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In materials evaluation, determining an appropriate Representative Volume Element (RVE) of the mate-
rial is of paramount importance. This paper is an attempt to provide a quantitative determination of the
RVE of concrete mixtures, using fractal analysis. The key point of this study is to consider concrete mix-
ture as a fractal and periodic structure and the basic periodic unit cell in this material as the RVE. Based
on a new analytical approach, obtained results suggest that the ratio between the RVE size and the max-
imum particle size of concrete is likely to be 2.4–3.7, for increasing DF values from 2.5 to 3; DF being the
fractal dimension of the concrete size distribution. Additional results were proposed for laboratory con-
crete testing, which suggest that for ordinary concretes, standard sample sizes, whatever the shape,
should be at least around 3.5 times the nominal maximum size of aggregates. Although the proposed
approach is based on simple mathematical formulas, obtained results appear broadly consistent with
those of other studies based on extensive laboratory testing and modeling. The scope of application of
the proposed approach can be extended to numerous solid materials that consist of grains.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Concrete is a composite material that macroscopically demon-
strates significant heterogeneity and complexity due to the differ-
ent sizes, orientations, and shapes of aggregate particles embedded
in a paste matrix. To establish the properties and performance of
concrete mixtures, typically determined with laboratory tests, it
is advisable to measure samples with sizes sufficiently large to
get reliable and repeatable readings. Otherwise, test results may
be misleading with regard to representation of the properties
and performance of concretes (Kim et al., 2009). The smallest vol-
ume material large enough such that measurement yields a value
representative of the entire material, is referred to as the Represen-
tative Volume Element (RVE). However, according to the literature
in this field, this volume is not necessarily unique since it is not
only sensitive to the material, but also to the property under inves-
tigation and to an important factor, the scale of material testing.

Since the early work by Hill (1963), the concept of RVE has been
gaining much attention in the last few years. For many materials,
several attempts have been made to study the RVE, existence
and size determination (see e.g. Stroeven et al., 2004; Gitman,
2006; Gitman et al., 2007 and references therein for an overview).
ll rights reserved.

).
For composite materials like concrete, consisting of matrix
material with embedded inclusions (as grains, fibers, crystals,
etc.), a review of the literature suggests that the RVE is generally
set to a square whose side length is related to the maximum inclu-
sion size. In order to determine appropriate RVE dimensions in
concrete mixtures, many attempts have been conducted. Conven-
tionally, traditional RVE size of concrete must be at least 3–5 times
the maximum aggregate size (Van Mier and Van Vliet, 2003), how-
ever, for a better understanding of the RVE in concrete mixtures,
numerous studies have been conducted. For instance, to investi-
gate the size effect on strength and fracture energy of concrete,
Van Vliet and Van Mier (2000) have conducted a series of uniaxial
tension experiments. Their results suggest that the RVE size should
be taken larger than 3.75 perhaps even as large as 6–7 times the
maximum aggregate size. Bažant and Novak proposed that the
concrete RVE must be equal to ‘nd, ‘ been the characteristic length
of 2.7–3.0 times the maximum aggregate size; nd = 1, 2 or 3 is the
number of spatial dimensions in which the structure is scaled (Git-
man et al., 2007). In order to representatively measure electromag-
netic properties of building materials as concrete, Robert (1998)
showed that material sample dimensions need to be at least three
times greater than the maximum aggregate size. The French build-
ing research center CSTB has shown that computations converge
when the RVE size is 10 times higher than the largest size aggre-
gate, to ensure the applicability of continuum mechanics (Moun-
ajed, 2002). Huet (1999) has shown that the specimen to reach
the RVE does not depend upon the maximum inclusion size only,
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but also on other factors such as specimen shape, inclusions con-
tent and the contrast between properties of the specimen constit-
uents, so that a higher contrast implies a larger representative
volume. Stroeven and Stroeven (2001) demonstrated also that, if
for structure insensitive properties (such as stiffness), the rule of
thumb is to have minimum sample dimensions exceeding the
maximum aggregate size by a factor of 4–5; this size must be lar-
ger for structure sensitive properties (such as fracture). In the same
sense, Kim et al. (2009) stated that relatively to undamaged state,
in damaged state a larger RVE of an asphalt concrete is required,
because additional heterogeneities must be considered as cracks,
localized yielding and possibly aggregate movements.

