the finiteness of global dimensions it is not always true 

that recollements of the unbounded derived categories irestrict to recollements of 
the bounded derived categories (cf. Example 8 in Section 4). In Section 4 we also 
give some results on restrictions of recollements from the level of the unbounded 
derived categories to the bounded ones in the case of arbitrary rings without 
assumptions on the global dimension. Moreover, we prove a criterion for a 
recollement situation to possess a symmetric recollement situation (where the 
rings B and C have changed sides). 

From the theorem it is now obvious that quasi-hereditary algebras [13,16] and 
quasi-hereditary orders [ 1 l] admit stratifications of derived module categories. 
But also the more general results of Cline, Parshall and Scott [3, 4, 121 on 
recollements involving three derived module categories immediately follow from 

our theorem as will be shown in Section 5. Note that Cline, Parshall and Scott did 
not use Rickard’s theorem; in the proof of each of their theorems on recollements 
of derived module categories they gave explicit constructions of functors; this 
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method first led to more general recollemenr situations where only two of the 
involved triangulated categories could be identified as derived module categories 
of certain rings; additional assumptions then were necessary in order to make it 
possible to identify also the third category as a derived module category. It is 
inherent in our method that we avoid these difficulties. However, we note that 
many of the technical arguments used in the proof of our theorem have already 
appeared in the work of Cline, Parshall and Scott, in particular. in the proofs of 
Theorem 2.1 in 131 and Theorem 1.1 in [4]. In Section 5 we also collect several 
other situations where recollements arise in a natural way. 

2. Definitions and needed results 

In the following we assume the reader to be familiar with the definition of 
triangulated categories and the interpretation of derived module categories as 
triangulated categories [8, 10, 13, 171. 

First, we want to cite Rickard’s fundamental theorem on derived equivalences. 
If R is any ring (always with l), then Mod-R denotes the unitary right R-modules 
(not necessarily finitely generated). 

Two rings A and B are called derived equivalent if and only if D “( Mod-A) and 
D ‘(Mod-B) are equivalent (as triangulated categories). 

Proj-R denotes the category of projective R-modules, Kh(Proj-R) the 
homotopy category of bounded complexes over Proj-R (i.e. the complexes over 
Proj-R with almost all entries bein- 9); P, denotes the category of finitely 
generated projective R-modules ana “(P,) the homotopy category of bounded 
complexes over Pg. 

Theorem (Rickard [14]). Let A and B be two rings. Then A and B are derived 
equivalent if and only if the unbounded derived categories D-(Mod-A) and 
D-(Mod-B) are equivalent (as triangulated categories) which happens if and only 

if B is isomorphic to EndKhlp,, ( T ), where T is an object of Kh( P, ) and satisfies: 

(I) Hom( T, T[i]) = (0) for i # 0, 

(II) add(T) g enerates Kh(P, ) as a triangulated category 0 

(Here add(T) denotes the full subcategory having as objects all direct sum- 
mands of finite direct sums of copies of T. [i] means translation by i in the 
triangulated category D “( Mod-A) .) 

In the following we will call an object like the T in the theorem a tilting 
complex. We will need the following generalization of the notion of tilting 

complex: 

efinition. A partial tilting complex over a ring R is a complex T which is in 

Kh( Proj-R) and satisfies: 



214 S. Kiinig 

(I) Hom(T, T[i]) = (0) for i #O and 
(II) for all indexed families { T, } , ,=, of copies of T holds: 

g Hom( T, 7’i)gHom (T, 8 T,) . 
iEi 

Note that-in contrast to the situation in Rickard’s theorem-we do not require 
T to be a complex over Kh( PR). In fact, later on we will give an example of a 
recollement situation where a tilting complex is involved which is not 2 complex 
over finitely generated projective modules (Example 9 in Section 4). 

Rickard’s proof of his theorem consists of two parts. In one part he shows that 
equivalences be&ween the unbounded derived module categories restrict to 
equivalences between various other derived categories as Db(Mod-A), Kb(P,) 
etc. In the other part he gives explicit constructions of functors between the 
unbounded homotopy categories (which are equivalent to the unbounded derived 
module categories). In our context it is important that Richard has constructed a 
functor F from the unbounded homotopy category K(Proj-B) of the endo- 
morphism ring B of T to the unbounded homotopy category K(Proj-A) of A and 
a right adjoint C to F even for a partial tilting complex T. (Note that formally our 
partial tilting complexes do not satisfy Rickard’s assumption, since they need not 
be complexes of finitely generated projective modules; tiowever, his construction 
for the embedding uses only the two properties (I) and (II), whereas the 
construction of the right adjoint depends only on the boundedness of T.) Since 
the unbounded derived module category D-(Mod-A) is equivalent to the un- 
bounded homotopy category K-( Proj-A) we may use Rickard’s construction also 
for this category. (In the following we will not distinguish between K(Proj-A) 
and D-(Mod-A)). 

Now we turn to the second topic we are interested in and recall the definition of 
recollement, given by Beilinson, Bernstein and Deligne in their work on perverse 
sheaves. 

Definition (Beilinson, Bernstein and Deligne [l]). Let ?, %’ and T” be triangu- 
lated categories. Then a recollement of 3 relative to 9’ and 3’: diagrammatically 
expressed by 

is given by six exact functors 

i, = i, : z'+z, j* = j! : z-s”, i.,‘,i! : T-T', j,, j, : s”+s , 

which satisfy the following four conditions: 
(Rl) (i”, i, = i!, i!) and (j!, j* = j!, j,) are adjoint triples, i.e., i* is left adjoint 

to i, which is left adjoint to i! etc., 



(R2) i), = 0 (and thus j”i, = 0 and i*j! = 0). 

