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ABSTRACT A lipid bilayer is modeled using a mesoscopic model designed to bridge atomistic bilayer simulations with
macro-scale continuum-level simulation. Key material properties obtained from detailed atomistic-level simulations are used
to parameterize the meso-scale model. The fundamental length and time scale of the meso-scale simulation are at least an
order of magnitude beyond that used at the atomistic level. Dissipative particle dynamics cast in a new membrane formulation
provides the simulation methodology. A meso-scale representation of a dimyristoylphosphatidylcholine membrane is exam-
ined in the high and low surface tension regimes. At high surface tensions, the calculated modulus is found to be slightly less
than the atomistically determined value. This result agrees with the theoretical prediction that high-strain thermal undulations
still persist, which have the effect of reducing the value of the atomistically determined modulus. Zero surface tension
simulations indicate the presence of strong thermal undulatory modes, whereas the undulation spectrum and the calculated
bending modulus are in excellent agreement with theoretical predictions and experiment.

INTRODUCTION

Many large biological assemblies inherently possess multi-
ple length and time scales, resulting from the disparity in the
dimensions of their structure. In the case of lipid bilayers,
the width, h, of the bilayer exists in microscopic domains
(nanometers), whereas the area, A, can persist up to nearly
macroscopic length scales (micrometers) (Lipowsky and
Sackmann, 1995; Tieleman et al., 1997a,b; Bagatolli and
Gratton, 2000; Bagatolli et al., 2000; Forrest and Sansom,
2000). Thus, to completely model the structure and dynam-
ics of such assemblies, it is necessary to span the entire
regime from atomistic to macroscopic length scales. Con-
currently, it is also necessary to examine larger and larger
time scales as the fundamental length scale is increased. For
example, orders of nanoseconds are required to examine the
dynamics of a single molecule in liquid water; however,
macroscopic times are required to model its continuum fluid
flow properties.

We have developed a multiscale simulation method (Ay-
ton et al., 2001a,b) whereby atomistic-level simulations can
be bridged to continuum-level models by calculating the
evolving macro-scale material properties from atomistic
models. With this method, Green–Kubo Theory (see e.g.,
Evans and Morriss, 1990) defines the relationship between
time-averaged correlations of microscopic quantities and
the corresponding macroscopic transport coefficients. Thus,
the basis of the technique relies on accurately calculating
the specific transport coefficients or other material proper-
ties (depending on the nature of the material) from detailed
molecular models. This information is then used within a
constitutive relationship valid at longer spatial and temporal

scales. In essence, beyond atomistic length and time scales,
we abandon the notion of using a molecular representation
as the fundamental unit of description, and instead we use
more coarse-grained and time-averaged material properties
as the governing representation of the system. An important
component of this methodology beyond that which is usu-
ally used in nonequilibrium statistical mechanics is the
feedback loop that is constructed from the macro-scale back
to the atomistic-level simulations.

Our multiscale simulation method has been developed
within the context of lipid bilayers (Ayton et al., 2002b). In
this case, the bulk modulus of a dimyristoylphosphatidyl-
choline (DMPC) bilayer, �, was calculated using detailed
atomistic-level nonequilibrium molecular dynamics
(NEMD) (Ayton et al., 2002a), and this quantity was then
transferred to a continuum-level model of a giant unilamel-
lar vesicle (GUV) (Ayton et al., 2002b). In formulating the
continuum-level equations of motion for this application, it
was found that only the bulk modulus was required to
resolve the desired continuum-level dynamics. However, to
correctly bridge these two length and time scales, it was
necessary to constrain the system to be under a prestressed
state. Only then could the modulus, as determined from the
microscopic simulation, be related directly to the continuum
representation. To be more specific, with our formulation of
NEMD, system sizes on the order of the membrane thick-
ness are modeled under periodic boundary conditions. The
small system size implicitly inhibits any long-wavelength
thermal-bending fluctuations. At the continuum level, un-
dulation-free states are only obtained in prestressed states
with a significant surface tension.