The noteworthy observation from the aforementioned studies is
the various sizes of the concrete REV, related to the investigated
parameter for which the RVE is estimated, the type of investigation
(experimental and/or modeling), the material characteristics, and
so on.

In this paper we propose another way to determine the RVE size
of concrete material, based on the so-called representative unit cell
approach, according to which, in a structure assumed to be peri-
odic the RVE coincides with the smallest cell of periodicity (see
e.g. Geindreau and Auriault, 1999; Teixeira-Dias et al., 2004; Ze-
man and Šejnoha, 2007; Sýkora et al., 2009). Although, there is a
certain debate regarding this approach, insofar as a RVE may con-
tain one or some number of periodic cells (see Pindera et al., 2009),
a unit cell based approach will be followed in this study, by assum-
ing concrete as a heterogeneous, periodic and infinite structure
that can be generated by periodic repetition of a basic unit cell,
which will be regarded as the RVE of the concrete and that will
be called periodic RVE throughout this paper. Meaning that, con-
crete will be treated as a periodic array of repeated unit cells, with
periodic boundary conditions to ensure continuity at all bound-
aries (Mueller, 1997). We consider also, as stated by Drago and Pin-
dera (2007), that under macroscopically uniform loading, the
response of an arbitrary unit cell, which is the required RVE here,
will be identical of the entire material.

To determine the periodic RVE of concrete mixture, namely the
smallest periodic cell that can reconstitute the whole of material
by translation in space, a new mathematical approach is under-
taken in this study. According to this approach, firstly, we deter-
mine analytically the periodic RVE of a polydisperse granular
material characterized by a power-law Particle Size Distribution
(PSD), based on which we subsequently determine numerically
the periodic RVE of a concrete, by considering this material as a
packing of multi-sized particles (representing all its solid ingredi-
ents), that the PSD will be assumed fractal (as we will see later).

The remainder of this paper is organized as follows. The paper
begins with a brief overview of fractals and fractal features of com-
bined PSDs of concrete mixtures. Next, analytical equations will be
introduced in order to determine the periodic RVE in an assembly
of particles having a fractal size distribution. Thereafter, on the ba-
sis of findings obtained in first step, and under certain simplifying
assumptions regarding concrete characteristics, the periodic RVE of
concrete mixtures will be numerically determined. The proposed
approach will correlate the required RVE, in terms of size and par-
ticle numbers, with concrete mix design parameters, such as size
distribution, particle size and solid volume fraction. We conclude
the paper by discussing the obtained results.
2. Fractals and fractal nature of concrete mixes

Fractals can be defined as disordered systems that are self sim-
ilar independent of scale of observation. Their fundamental prop-
erty is a non-integer dimension called fractal dimension, which
can measure the degree of irregularity of the system (Diez-Orrite
et al., 2005; Verbovšek, 2009). The scale invariance of fractals im-
plies that they are characterized by a power-law relationship of
form (Zolfaghari and Hajabbasi, 2008):

Nð‘ > xÞ / x�DF ð1Þ

where N(x) is the number of objects with size ‘ greater than a pre-
determined size x and the exponent DF is commonly referred to as
the fractal dimension. The fractal dimension can be calculated as
the slope of linear regression best-fit line log N(x) vs. log x data (Val-
lejo and Lobo-Guerrero, 2009). In grain gradations, if a cumulative
distribution follows a geometric law as in Eq. (1), the derived fractal
dimension can measure the complexity of particle distribution in
nature, and can provide a description of how much space a particle
set fills (Yang and Juo, 2001).