(R3) i,, j! and j, are full embeddings (and thus Pi, s i’i, zid(?) and 
j*j, Sj*j!Zid(T")), 

(R4) any object X in F determines distinguished triangles 

i$X-+ X+ j,j*X+ and j, j!X+ X-, i,i”X+ 

(where the morphisms i$X+ X etc. aie the adjunction morphisms). 

We will need a weaker form of recollement (cf. [ 121): A right recollement is said 
to hold if the lower two rows of a recollement (as defined above) exist and the 
functors appearing in these two rows (i.e. i,, i!, j! and j*) satisfy all the conditions 
in the definition above which involve only these functors. Similarly. a Ieft 
recollement is defined via the upper two rows. 

In the following we will only be interested in recoliements where all the 
triangulated categories involved are derived module categories of rings, i.e. in 
recollements of the following type: 

or 
D-(Mod-B)sD-(Mod-A)sD-(Mod-C) 

Db(Mod-B)sDb(Mod-A)s&‘(Mod-C). 

We note that in the latter situation, for example, the Grothendieck group of A 
is isomorphic to the direct sum of the Grothendieck groups of B and C (here one 
uses a result of Grcthendieck [6] saying that the Grothendieck group of A is 
isomorphic to the Grothendieck group of the triangulated category @‘(Mod-A)). 
Furthermore, A is of finite global dimension if and only if B and C are. 

It should be noted that many finite-dimensional algebras are known to admit 
recollements on the derived level (cf. Section 5) but there also are examples of 
(not necessarily local) algebras which do not admit recollements (for an example 
with infinite global dimension cf. [18], for examples of finite global dimension cf. 

PI) . 

For later use in Section 5 we now cite results of Geigle and Lenzing [5]. 

Definition (Geigle and Lenzing [5]). Let R and S be two rings and q : R- S a 
homomorphism. Then cp is called a hgmological epimorphism if and only if the 
following conditions are satisfied: 

(a) the multiplication map S BR S-, S is an isomorphism; 
(b) for all i 2 I Tor”(S,.,S) = 0. 
(Note that condition (a) just states that q~ is an epimorphism of rings.) 

The connection between homological epimorphtsms and the context we are 
%.erested in is given by the following result of Geigle and Lenzing: 
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Theorem (Geigie and Lenzing [S, 4.31). Let R and S be tM’o rings and q : R + s a 
homomorphism. Then the folio wtr-, * 20 conditions are equivalent: 

( 1) cp is a homological epimorp~tism, 
(2) for a/l right Smodules M artd all left S-modules N and for all i 2 0 the 

natural map To&M, N)-,Tor;\‘(. . N) is an isoworplzisrn9 

(3) for al/ left S-modules M and N and for all i GE- 0 the natural map 
Extl,(M. N)+Ext’,(M, N) is an i 

(4) the induced functor of derk module categories 

D”(q,) : Db(Mod-S)-+ D’(Mod-R) 

is a full em bedding. Cl 

Also, Geigle and Lenzing proved several other characterizations of homological 
epimorphisms in terms of conditions involving Horn and Ext (respectively QD and 
Tor) of certain modules. 

In the following we usually will abbreviate D “( Mod-A) by D’(A), D-( Mod-A) 
by D-(A). etc. The term triangle always means distinguished triangle. Since for 
each ring A there are full embeddings between the various derived categories and 
homotopy categories associated to A, we may denote homomorphisms in any of 
these categories just by Hom.(-, 

We need some more notation: H f,(-, -) denotes the collection of all sets of 
translated homomorphisms in the derived module category, i.e. Hom’,(X, Y) is 
the collection having as nth element the set Hom.(X, Y[n]), where [n] denotes 
as above translation by n; Homl(X, Y) = 0 means Hom.(X, Y[n]) = 0 for all 
n E Z (including n = 0). By a right perpendicular category XL to an object 
X E D-(Mod-A) we mean the full triangulated subcategory of D-(Mod-A) 
generated by all objects Y with Hom:(X, Y) = 0, similarly left perpendicular 
categories are defined. The right (respectively left) perpendicular category of a 
subcategory is the intersection of the right (respectively left) perpendicular 
categories of ah its objects. 

We note that similarly defined perpendicular categories within module 
categories have been defined and studied by tier&e and Lenzing [5] and in- 
dependently by Schofield. 

The kernel ker(F) of a functor F between triangulated categories denotes the 
full triangulated subcategory of the 6,main of F which is generated by the objects 
X with F(X) = 0. Similarly the ima<> im(F) is generated by all F(X) where X 

s through the domain of F. 

3. The main I 

heorem 1. 
D -( i;.‘bd-A) 

Let A be any ring. Then the unbounded derived module category 
admits rccollement relative to the unbounded derived module 



categories of two rings B and C. 

D-(Mod-B)sD-(Mod-A)sD-(Mod-C), 

if and only if there exist two partial tilting complexes 93 in Kh( Proj- A) and G in 
Kb( PA ) which satisfy: 

(I) End,(%)? B, 
(II) End,(G) s C, 

(III) Horn:& %) = 0, 
(IV) Wnti’={o) . 

Moreover, if recollement holds with these data then we have: 
$8 i = ker(i’) = im( j,) , 

6’ = ker(j*) = im(i,) , 
‘(6’) = ker(i*) = im( j!) , 
$1 q’) , 

(p- = ‘(23’). 