To examine flaccid membranes or membranes subject to
other conditions, a simulation method must be adopted that
operates in length and time scales where thermal fluctua-
tions can occur and be accurately modeled. Experimentally,
for example, it is found that the stress versus strain curve for
a GUV is nonlinear in the low strain regime (Rawicz et al.,
2000). The explanation for this behavior is proposed to be
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related to the existence of subvisible thermal ripples or
bending modes (Evans and Rawicz, 1990, 1997). In this
low-strain regime, the apparent area is less than the actual
area because of thermal oscillations. The small value of the
observed modulus is therefore a result of “undoing” these
soft bending modes. After these modes have been removed,
the apparent area becomes close to the actual area, and the
response becomes elastic. In the spirit of our multiscale
model, it is the bulk modulus under these various conditions
that must then be propagated up to the continuum level, so,
accordingly, some method of calculating the low-strain ef-
fective bulk modulus becomes imperative.

Large-scale bilayer atomistic molecular dynamics (MD)
simulations with length scales on the order of 20 nm using
the GROMACS force field (Spoel et al., 1996) have been
performed (Lindahl and Edholm, 2000; Marrink and Mark,
2001). However, to obtain computational feasibility, elec-
trostatic interactions were handled with a cut-off. Although
the structural properties are not severely altered by an
incomplete treatment of the electrostatics, there is strong
evidence that the material properties (shear viscosity, bulk
viscosity) are quite sensitive to long-ranged interactions.
For example, in Feller et al. (1996) and Wheeler et al.
(1997), the shear viscosity for water and methanol, respec-
tively, were calculated using an Ewald summation (de
Leeuw et al., 1980; Essmann et al., 1995) compared with a
cut-off. Although the viscosity calculated with full Ewald
treatment of the electrostatics under periodic boundary con-
ditions was in excellent agreement with experiment, the
shear viscosity calculated via a cut-off was overestimated
by almost an order of magnitude. Reductionist lipid MD
models as in Shelley et al. (2001) have also been developed,
which can successfully reproduce key equilibrium structural
properties, for example the membrane thickness. However,
then the ability to reproduce other properties such as the
bulk modulus is unknown. Other meso-scale models for
lipid membranes have been developed (Goetz and Lip-
owsky, 1998; Goetz et al., 1999), as well as mesoscale
models for the cross-linked actin filament networks found in
the human erythrocyte cytoskeleton (Boey et al., 1998;
Discher et al., 1998). Recently, Brownian dynamics have
also been used (Noguchi and Takasu, 2002).

Meso-scale simulations with dissipative particle dynam-
ics (DPD) (Hoogerbrugge and Koelman, 1992; Koelman
and Hoogerbrugge, 1993; Espanol and Warren, 1995; Es-
panol, 1995, 1996; Groot and Warren, 1997; Marsh et al.,
1997) have been used to model a lipid bilayer in Groot and
Rabone (2001), where individual lipid molecules were mod-
eled using the characteristic “soft” DPD potential (Espanol
and Warren, 1995; Groot and Warren, 1997) using a Flory–
Huggins treatment to parameterize different “molecular”
interactions. The soft conservative force used in this version
of DPD gives the static equilibrium pressure of the system,
and it has the feature of having no discontinuity as the
interparticle distance approaches zero. In other words, DPD

particles can “pass” through one another. This feature is an
important part of the mesoscopic interpretation associated
with DPD; the “particles” are to be thought of as small
dynamically evolving clusters of molecules, i.e., meso-
scopic hydrodynamic entities. By modeling a bilayer with
an approach such as DPD as in Groot and Rabone (2001),
larger systems can, in principle, be examined with signifi-
cant time-step and length-scale increases. However, in their
particular meso-scale membrane model, there are two po-
tential concerns. First, the abstraction of using soft poten-
tials to model actual lipid molecules is problematic: What
does it mean physically that one lipid molecule can pass
through another due to the soft conservative force? Second,
and more importantly, the soft interaction, along with the
viscous dissipative forces used in DPD, means that the
response of this bilayer model to uniform changes in area is
generally not elastic, but viscous. The model therefore fails
to reproduce one of the most important physical features of
lipid bilayers, i.e., the existence of an elastic bulk modulus.

Lipid bilayers do in fact possess the property of a solid-
like elastic bulk modulus along with a fluid-like viscous
shear viscosity, and they are defined by a state of zero shear
modulus (Evans and Needham, 1987; Hallet et al., 1993).
This interesting behavior results from the fact that the lipids
diffuse within the plane of the bilayer, yet they respond
elastically under uniform area dilations. The value of the
bulk modulus is required to resolve the continuum-level
equations of motion. However, the shear viscosity will only
be needed if shear components are apparent.