This paper builds on the findings of previous researches (Lec-
omte and Thomas, 1992; Chouicha, 2006), according to which ideal
grading curves of concrete can be transformed into straight-lines
power-law of the form given in Eq. (1). Such a transformation
can be achieved by going through the following steps, where a
cumulative grading curve in terms of weight, is transformed into
a size distribution in terms of number of particles larger than a
specified size, as shown below:

- From the mass PSD, the number of aggregate particles of a par-
ticular size /i denoted by E/i

, can be computed from the weight
residue on sieve /i mesh denoted by R/i

, as:
E/i
¼ R/i

=ðqv/i
Þ ð2Þ

where v/i
is the volume per grain of size /i and q the mass den-

sity of grains.
- Therefore, assuming invariant density and spherical shape of

concrete particles, EC/i
, the number of grains in size class /i

and greater, can be determined as:

EC/i
ð/ P /iÞ ¼

Xi

j¼1

E/j
¼ 6

qp
Xi

j¼1

R/j
/�3

j ð3Þ

- The plot of the fit straight line log EC/i
against log /i through the

data points generated by Eq. (3). The general regression equa-
tion of the obtained lines can be written as follows:
log EC/i
¼ c � DF log /i or EC/i

¼ C/�DF
i ð4Þ

where C = 10c is a proportionality coefficient.
To get a better insight into the fractal feature of concrete size

distributions, we report in Table 1 conversion results of some
ideal grading curves extensively used, into power-law curves ob-
tained as described above, where PC/i

is the cumulative weight
fraction passing through sieve opening /i; d and D are resp. the
minimum and maximum particle size. Noting that, although
mix design methods given in Table 1 are focused on optimizing
the particle packing density of concrete (to improve its overall
performance), there exist some differences between these meth-
ods, as including or not fine cementitious material or by taking
into account or not some factors as aggregate characteristics,
wall effect exerted by the form or certain expected concrete
properties.

In Table 1, the achieved good fitting results of log EC/i
vs. log /i

(correlation coefficients R2 � 1) confirm the fractal feature of many
ideal PSDs used for the mix proportioning of concrete. Similar
results can be found for other mix design methods.

Furthermore, as concrete ingredients must be proportioned to
get a combined grading as close as possible to an optimum grading,
it is reasonably inferred that the PSD of a solid concrete mix should
be fractal in nature. The clear benefit of this, is that the PSD of the
solid concrete skeleton can be adequately generated based on only
the values of DF and the particle sizes d and D.



Table 1
Fractal dimensions corresponding to some concrete mix designs, obtained by transforming ideal grading curves, expressed in terms of percent passing (by weight) PC/i

= f(/i) in
log-normal coordinates, on best-fitted straight lines EC/i

ð/ P /i) = f(/i) in log-log coordinates. (See below-mentioned references for further information).
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3. Research approach

3.1. Proposed approach description

The primary objective of this research is to develop a simple
mathematical approach to determine the RVE sizes of concrete
mixtures assumed as fractal and periodic structures. Hence, the re-
quired RVE is defined geometrically in terms of a periodic unit cell
which can provide sufficient information about the material and
can reconstruct the entire concrete mixture by translation in space.
The determination of the RVE size involves two steps: (1) analyti-
cal determination of the RVE of a granular material that is fractal in
size distribution. In this step, equations will be established to se-
lect the suitable RVE that must contain an assembly of a minimum,
yet sufficient, number of grains to guarantee the representativity of
the studied structure, and (2) on the basis of findings obtained in
(1), the numerical determination of the RVE of concrete mixtures,
by approximating concrete system as a packing of particles repre-
senting the entire ingredients of concrete (aggregates, cementi-
tious material, . . .), that the gradation mix is implicitly assumed
fractal, as advanced in the previous section. The next sections will
describe in more detail the proposed approach.

3.2. RVE of a granular matter

We consider in this section, polydisperse granular mixtures
with power-law size distributions noted MDF

d=D, defined through
two factors controlling the PSD, namely DF value and the extreme
particle sizes d and D. Each of these mixtures will be divided into n
grain fractions, of size decreasing in geometric progression from /1

for the largest particles, to /n for the smallest ones; in such a way
that the ith grain fraction will contain a mono-sized assembly of
grains of size /i and of number E/i

; as it is shown next:

8i 2 ½1;n� :
/i > /iþ1 such as /1 ¼ D and /n ¼ d

/i=/iþ1 ¼ k) /i ¼ Dk1�i

"
ð5Þ
3.2.1. Minimum numbers of grains
As highlighted above, MDF

d=D will be composed of n classes of
mono-sized grains, to which corresponds the set of grain numbers
fE/1 ; . . . ; E/ng that we can derive from Eq. (4) as follows:

E/i
¼

C/�DF
i ; i ¼ 1

Cð/�DF
i � /�DF

i�1 Þ; 8i 2 ½2;n�

(
ð6Þ

Or, equivalently, when replacing /i by Dk1�i:

E/i
¼ CD�DF ; i ¼ 1

CD�DFkDFði�2ÞðkDF � 1Þ; 8i 2 ½2;n�

(
ð7Þ

To determine the minimum numbers of grains contained in a
RVE, we follow Meier et al. (2008) in assuming that a periodic
RVE based on a PSD must contain minimum, yet sufficient, number
of grains, selected to include at least one grain in a given size frac-
tion. To satisfy this requirement, the target RVE corresponding to a
MDF

d=D, must contain the set of minimum numbers of grains noted
fN/1 ; . . . ;N/ng, in such a way that:

8MDF
d=D :

ðiÞ Min
16j6n

N/j
¼ 1 )

to obtain an
irreducible unit cell

����
ðiiÞ8i 2 ½1;n� : N/i

/ E/i
)

to reproduce the
same fractal PSD

����

2
6664 ð8Þ

By combining both conditions given in Eq. (8), we can formulate
the following unique condition:
8i 2 ½1;n� : N/i
¼ E/i

= Min
16j6n

E/j
ð9Þ

In this relation, one way to determine the denominator is to
study the ratio between successive numbers E/jþ1 and E/j

: There-
fore, by using Eq. (7), we obtain:

E/jþ1
=E/j

¼ kDF � 1; if j ¼ 1 ðaÞ
kDF ; if j 2 ½2;n� ðbÞ

(
ð10Þ

From which we notice that:

(a) For j = 1, if kDF � 1 > 1 ðor kDF > 2Þ we can write:
E/2=E/1 > 1) MinðE/1 ; E/2 Þ ¼ E/1

Overwise; if kDF
6 2) MinðE/1 ; E/2 Þ ¼ E/2

ð10aÞ
(b) kDF is always > 1; then 8j 2 ½2;n� we can write:
E/jþ1
=E/j

> 1) E/2 < � � � < E/n
) Min

26j6n
E/j
¼ E/2 ð10bÞ
It accordingly implies that MinðE/1 ; . . . ; E/n
Þ is equal to either E/1

or E/2 ; and one can state that:

8MDF
d=D : Min

16j6n
E/j
¼

E/2 when kDF
6 2

E/1 when kDF > 2

(
ð11Þ

Substituting this result and expressions of E/i
from Eq. (7) into

Eq. (9), yields:

N/i
¼

ðkDF � 1Þ�1
; i ¼ 1

kDFði�2Þ; 8i 2 ½2;n�

)
if kDF

6 2

1; i ¼ 1
kDFði�2ÞðkDF � 1Þ; 8i 2 ½2;n�

�
if kDF > 2

8>>>><
>>>>:

ð12Þ

If replacing ki�1 by D=/i in Eq. (12), we again obtain:

8i 2 ½2;n� : N/i
¼ ðD=/i�1Þ

DF
; if kDF

6 2

ðkDF � 1ÞðD=/i�1Þ
DF
; if kDF > 2

(
ð13Þ

As additional information, we can determine NC/i
, the cumula-

tive amount of grains of size greater than /i, and NT, the total
amount of grains in a RVE, as follows:

NC/i
ð/ P /iÞ ¼

Xi

j¼1

N/j
such as NT ¼

Xn

j¼1

N/j
ð14Þ

If we substitute Eq. (12) into Eq. (14), we obtain according to the
term kDF:

NC/i
¼

1
kDF � 1

þ
Xi

j¼2

kDFðj�2Þ; if kDF
6 2

ðkDF � 1Þ 1
kDF � 1

þ
Xi

j¼2

kDFðj�2Þ

" #
; if kDF > 2

8>>>>><
>>>>>:

ð15Þ

In these equations, the sum is in the form of a geometric series
with a common ratio of kDF : We can use a simple formula for sum-
ming all terms in this series, by calculating the difference:
sum� sum� kDF : We obtain then:

Xi

j¼2

kDFðj�2Þ ¼ 1� kDFði�1Þ

1� kDF ðwhere kDF–1Þ ð16Þ

Substituting both this result and ki�1 ¼ D=/i into Eq. (15), yields
equations which determine NC/i

and NT:

NC/i
¼

kDFði�1Þ

kDF � 1
or
ðD=/i�1Þ

DF

kDF � 1
; if kDF

6 2

kDFði�1Þ or ðD=/i�1Þ
DF
; if kDF > 2

8><
>: ð17Þ
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3.2.2. RVE determination
First, we determine the absolute volume noted Rve, which is the

volume of the solid matter in the particles of an RVE, excluding the
volume of voids between particles. Rve can be expressed as:

Rve ¼
Xn

i¼1

N/i
v/i

ð18Þ

Assuming an invariant particle shape, the volume of a single
grain v/i

will be expressed through a shape factor n as follows:

v/i
¼ n/3

i

¼ v/1 k
3ð1�iÞ or vDk3ð1�iÞ; by replacing /i ¼ Dk1�i

ð19Þ

Substituting Eq. (19) and expressions for N/i
from Eq. (12) into

Eq. (18), leads to the following set of equations:

Rve ¼
vD

1
kDF � 1

þ k3�2DF
Xn

i¼2

kiðDF�3Þ

" #
; if kDF

6 2

vD 1þ kDF � 1
k2DF�3

Xn

i¼2

kiðDF�3Þ

" #
; if kDF > 2

8>>>>><
>>>>>:

ð20Þ

In these expressions, the sum can be found as set out in the pre-
vious section. We obtain then:

Xn

i¼2

kiðDF�3Þ ¼
k2ðDF�3Þ � kðnþ1ÞðDF�3Þ

1� kDF�3 ; if DF – 3

n� 1; if DF ¼ 3

8<
: ð21Þ

Substituting the so obtained sum and ki�1 ¼ D=/i into Eq. (20)
yields the following sets of equations:

(i) Case: DF – 3

DF�3
" #8
Rve ¼
vD

1
kDF � 1

þ 1� ðD=dÞ
k3 � kDF ; if kDF

6 2

vD 1þ 1� ðD=dÞDF�3

ðk3 � kDFÞðkDF � 1Þ�1

" #
; if kDF > 2

>>>>><
>>>>>:

ð22Þ
(ii) Case: DF = 3

3�2DF
" #8
Rve ¼
vD

1
kDF � 1

þ k
log k

logðD=dÞ ; if kDF
6 2

vD 1þ kDF � 1
k2DF�3 log k

logðD=dÞ
" #

; if kDF > 2

>>>>><
>>>>>:

ð23Þ
Through considering the packing density of grains, one can esti-
mate the corresponding bulk volume using Eqs. (22) and (23),
which is the required RVE. It is also worth noting that particle
packing densities can be predicted through a wide variety of exist-
ing tools and models, in which results are in most cases governed
by the specific properties of the granular material (size range;
grading; grain shape, surface roughness, strength. . .); the packing
procedure and applied compaction level; the boundary conditions
(wall effect due to the container) and so on (see Kwan and Mora,
2001; Lecomte, 2006; Stroeven et al., 2011).

3.2.3. Influence of the boundary conditions
Grain numbers obtained through Eqs. (12) may not be whole

numbers. This is due to the fact that periodic boundary conditions
were considered (He, 2010), i.e. no boundary effect; parts of grains
missing to have whole grain numbers are assumed to belong to the
neighboring cells. Otherwise, if applying rigid boundary conditions,
the Rve will contain full grains. In this case, the grain number N/i

can be rounded to N/i
(x means the smallest integer greater than

or equal to x), which can take any value in the interval:
N/i
2 ½N/i

;N/i
þ 1½. Accordingly, to N/i

will correspond the absolute
representative volume Rve, in such a way that:

Rve 2 Rve;Rveþ
Xn

i¼1

v/i

" "
ð24Þ

By replacing v/i
from Eq. (19) and then summing the obtained

series, Eq. (24) can be simplified as:

Rve 2
"

Rve;Rveþ vDðk3 � d=DÞ=ðk3 � 1Þ
"

ð25Þ

Noting that, a number of calculations have been carried out in
order to assess the influence of considering fractional or whole
grain numbers on the RVE quantification. Results show relatively
small differences between these two cases.