Proof. (+) Assume recollemcnt holds with notation as above. Denote by 2? 
respectively 6 the images of B respectively C under the full embeddings i, 
respectively j!. First we have to show that % and @ lie already in Kh(Proj-A). 
Here we use the following criterion which is analogous to a result of Rickard [ 14. 
proof of Proposition 8.11: An object X E D-(A) lies in Kh(Proj-A) (bounded 
complexes over Proj-A, the projective A-modules) if and only if for each object 
YE D-(A) there exists a natural number N (depending CT-, Y) jucll that for all 
n 2 N: Hom,(X, Y[n]) = 0. (To prove this criterion one considers for a given X 
the direct sum of objects X’[i], where Xi is the same as X on places with index 
smaller than i and 0 elsewhere.) In our special situation we have 

Horn@@@ Y[n]) = Hom,(B, i’Y[n]) 

(note i! commutes by definition qvith translation), hence N clearly exists. The 
same argument shows that ti is in K’(Proj-A). Our assertion is that fi moreover is 
a complex over the finitely generated A-modules. By a result of Rickard [14. 
proof of 6.31 we have to show that Horn& -) preserves arbitrary direct sums. 
Since j! has a right adjoint j* = j’ and j* has a right adjoint j* and functors which 

have a right adjoint commute with direct sums, we have: 

HOm,(e- @Y,> s Hom,(kZ, j!j!@Yi) s Hom,(s, j,@j!Y,) 

z HomJC, @j!Y;) s $ Horn,,, C, j!Y,) 

dhom,(G, j!j’Yi)E$Hom,(ti, Y,). 

From the definition of $8 and ti and the fact that i, and j! are full embeddings it 
follows that % and ti satisfy condition (I) in the definition of partial tilting 



complex, since their tr&nslated endomorphisms are via the full embeddings just 
the translated endomorphisms of B (respectively C). Moreover, it follows that 
End,@) z B and End,(g) 2 C. 

Next we have to consider Londition (II) for partial tilting complexes. As above 
we use that a functor which has a right adjoint commutes with direct sums; hence 
we have for each set {6, = (i,C),} of copies of Cc that 

Hom,& @a,) s Horn... i,C, j&E) CA)) z Horn&C, @ C) 

similarly for 8. 
Thus we habe shown that ‘8 and 6 are partial tilting complexes. (We note here 

that the complex j, C is not necessarily a partial tilting complex, cf. Example 8 in 
Section 4.) 

Also Homl(& %) = Homl( j&, i,B) = Hom:(C, j*i,B) = 0. 
Finally, assume X to lie in $3’ f7 6’. From the stanlard triangle 

i!i!X-, X-, j*j*X 3 and a long exact homology sequence it 310~s (since 
Hom:(& j,j’X) s HomE(B, i>,j*X) = 0) that Horn:@, i$X) = 0, but this 
means 0 = Horn:@, i!i,i!X) z Homz(B, i!X), hence i!X = 0 and thks Xz j*j*X. 
Using similar arguments with % replaced by 6 we infer X = 0. 

(t) Assume the existence of partial tilting comp!ex?s ‘% and 6 with the 

properties (I) to (IV). 
( 1) By Rickard’s results there exists a full embedding i * = i! : G - (B) ---) D-(A) 

which sends B to $93 and has a right adjoint i! : D-(A)- D-(B); also there exists 
a full embedding j! . - D-(C)+ D-(A) h h w ic sends C to 6 and has a right adjoint 
j! = j* : D-(A)+ D-(C). 

Our main task is to construct the two missing functors and to show they satisfy 
the required adjunction conditions. If we already knew that there is a recollement 
then these functors would be described by the (unique) stardard triangles 
appearing in the axiom (R4), hence we first try to find such triangles; then we will 

define i* and j, via these triangles. 
(2) Staterneni: 23’ = kernel(i!). Proof: By adjointness of i, and i! we have for 

any X in D-(A) that Moml($9?, X)zHomE(B, i!X), hence i!X is acyclic (which 
means 0 in the derived categorv) if and only if X lies in $8’. 

in the same way we get the following: 
Statemwt: ii’ = kernel( j* ). 

(3) Choose an object X in D-(A) and complete the adjunction morphism 
i,i!X-+ X to a triangle i,i!X* X+ Y+. This triangle will be seen to be the 
desired one. 

Statement: Y is an object of *I. Proof: Since i, is a full embedding, 
adjointness yields 
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Hom:(@, i,i’X) s Horn;@, i!X) z Hom~(S, X) . 

By a long exact homology sequence follows Homl( %, Y) = 0. 
Similarly we have a triangle i,$X 3 X+ 24, where Z is an object of ti ‘. 
(4) Statement: image&) = (sl. Proof: By assumption (III) we know that % 

(and of course each direct jummand of $8) lies in 6’. E’ is a triangulated 
category, hence closed under taking direct sums of finitely many objects; since $ 
is in Kb(PA), Cr’ is even closed under taking arbitrary direct sums (cf. [14,2.11). 
hence it contains also Add @ (i.e. all direct summands of direct sums of s). Now 
6’ is a full triangulated subcategory, thus it contains the full triangulated 
subcategory generated by Add’%, hence it contains i,(Kb(Proj-B)), since i, is 
exact. 

Let X be an object in i,@-(B)), we have to show that X lies in G i. Assume 
the contrary; since G’ is closed under translation, we may assume that there is a 
nontrivial map f from G to X. But 6 is a finite complex, hence f induces a 
nontrivial map from 6 to a (large enough) bounded complex which is a truncation 
of X. Now, by Rickard’s construction of i,, this truncated complex is also the 
truncated complex of the &-image of a bounded complex Y. Hence f induces a 
nontrivial map from 6 to i,(Y), so we have reached a contradiction. 