To build on the multiscale simulation method using the
strategy described in Ayton et al., (2001a,b, 2002b), we
have concluded that it is crucial for the intermediate meso-
scale representation of the bilayer to be related to informa-
tion obtained from atomistic MD simulations and then prop-
agated to longer spatial and temporal domains via the
relevant material properties. In the case of a lipid bilayer,
the key information obtained from atomistic-level MD is the
“high-strain” bulk modulus, as noted earlier. Previous
mesoscopic models fail to capture this essential quantity by
virtue of either approximated electrostatics (Lindahl and
Edholm, 2000; Marrink and Mark, 2001) or soft potentials
(Groot and Rabone, 2001). We propose in this paper an
alternative coarse-grained mesoscopic model for biological
assemblies such as lipid bilayers. Green–Kubo Theory for-
mally relates transport coefficients to time-averaged corre-
lations of microscopic quantities. In the case of the shear
viscosity, for example, correlations in the Pxy components
of the pressure tensor are required. Thus the effect of
detailed electrostatic and molecular interactions are aver-
aged in time to result in a material property. Herein lies the
basis of our proposed model: rather than attempt to param-
eterize the meso-scale model using simplified molecular
models, we instead use material properties as the fundamen-
tal “interaction.” In doing so, we correspondingly imply a
time-averaged picture. As the description of the system
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moves out in length scale, from atomistic to mesoscopic and
beyond, a corresponding integration and averaging of mi-
croscopic interactions into material properties is implicitly
performed. In the case of linking microscopic to continuum-
level representations, this averaging is formally expressed
via the constitutive relations at the continuum level (Ayton
et al., 2002a). As mesoscopic properties become important,
the procedure becomes more complicated.

To model a bilayer at the mesoscopic level, the bulk
modulus is a core property around which the model can be
built. That is, the fundamental coarse-grained unit in such
an approach is not designed to represent a reductionist
model of a lipid, but rather to model the response of a small
volume of bilayer to plane stress. Thus the fundamental
“particle” is significantly abstracted from an atomic repre-
sentation to instead represent, essentially, a small region of
bilayer whose properties are averaged over a microscopic
time.

For this paper, we correspondingly propose a mesoscopic
model that captures the solid-like elastic bulk behavior of a
lipid membrane as a baseline property. To accomplish this
goal, DPD is recast in an elastic membrane formulation. A
key feature of the model is that it will obtain key param-
eterizations from a detailed atomistic description, where the
parameterizations for a specific membrane system include
not only the bulk modulus, but the membrane thickness,
area, and density. With this atomistically determined infor-
mation in hand, a DPD particle can be constructed that
models how a small area of membrane on length scales of
the collective microscopic model responds to various in-
plane and out-of-plane deformations. We emphasize that
this meso-scale membrane model, which we call the elastic
membrane DPD (EM-DPD) model, will eventually become
a key component of a larger multiscale simulation method-
ology that ranges from atomistic to continuum levels (Ayton
et al., 2001a,b).

The organization of this paper is as follows: In the next
section, details of the meso-scale EM-DPD model will be
explained. The following section then gives specifics of the
algorithm and implementation of the EM-DPD simulation,
and, in the following section, the method is used to explore
the effects of meso-scale thermal perturbations on lipid
bilayers. The results are presented and conclusions are given
in the last two sections.

A MESO-SCALE MODEL FOR A LIPID BILAYER

Our meso-scale model of a bilayer can be constructed by
considering a small area of the bilayer and its response to
plane stress. The constitutive relation relating stress to strain
in a membrane is given by (Hallet et al., 1993)

� � ���A/A0�, (1)

where � � �1⁄2(Pxx � Pyy), �A � A � A0, and A0 is the
initial area. It can also be expressed in terms of an energy as

E�A� �
A0h�

2
��A/A0�

2, (2)

where h is the thickness of the membrane. Eq. 1 can be
found from Eq. 2 by evaluating dE/dA, noting the thermo-
dynamic relationship dE � �PdV, where dV � hdA, and
then using Newton’s First Law, P � ��.