3.3. RVE of concrete mixtures: numerical results

In this section we will present some numerical results in which
concrete RVEs are determined, based on the foregoing findings.
However, in view of the complexity of the concrete structure, we
had to make certain assumptions regarding this material, for sim-
plification and for keeping a minimum number of parameters in
our approach.

According to the adopted assumptions, concrete mixture will be
viewed as a packing of solid spherical particles, which encom-
passes the whole size range of the concrete skeleton. The particle
packing density of fresh concrete put in work, before any chemical
reaction can occur, will be predicted through a formula, based on
experimental data of measuring void content of a dry granular
mix following a fractal PSD, as described by Chouicha (2006) (we
omit the role of water presence on the arrangement of particles
in the wet concrete mix). According to this procedure (see Fig. 1
for experiment details), the packing density d of a granular mixture
MDF

d=D can be expressed as follows:

d ¼ 1� VC ¼ 1� VCðdÞ � AI exp
�ðC� CoptÞ2

2w2

 !" #
ð26Þ

where VC denotes the void content of the packing mixture; VCðdÞ de-
notes that of particles in class of one-size d; AI a compaction index
quantifying the effectiveness of compaction effort applied; while C,
Copt and w are parameters depending on DF and d/D extend (see
Chouicha (2006) for details on how to calculate Eq. (26) terms).

On the other hand, we will assume also, that densities of both
freshly mixed and hardened concrete are nearly equal. Accord-
ingly, the RVE could be evaluated as below, where d denotes in this
case the volumetric fraction of solid ingredients in the concrete:

RVE ¼ Rve=d ð27Þ

However, it is well known the effect of container walls on the
dry packing of particles that tends to decrease the packing density
at the interface between grains and walls. Such an effect also takes
place in granular suspensions such as fresh concrete (Ferraris and
Brower, 2001). Therefore, relation in (26) will be corrected to take
into account container wall effect, by means of the following
expression (De Larrard, 1999):

~d ¼ ðkwdÞVP þ dð1� VPÞ ð28Þ

where ~d is the mean packing density of the whole mixture in the
container, kw a disturbance coefficient (kw < 1) and VP the per-
turbed interfacial volume in the container with a lower density
than in the bulk of the material. VP can be calculated under the
assumption that due the wall effect, the packing density is af-
fected within a distance of D/2 from the wall. Hence, in a unit to-
tal volume of mixture, for a cylinder or cubic container, VP can be
obtained as (Lecomte, 2006):



( I) (II)

←  Detachable collar 

←  Cylindrical cell  →

Vertical vibrations

←  Vibrant table 
Frequency: 50 Hz 
Amplitude: 0.42 mm 

← ∅ > 5 D    →

Fig. 1. Principle of packing density measurement (I) before vibration: crushed
aggregate introduced into a container with a detachable collar (II) after vibration:
container without collar weighed (Chouicha, 2006).
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Fig. 2. Volumetric fractions of solid ingredients in fresh concrete mixtures versus
d/D and DF values, calculated using relation in Eq. (26) (by considering fine particles
in a flocculated state).

(a)

0,01 0,1 1 10 100

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

1013

D = 100 mm
d = 6 μm

D = 2 mm
d = 6 μm

 1 

N
φ i : 

lo
g

φ
i
 (mm) : log

N
T

: l
og

Fig. 3. Graphic representations of: (a) the amount of grains in each individual size /i of th
d = 6 lm (data calculated from Eq. (12)); (b) the total number of grains in a RVE, related
VP ¼
SðD2Þ

V
¼

1� ð1� D
2AÞð1� D

A Þ
2 ðcube : A3Þ

1� ð1� D
2HÞð1� D

U Þ
2 ðcylinder : U�HÞ

(
ð29Þ

where V is the container volume and S the container surface in con-
tact with the material.

Noting that, in Eq. (27), in addition to the boundary effect, other
factors can affect the solid volume fraction d, as the consistency of
fresh concrete, condition of placing, presence of an admixture in
the concrete and so on (Dreux and Festa, 1998).