To see the other inclusion we choose an object X in EL and look at the triangle 
constructed in (3): i,i!X + X+ Y-, with Y in $8 I. We already know that the first 
term and by assumption of X also the second term of this triangle lies in EL, 
hence by a long exact homology sequence it follows that also Y lies in 6’. But 
now by assumption (IV) Y has to be 0, hence X is isomorphic to i,i!X. (Note that 
an analogous statement for & does not hold, but cf. the statement on im( i,) in 

(7) ) 
($ Let X be an object in D-(A). In (3) we constructed a triangle 

i,J’X+ X-, Z+ which starts with the adjunction morphism and satisfies Z E 
obj(Cr’). From the statement in (4) and the property of i, to be a full embedding 
it follows that we can write Z uniquely as i,(U) for some U in D-(B). U is unique 
up to isomorphism, thus an application of the axiom of choice on relations on 
classes gives us a function which defines i* on objects: i*(X) is an element of the 
isomorphism class of U. By an axiom of triangulated categories we can define i* 
on morphisms, too, by using diagrams like the following: 

j! j’X+ X+ L&*X)+ 

j! j'Y* Y-, i,(i* Y)+ 

However, in order to see that the function i” is a functor, we need to know more, 
viz. that there is no choice in the definition of i” on morphisms. 

Statement: For any V in D-(B), Horn ( j! j’X, i,V) = 0. Proof: Adjointness of 

j! and j! and im(i,) = 6’ = kerner( j!). 
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Now it follows from a long exact homology sequence that 

Ham:(X, i,i* Y) z Hom:(i,i*X, Q* Y) , 

thus the relation used to define i * on morphisms is already a fu.lctiort , hence i* is 

indeed functorial. 
Staterne;z t: i * is left adjoint to i,. Proof: This follows from the previous 

statement by a long exact homology sequence: 

Hom’,(i*M, IV) s Hom~(i,i”M, i,N) s Homl(M, i,N) 

for all objects M in D-(A) and N in D-(B). 
(6) We have to show that all functors involved are exact, i.e. commute with the 

trsnslatton functor and carry triangles to triangles. Since we will use exactness of 
j* in the proof of the existence of i*, it is convenient now to give a proof for the 

functors already constructed; we note however that the same argument also works 
for the functor i, which yet has to be constructed. Rickard has shown that the 
embeddings i, and j! which he constructed are exact. It is clear, that all the other 
functors commute with tht respective translation functors, too. Obviously func- 
tOrs which are quasi-inverse (i.e. inverse up to a natural equivalence) to an 
equivalence (vAich is by definition exact) are exact, too. Hence certain restric- 
tions of the other functors are exact as well. It is now well known how to show the 
exactness of, for example: i* . (We copy the following argument from [3, proof of 
theorem 2.1 j .) Choose a triangle X-, Y + Z + in Using the of 
i, all its we have show that sextuple i,i*X+ 

Y+ i,i”Z is a Now consider following commutative 

where all are those considered above. 
the 9-lemma [l, 1. 1 I], square can embedded in following 

diagram all rows coi~mns are 

X’-Y’y Z’ 

J 4 

X--+ * 

i 1 
i,i”X+ y+ Z”‘+ 



What we have to do zow ih to amply several times the S-lemma and use the 
uniqueness of certain maps which has been proved abve in order to see that the 
triangles in this diagram are up to isomorphism the ones we want to have. In 
particular, the last row is up to a unique isomorphism the sextuple from above. 
(The same argument works for j*, since its left adjoint j! is a full embedding.) 

(7) The proof of the existence of j, is similar to (S), but a little bit more 
difficult, since j* goes into the opposite directior‘. Again we start with a triangle 
constructed in (3): i,i!X+ X-, 7+ with Y lying in *I. 

Statement: Hom:(i$X, V) = 0 for all V E W. Proof: adjointness. 
Hence we may define a functor F : D-(A)-- D-(A) with F(X) = Y by proceed- 

ing as above. Our aim is to show that F factorizes via j*. 

Statement: im( F) = ?I? I. Proof: triangle in the definlritin of F. 
Statement: ker(F) = ker( j*). Proof: With the notation aLjove we have to show 

that j*X = 0 is equivalent to Y = 0. But j*X = 0 means by (2) X lies in ti- and 
this means by (4) X lies in the image of i,, and this holds if and only if X is by the 
adjunction morphism isomorphic to i$X, thus Y = 0. 

Statement: j*i! = 0. Pmof: contained in the proof of the previous statement. 
Statemew: F(X) s F( j! j-X). Prcof: Consider the following diagram: 

i,i!j,j*X- j!j*X+ F(j!j”X)+ 

i,i!X- X-F(X)+ 

where the maps are induced from the adjunction maps and Q completes the last 
column to a triangle. From a long exact homology sequence it follows that Q lies 
in $8 *. The maps in the diagram induce the following isomc?phisms: 

Hom;(E, F( j,j*X)) z Hom:(E, j!j*X) 

z Hom’,(S, X) z Hom:(@. F(X)). 

Hence Q lies in 6’. too, thus Q = 0. 
Statement: F factorizes via j*. i.e. F = j*j*, where j, is a functor from D-(C) to 

D-(A). Proof: obvious. 
Statement: i*j! = 0. Pmf: For X in D-(C) we have: 

HomL(i*j,X, i*j,X) s Hom”,( j!X. i,i*j,x) 

z Hom,‘(X, j*i*i*j,X) s 0 4 

since j*i, = 0. 
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Statement : For X in D-(C), X z j*j,X. Proof: Consider the triangle 

j!j*j,X* j!X+ i,i*j,X = O-, and note that j! is a full embedding. 

Statement: For X in D-(C), X s _i* j, X. Proof: Consider the triangle 

i#j!X+ j:X+ j,j*j,X -3, apply the exact functor j* and use that by (5) j*i! = 0. 
Statement: j* is- a full embedding. Proof: Let X be an object of D-(C). 

Considering the long exact homology sequence to the triangle j! j*j,X-+&_X+ 

i,i*j,X+ and using I’>, = 0 (since im( j*) = im(F) = ker(i!)) we get 

Homl( j,X, j,X) G Homl( j,j*j,X, jmX) 

z Horn::: j*j,X, j*j,X) s HomF(X, X) . 

Statement: j, satisfies im( j*) = B’, and is a right adjoint for j*. Proof: The 
first part follows from the corresponding statement for F. Adjointness follows 
from 

N) s Homl(j,j*M, j,N) z Homl(M, j,N) 

for all objects A4 in D-(A) and N in D-(C). 
(8) The remaining statements in the axioms of recollement and the equalities 

between kernels and images follow now easily. As an example we prove the 
statements $2’ = (0 ‘)l and 6’ = ’ ($8 ’ ) : Assume X lies in $8 I, hence i !X = 0 
and thus X s i,j* X. Now for each Y in 6’ we have Horn,,, Y, X) g 
Horn&j* Y, j*X), but j* Y = 0. The argument can be reserved, and the other 
statement follows in the same way. Cl 

4. Applications to other types of recollements 

First, we observe that for more general recollements involving triangulated 
categories which are not necessarily derived module categories, our construction 
goes through if one already knows that there are two full embeddings with right 

adjoints satisfying the equality kernel( j*) = image(&). 
Of course, all the mentioned equalities of kernels and images hold also in the 

more general recollement situation. 
However, the main purpose of this section is to apply Theorem li to recolle- 

ments involving derived module categories which are not of type D-(A). In 
particular, we want to show that for rings of finite global dimension there holds an 
analogous theorem for recollements of the bounded derived module category D b 
(which is of great interest in this case, cf. [7,8]). However, for rings of infinite 
globa: dimension we show by example that an analogous statement for the 
bounded derived categories does not hold. (The reason is that for such rings the 
categories D b and Kb are not isomorphic whereas D- and K- always are 
isomorphic.) 
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Hence we first have to consider restrictions of functors from larger derived 
module categories to smaller ones. 

Lemma 2. Let A and B rings and F : D-(A)+ D-(B) an exact functor of 
triangulated categories which has a left adjoirlt G. Then F sends compkxcs of 
bounded homology to complexes of bounded homology, hence F restricts to a 
functor Db(A)- Db(B). 

Proof. We use the following criterion of Rickard [ 14, proof of 6.11: An object X 
in K-= D- has bounded homology if and only if for any Y in D- there exists 
some N such that Horn,-(Y, X[n]) = 0 for all n < N. Let now X be an object in 
Dh(A); then for any Y in D-(B) we have: 

HomD-&Y, FX[n]) s Horn,-JGY, X[n]) , 

thus by Rickard’s criterion it follows that FX has bounded homology. Cl 

Lemma 3. Let A and B be rings a.rd F: D-(A)* D-(B) or F: Dh(A)+ Dh(B) 
an exact functor between triangulated categories which has a right adjkt. Then F 
sends bounded complexes to bounded complexes. hence it restri,ts to a functor 
between Kb(A) and Kb(B). 

Proof. For the D--case we use again the criterion of Rickard [14, 8.11 which was 
mentioned at the beginning of the proof of Theorem 1. For Db there is an 
analogous criterion of Rickard [14, proof of Proposition 6.21. Cl 

Proposition 4. Let A, B and C be rings and assume there is a recollement situation 
of the following type: 

D-(Mod-B) 5 D-(Mod-A)s D-(Mod-C) . 

Then this recollement restricts co a right recollement of the type 

Db(Mod-B)s Db(Mod-A)* D’(Mod-C) 

and a left recoltement of the type 

Kb(Proj-B) s K’(Proj-A) s Kh(Proj-C) . 

If at least one of the rings A and C has finite global dimen Gon, then the given 
recollement restricts to the following recollement: 

Db(Mud-B) s Db(Mod-A) s Dh(Mod-C) . 



If at least one of the rings A and B has finite global dimension, then the given 
recollement restricts to the following recollement: 

Kh( Proj- B) g Kh( Proj- A) 5 Kh( Proj-C) . 

Proof. The first part follows from the lemmas. 
Assume C to have finite global dimension. Then K”(C) is equivalent to Dh(C) 

hence i! restricts to 0”. Let X be an object in D-(A) which has bounded 
homology. In the standard triangle j,j’X --j X-, i,i”X* the two objects X and 

i,i’X have bounded homology, therefore also the third one, i,i*X, has bounded 
homology. If i”X would have unbounded homology then Rickard’s criterion (see 
the proof of Lemma 2 above) would lead to a contradiction, since i, is a full 
embedding; hence i* restricts to 0”. 

Similarly, if B has finite global dimension, then i! sends bounded complexes to 
complexes of bounded homology which are by assumption isomorphic to bounded 
complexes. Mence the assertion follows again from a standard triangle. 