The RVE will have two different shapes, cubic of side ARVE and
cylindrical of diameter URVE (slenderness ratio 2). Further, the
smaller cross sectional sizes ARVE and URVE will be related to D
through multiplier factors, as shown below:

ARVE

URVE

� �
¼

ffiffiffiffiffiffiffiffiffi
RVE3
p

�
1ffiffiffiffiffiffiffiffiffi
2=p3

p� �
¼ D�

fA

fU

� �
ð30Þ

In the present approach, ideally, concrete particles are de-
scribed by their true sizes (different from sieving sizes); however
determining such size is highly complex. To overcome this, we pro-
pose a particle size ratio k close enough to unity to ensure size con-
tinuity, as 1.1 ratio. Since this choice is somewhat arbitrary, we
assess the influence of other values of k (up to 2) on the obtained
results.

The finest particle size in the dry concrete mixture will be equal
to an average particle size of about 6 lm. Moreover, in wet state,
we will consider the phenomenon of agglomeration of fines below
a certain threshold size. In this case, spherical agglomerates will be
considered as finer particles in the wet mix, whose smallest size
will be equal to an average size of about 18 lm (Baron and Ollivier,
1996).

Based on the aforementioned assumptions, and for the sake of
clarity, the obtained numerical results will be summarized graph-
ically. In Fig. 2 we show the particle volume fractions in the con-
crete (without boundary effect). Figs 3a and b present resp. the
plots of the grain numbers N/i

and NT required to fulfill the relevant
RVE requirements. Figs 4a and b show schematically the relation-
ship between the absolute volume of the solid ingredients in a con-
crete RVE and some geometrical parameters of the mixture, as the
grain sizes d and D, the particle size ratio k and DF. Figs 5a and b
show resp. the RVE sizes and the corresponding multiplier factors
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(without wall effect), while Fig. 6 displays the RVE sizes of con-
crete, if taking into account the wall effect exerted by the con-
tainer. Container will be sized and shaped as standard molds
commonly used in concrete laboratory testing (in accordance to
NF EN 12390-1 standard (AFNOR, 2001)).

Furthermore, in concrete technology, specific aggregate sizes, as
determined by sieve size standards, must be used. Accordingly, on
the basis of the data in Fig. 6, we will try to determine the allow-
able aggregate size Dn that corresponds to a given standardized
mold opening size denoted Xi; Dn being the nominal maximum
size of aggregate defined in accordance to NF EN 12620 standard
(AFNOR, 2008). Hence, in Fig. 6, if we project on the D-axis a value
of a RVE size equal to a given Xi, we can determine a corresponding
value of D. We consider then, that the allowable aggregate size Dn
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80 mm). In (a) and (b) data are calculated using Eqs. (22), (23), (26), (27), and (30).
that can admit the mold of opening size Xi must be at or below D. It
accordingly implies that we can deduce Xi/Dn ratios, which permit
to re-determine RVE sizes in terms of Dn and Xi for making
standardized concrete samples for laboratory testing. The obtained
results are summarized in Table 2.

4. Discussion

Simple analytical formulas have been proposed to estimate the
periodic RVE of granular materials and concrete mixtures, both in
terms of size and grain numbers. Concerning concrete RVE deter-
mination, based on data sets generated from our analytical equa-
tions and presented in graphical form, the following general
remarks can be made:
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) The corresponding multiplier factors fA and fU that represent the ratio between the
lower limits of fA and fU (for each DF value and D spanning the size range from 5 to
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1999).

Table 2
Allowed nominal maximum size of aggregates Dn that can admit a mold of opening size Xi, of cubic (cub.) or cylindrical (cyl.) shape, and the corresponding Xi/Dn ratio. Values
deduced on the basis of Fig. 6.
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Fig. 7. Plot showing the relationship between DF value of the solid concrete
mixture distribution and some concrete physical properties, derived from data
simply calculated from fractal PSDs (by assuming no agglomeration and invariant
density and shape of all particles).
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– In Figs. 3–5, it is shown that the main factors controlling the
RVE (in terms of size and grain numbers) are the volumetric
fraction and size distribution of the solid phase in the concrete
mixture; the largest size, the size extend and size ratio of con-
crete particles.