The remaining assertions follow if we can show that B and C have finite global 
dimension if A has. But this follows from the fact that the restrictions of i, and i, 
to the bounded derived categories are full embeddings. 0 

For recollement situations of the type 

Dh(Mod-B)sDh(MG=I-A)sD’(Mod-C) 

it is well known (cf. [18]) that A is of finite global dimension if and only if B and 
C are so. Thus from the proposition and its proof we get the following: 

Corollary 5. Let A, B and C be rings and assume there is a recollement of the 
fdk!o wing type : 

D-(Mod-B)s D-(Mod-A)s D-(Mod-C) . 

Then A is of finite global dimension if and only if B and C so are. 0 

For recollement situations on the level of the bounded derived categories one 
can copy the (+)-part of the proof of Theorem 1. (To show that % and s are 
bounded complexes one has to replace the mentioned criterion Iof Rickard by 
another criterion of Rickard [ 14. Section 61, which was already used in the proof 
of Lemma 2 above.) Thus we get the following: 

Corollary 6. Let A be any ring. Assume the derived module category D’(Mod-A) 
admits recollement relative to the derived module categories of tw Yings B and C 

Dh(Mod-B)s Dh(Mod-A)s Dh(Mod-C). 
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Therz there is also recollemeizt of the following type: 

D-(Mod-B) $S D-(Mod-A) s D (Mod-C) . 0 

If we already know that one of the rings A and C has finite global dimension, 
we can summarize: 

Theorem 7. Let A, B and C be rings. Assume at least one of the rings A and C has 
finite global dimension. Then the following conditions are equivalent; 

(I) The unbounded derived module category D-(Mod-A) admits recollement 
relative to the unbounded derived module categories of B and C, 

D-(kiod-B) s D-(Mod-A& D-(Mod-C) . 

(II) The bounded derived module category D”(Mod-A) admits recollement 
relative to the bounded derived module categories of B and C, 

Dh(Mod-B) s Dh(Mod-A) s D’(Mod-C) . 

(III) There exist two partial tilting complexes 8 in I?‘( Proj- A) and 6 in Kh( P,_, ) 
which satisfy: 

(i) End,(%)= B, 
(ii) End,@) s C, 

(iii) Homl(& $8) = 0, 
(iv) 23’ n 6:' = (0). 

Moreover, if recollement holds with these data then we have in both recollement 

situations for the respective functors: 

‘w- = ker(i!) = im( i*), 
6” = ker( j*) = im(i,), 
‘(6’) = ker(i”) = im( i!), 
s’ = (El)‘, 
E’= J- (23’). cl 

It rem, ns to show by example that for rings of infinite global dimension there 

are recollements on the unbounded level 
level. We also have to show by example 
strengthened, in particular $3 need not 
projective A-modules. 

which do not restrict to the bounded 
that the assumption on %? cannot be 
be a complex of finitely generated 

Example 8. (This example is based on an example of Rickard [15].) Let k be b 

field and A the finite-dimensional k-algebra which is defined by the following 
quiver: 



K6nig 

with the relation cupa = 0. It has the two indecomposable projectives: 

~(~)=[~I and p(b)=[i]. 

The global dimension of A is infinite. 
$3 := S(a) (the simple top of P(a)) and Cs : = P(b) are partial tilting complexes 

(as a complex s is equal to O-+ P(b) + P(a)+ 0). The endomorphism rings B 
and C are local k-algebras of k-dimension 1 respectively 2. Obviously there are no 
translated homomorphisms from 6 to $3; moreover, there is an exact sequence of 
the form O* P(b) CD P(b)- A+ S(a)+O, which shows that only 0 can be right 
perpendicular to both $3 and 6. Thus from Theorem 1 we get a recollement on 
the unbounded level: 

D-(Mod-B)sD-(Mod-A)sD-(Mod-C). 

Note that C has infinite global dimension. 
Let S be the simple C-module. We show that there is no embedding 

& : D-(Mod-C) -+ D-(Mod-A) which sends C to G and S to a complex of 
bounded homology, hence in any recollement situatiou as 3bove the functor & 
does not restrict to the bounded derived category. (The following short argument 
is due to the referee.) 

Assume i! exists; then it sends the triangle S-, C-, S-+ to a triangle 
@gi,C+j,S*. From the long ex,,% QC+ sequence of homology for this triangle 
follows Hom’(i,S, -) s Homi+‘( i,S, -) for i < - 1 or i 2 1, thus Q-which is by 
assumption a complex of bounded homology--can have homology only in degree 
0. So we have a module X=&S and a short exact sequence 
O+ X-, P(b) + X- 0, which is clearly impossible. 

We note however, that this algebra A admits recollement situations on the 
unbounded derived level which do restrict to the bounded derived level (choose 
for example % : = P(a) and 6 : = S(a)). 

The example shows that for rings of infinite global dimension one cannot use 
Rickard’s construction to find recollement situations on the level of the bounded 
derived categories. Since any recollement situztion+n any level of the derived 
categories-provides a lot of information, it seems that for rings of infinite global 
dimension the unbounded derived category is more interesting than the bounded 
one. 

xample 9. In [14] Rickard showed that the tilting complexes which belong to 
derived equivalences between two ri;igs are always in the category of bounded 
complexes over finitely generated projective modules. In this example we show 
that in recollement situations there may occur partial tilting complexes which are 
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not in this category since some projectives occur which are not finitely generated. 
Moreover, we show that the complex j, C in a recollement situation need not be a 
bounded complex (while it always has bounded homology by Lemma 2). thus in 
the theorem it is essential to work with the complex j&‘. Therefore, in some 
recollement situations there is a remarkable lack of symmetry. However, after 
this example we will give a criterion for a recollement to admit a ‘symmetry’ in 

the sense defined below. 
Let k be any field and V a k-vectorspace of infinite dimension. 
A is the infinite-dimensional k-algebra with two projectives, one of them being 

simple, the other having simple top and a socle which is as a vectorspace 

isomorphic to V: 

Choose 6 the simple projective A-module and 23 the other simple A-module. 
Then it is easy to see that $8 and E satisfy the assumptions of Theorem 1, hence 
the derived module category D-(Mod-A) admits recollement where both sides 
are isomorphic to the derived category of k-vectorcpaces. However, ?? is not in 
the category of complexes over finitely generated projective A-modules (while it 
is finitely generated as an A-module). Now assume there would be a recollement 
situation with ‘23 and j, C playing the roles of S respectively %. To get a 
contradiction we just have to remember that in each recollement situation the 
partial tilting complex Cr is in Kb( PA ). 

We note that for this algebra A there is another recollement (cf. the example 
after Corollary 15) with $23 and 6 satisfying the assumptions of the following 
criterion for the existence of a ‘symmetric’ recollemenr situation. 

Here we call two recollement situations (left- respectively right-) symmetric if 
the complexes ‘23’ = j,C and L7’ = $23 in the first situation play the role of $8 and 6 
in the second s::uation. 

Theorem 10. Assume there is a recollement situation as in Theorem 1. Then % and 
j, C play the role of 6 and 23 in a right-symmetric recollement situation if and only 
if $8 is in Kb(P,) and j,C is a bounded complex. 

Proof. From Theorem 1 and its proof it follows that the conditions are necessary. 
Conversely, assume the conditions are satisfied. Then most of the needed 
properties of 23 and j,C follow from the assumed recollement situa?ion by 
arguments similar to those in the proof of Theorem 1. What remains to be shown 
is that j,C satisfies condition (II) in the definition of a partial tilting complex. 
Denote j,C by 3 and choose a family of copies {Ti} of % Since Im( j*) = ‘8’ 

and B1 is closed under taking direct sums (since % is in Kh( PA)) the direct sum 
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f3 F, can be written as j,X for a certain X. Thus we get 

Horn,@, @ Pi) z Horn,,, j*T, j*j,X) z Horn,,, j*F, @ j*F,) 

(because j*- which has a right adjoint--commutes with direct sums). Since j*j* is 

an autoequivalence, 1 ‘*T is a bounded complex (by [ 14, 6.1 and 6.2]), hence by 

[14, 2.11 we get 

(again since j*j* is an equivalence). Cl 

We note that the conditions in Theorem 10 are in particular satisfied if A is of 
finite global dimension and $8 is a complex of finitely generated projective 
modules. This is the case in many examples (see the following section). 

5. Examples 

In this section we apply our theorems to some special situations in which 
recollement can be shown to hold. Thereby we prove anew results of [3-5, 
1 l-131. 

To begin with. let A be any ring and assume J is a finitely generated two-sided 
ideal of A, B is the quotient ring A/J. Define % : = B and 6 : = J. What we have 
to do now, is to translate the conditions of Theorem 1 for $8 and ti to induce 
recollement into this special context. There are two long exact homology se- 
quences: 

O-, Hom,(B, J)--, Hom,(A, J)+ Hom,(J, J) 

+ Ext;(B, J)* Ext;(A, J)-+ Ext;(J, J)+ 9 l l 

O-, Hom,(B, B)* Hom,(A, B)+ Hom,(J, B) 

+ Ext;(B, B)-+ Ext;(A, B)--, Ext;(J, B)+ l l l , 

hence several conditions are equivalent; for example, Exta(B, B) = 0 implies 
Hom.(J, B) = 0 and vice versa. Moreover, we have a ring homo:norphism 
‘p : A + B which is an epimorphism in the category of rings. On the derived level 
<p induces a functor 

Dh(cp,) : Dh(Mod-B)-+ Dh(Mod-A) 



which sends B to ‘8. If % and I\: are partial tilting complexes inducing recollement 
in the sense of our Theorem 1, then Dh(cp,) is a full embedding, hence + is a 
homological epimorphism as defined by Geigle and Lenzing (cf. Section 2). (Note 
that the full embedding i, in a recollement situation on D--level always restricts 
to a full embedding on Dh-level by Proposition 4.) Vice versa, if cp is a 
homological epimorphism, then ‘8 is a partial tilting complex satisfying all the 
conditions in the theorem of Geigle and Lenzing cited above. 

Corollary 11. Let A be a ring. J a two-sided ideal of A, M~I~C11 has (considered as a 
right P,-module) a finite resolution by finitely generated projectr ve A -modules, and 

B the quotient ring A IJ. Then the following conditions are equivalent: 
(1) % = B and 6 = J satisfy the assumptions of Theorem 1; 
(2) B is a partial tilting module and Ext’,(B, J) = 0 for all i 2 2; 
(3) J is a partial tilting module and Ext, (J, B) = 0 for all i 10; 
(4) q : A + B is a homological epimorphism and J is a partial tilting module; 

(5) To&B,, AB) =0 for all i 2 1 and J is a partial tilting mod&e. 0 

An important case is that of J a projective right A-module: 

Corollary 12. Let A be any ring, J a two-sidPd ideal in A which is projective and 
finitely generated as a right A-module, define B to be the quotient A lJ and assume 
Horn... J, B) = 0. Then the derived module category of A admits recollernent 
relative to B and End,(J): 