– Clearly, in Fig. 4a, for the same extent size d/D, significant differ-
ences were observed between the influence of the size D rather
than that of d on the RVE quantification. It can explain why RVE
size must be preferentially related to D.

– Fig. 4b shows the marked influence of the ratio k ¼ /i=/iþ1 on
the RVE estimation; in the case when k is close to 1 and when
concrete particles are designed in terms of sieving sizes
ð
ffiffiffiffiffiffi
1020
p

;
ffiffiffiffiffiffi
1010
p

;2 etc. according to the considered standard).
– The RVE sizes depicted in Figs. 5a and 6 (with and without

wall effect) are found to grow uniformly and quite linearly
with D and DF values. Note that, the selected range of DF val-
ues (2.5–3) covers a wide range of concrete characteristics
that can lead to different sizes of the RVE, roughly in the ratio
of 1:3 (see, e.g., Fig. 7 where RVE size and some physical
properties of concrete are plotted against DF values). This sug-
gests that, DF value must be considered as a parameter when
determining the RVE.
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– Data taken from Fig. 5b shows that, from a material point of
view, the ratio between the three-dimensional RVE size and
the largest aggregate size should be within the range of 2.4–
3.7, for DF values ranging from 2.5 to 3 (without boundary
effect). Furthermore, if we consider, as stated by Lecomte and
Thomas, 1992, that ordinary concrete mixtures correspond gen-
erally to DF 6 2:8, we can suggest from fA data in Fig. 5b, that
the minimum length of a cubic sample of ordinary concrete
must be nearly 2.9 times more elevated than the maximum
aggregate size. When comparing these findings with outcomes
from previous studies quoted earlier in this paper, we can con-
sider that the obtained RVE sizes are slightly lower but close
enough to those reported in these studies.

– As specific sizes of sample and aggregate must be used for con-
crete testing, we have also try to extend our results to locate the
maximum allowable aggregate size Dn (in terms of nominal
size) that corresponds to a given standard mold size Xi and,
accordingly, establish the relationship between these two
dimensions. Data derived from Fig. 6, and displayed in Table 2
indicates that, whatever the mold shape, correlation values
between Dn and Xi must be at least 4.0–4.5 in the general case
if DF 6 3 and, at least 3.5 in the case of ordinary concretes, i.e.
DF 6 2:8. These values seem to be rather close to those tradi-
tionally used for classical mechanical testing protocols. For
instance French NF EN 12390-1 standard recommends the value
of 3.5, whatever mold shape (AFNOR, 2001).

5. Conclusion

This paper aims to provide a novel analytical approach to esti-
mate the RVE of concrete mixtures using the fractal analysis. The
starting point of this study is to consider concrete mixture as a
periodic and fractal structure that the RVE coincides with the
smallest cell of periodicity in this material. The main results of
the proposed approach state as follows:

- Through mathematical formulas, the proposed approach corre-
lates the RVE, in terms of size and particle numbers, with some
concrete mix design parameters, such as size distribution, par-
ticle size and solid volume fraction.

- The PSD of the concrete mixture, i.e. DF value, must be consid-
ered as a parameter when selecting the suitable RVE.

- The RVE size must be at least 2.4–3.7 times the maximum par-
ticle size in the concrete, for increasing DF values from 2.5 to 3
(without considering boundary effect).

- For laboratory concrete testing, standard sample size, whatever
mold shape, must be at least 3.5 times the nominal maximum
size of aggregates, in the case of ordinary concrete mixtures,
i.e. DF 6 2:8:

Despite the fact that the RVE used in this study is only related
to the material that composes it, and despite the number of sim-
plifying assumptions adopted; obtained results seem to be close
enough to those of previous studies based primarily on laborious
and time consuming laboratory testing and modeling.

This paper has illustrated the usefulness of the fractal analysis
to predict the RVE of granular materials and concrete mixtures,
via simple mathematical formulas. The scope of application of
the proposed approach can be extended to numerous solid mate-
rials that consist of grains and that the PSD may be fractal.
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