D-(Mod-B)$ZD-(Mod-A)sD-(Mod-End,(J)). 0 

The structure of quasi-hereditary algebras [16, 131 and quasi-hereditary orders 
[ll] now tells us that we can apply Corollary 12 several times in order to get what 
is called a stratification of derived module categories (mod-A denotes the 
category of finitely generated right A-modules): 

Corollary 13. Let A be either a quasi-hereditary algebra or a quasi-hereditary 
order. Then A is of jmite global dimension and the derived module category 
Dh(Mod-A) (and similarly Dh(mod-A)) admits a stratification. i.e. there is a fmite 

sequence of recollement situations starting with a recollernent for Dh(Mod-A) sr~h 
that at each stage the derived module category on one side of the recohernent (and 
in the last step on both sides) is the derived category of vectorspaces over a 
skewfield or the derived module category of a local maximal order (this last 
possibility only occurs if A is a quasi-hereditary order). 

Proof. First consider the corresponding stratification on D--level which is given 
by several applications of Corollary 12. Then it follows that A is of finite global 
dimension and Theorem 7 gives th, p desired stratification on the Dh-level. 0 
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ations, a more special situation turns out to be very 

fruitful. Recolleme derived module categories firs: arose in the context of 

quasi-hereditary alg [ 161, investigated by Cline, Parshall and Scott. In this 

case the two-sided id J always is a full idempotent ideal: J = AeA, hence we 

turn to the followi 
an idempotent, (5 = eA the corresponding projective 

A-module with en = eAe and ‘8 = AIAeA the quotient of A 
with B being the endomorphism ring of ‘B. 
mplex; also, Horn:@, $8) = 0 by construc- 

tion of 3 and G ; again ‘B i fl lg ’ = (01, and the muitiplication map 8 BA 8+ B 

is an isomorphism. Hence the existence of recollement in this situation depends 
only on $8 being or not a partial tilting complex. 

Corollary 14. Let A be any ring, e an idempotent, 6 = eA the corresponding 
projective A-module wi endomorphism ring C = eAe trnd $8 = AIAeA the 
quotient of A by the two-sided ideal generated by 6, vith B being the A- 
endomorphism ring of $2. Assllme $3 has finite projective dimension over A. Then 
the following conditions are equivalent: 

(1) % = B and 6 = Ae satisfy the assumptions of Theorem 1; 
(2) Exti(%, 8) = 0 for all n >O; 
(3) Tor:(%,., %) = 0 for all n > 0; 
(4) cp : A-, B is a homological epimorphism. Cl 

In particular, the cond ion (2) is satisfied if AeA is projective, i.e. if we are in 
the situation of Corollary 12. 

Note that condition (3 lays a key role in the proof of Parshall’s theorem [12, 
2.11 on recollenients in situation. In particular, it follows that one does not 
need any additional as ption in o:rder to complete Parshall’s recollement 
situation (involving only four functors) to the usual recollement situation (as 
defined above, involving six functors). 

For some rings an even more easy situation can be useful: 

Corollary 15. Let A be any ring, e an idempotent and $8 and 6 the projective 
A-modules $8 = eA and 6 = (1 - e)A. &sume that Horn, (6,s) = 0. Then B and 
6 satisfy the assumptions of Theorem 1. Cl 

We give two examples of this situation. 
First we consider again the algebra A, = A of Example 9: 
Choose % the simple projective A i-module and 6 the other projective A 1- 

module. Since A, has finite global dimension, Corollary 15 shows that the derived 
module category D b(Mod-A *) admits recollement where both sides are iso- 
morphic to the derived category of k-vectorspaces, hence the same recollement as 
a finite-dimensional hereditary k-algebra with two projectives. However, A, is 
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not noetherian, even not finitely generated ever its center, hence it is (cf. [la. 
proposition 9.41) not derived equivalent to any finite-dimensional algebra. (Note 
that this recollement situation-in contrast to the one of Example 9-admits a 
symmetric recollement situation in the sense of Theorem IO.) 

Now we turn to the second example to Corollary 15: Let k be any field and V a 
k-vectorspace of infinite dimension. Fix a basis of V and pick an element of this 
basis, say u, . A, is a subring of the vectorspace-endomorphisms of t’ ctinsisting of 
these endomorphisms which send u, to a k-multiple of u, and each other basis 
vector u to a sum of k-multiples of u and u, . Symbolically, one can write A 2 as the 

‘matrix’: 

i 

. 

. 

. 

. 

. 

. 

k 
k 

k 

k 

k I 

A, is indecomposable as a ring. Choose a subring of A 2 which is as an abstract 
ring isomorphic to AZ. This can be done in such a way that this subring is the 
endomorphism ring of a finitely generated projective A ,-module 6. Choose a 
complementary projective AZ-module $8. Then by Corollary 14 we get a recolle- 
ment of the derived module category of A, where on one side again the derived 
module category of A 2 appears. 

Finally we note that Geigle and Lenzing [5] have found another type of 
recollement situation in their investigation of homological epimorphisms (without 
mentioning recollement explicitly): 

Let R+ S be a bomological epimorphism which is also injective such that S, 
has projective dimension pdim S, 5 1. Then Geigle and Lenzing proved that S, 

and (SIR), both are partial tilting complexes and pdim(S/R), 5 1, too. 
Using long exact homology sequences it is now easy to show that ti = S, and 

B = (SIR), satisfy the assumptions in our theorem, hence there is recollement: 

D-(Mod-End,(SIR),) g D-(Mod-A) s D-(Mod-S) . 
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