With the initial area density defined as �0 � N/A0, Eq. 2
can be written as

E�A� �
Nh�

2�0
��A/A0�

2. (3)

To construct the EM-DPD model, the area A, which is, in
general, time dependent in a simulation, is discretized into a
number of small elements. These discretized elements will
eventually be represented by EM-DPD-like particles. To
first order, �A/A0 � 2�, where the strain is given in terms of
the components 2� � �x � �y.

The energy of A can, in turn, be written as a sum of N
small discretized elements that interact via a pair-wise ad-
ditive interaction. The energy of the ith element is Ei �
¥j�i,rij�rcut

Eij where Eij � �(2�ij)
2, � is a constant to be

determined, and (2�ij)
2 is related to the local strain between

two elements i and j as a function of the interparticle
distance given by rij � �ri � rj�. The constant � can be
found by writing the total energy in terms of the average
square of local strains as

E�A� � �N 	 1�	Ncut
�	�2�ij�
2
, (4)

where 	Ncut
 is the average number of j particles included
within the cut-off distance rcut over N. For small deforma-
tions, 	(�ij)

2
 � �2, and large N, equating Eq. 3 and Eq. 4
gives

� �
h�

2�0	Ncut

. (5)

To this point, the geometry of A0 is arbitrary but in the
case of a circular area, A0 � 
rcut

2 . To evaluate the force on
an element i at the center of A, Fi, we must evaluate Fi �
��Ei. Consider two points in A with relative separation
given by rij, where i is originally at the origin of A, and
rij � rcut. To first order, local strain in terms of the original
distance rij

0 can be written as

2�ij �
2�rij 	 rij

0�

rij
0 . (6)

In this way, the force on i due to j is then given by,

Fij � �
�Eij

�rij
�rijrij

� �
8�

rij
02 �rij 	 rij

0

rij
0 �rij.

(7)
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In the next sections, the specific details of the implemen-
tation of this model in an EM-DPD simulation will be
presented.

MESO-SCALE SIMULATION OF LIPID BILAYERS

An EM-DPD membrane simulation was constructed to
model a DMPC membrane under periodic boundary condi-
tions in the xy plane. The present EM-DPD membrane
formulation was designed to model the bulk material prop-
erties as calculated from atomistic-level MD, where it was
observed (Ayton et al., 2002a) that the bulk response to
uniform area dilations was elastic, in accord with experi-
mental observations. The bulk modulus was determined
using NEMD (Evans and Morriss, 1990) by relating the
time derivative of the stress response to an artificially im-
posed strain rate, � � �/2�, in the limit that the strain rate
was small. Details of the NEMD calculation of the bulk
modulus for DMPC are explained in detail in Ayton et al.
(2002a).

The aim of the present mesoscopic model is to bridge the
microscopically determined material properties to the con-
tinuum level. In that regard, the length and time scales for
the EM-DPD model are chosen to model material properties
and not molecular properties, as stressed earlier. This is in
contrast to the DPD model membrane in Groot and Rabone
(2001) where DPD was used to model actual coarse-grained
lipid molecules.

EM-DPD simulation of lipid bilayers

With EM-DPD, the dynamics of small mesoscopic clusters
of molecules are modeled by three pair-wise forces: a con-
servative force Fij

C, a dissipative force, Fij
D, and a random

force Fij
R. Details of the statistical mechanics behind these

interactions can be found in Espanol and Warren (1995),
Espanol (1996), Groot and Warren (1997), and Marsh et al.
(1997), and, here, we only briefly describe them in the
context of our lipid-bilayer model. The choice of the con-
servative force for a lipid bilayer is critical, because it is this
interaction that will determine the membrane’s elastic bulk
properties. Our choice for the conservative interaction is
based on the results in Smondyrev and Berkowitz (2001)
and Ayton et al. (2002a), where detailed atomistic MD and
NEMD simulations were performed on a DMPC bilayer.
The bulk expansion modulus, �, density, area per lipid, and
membrane thickness of DMPC were calculated for an ato-
mistic MD system size in which no long-wavelength bend-
ing modes could develop. The parameterization of the cur-
rent EM-DPD model obtains directly from the results in
Ayton et al. (2002a), and thus the pairwise additive conser-
vative force is as derived in Eq. 7 and expressed as

Fij
C � �

8�

rij
02 �rij 	 rij

0

rij
0 �rij, (8)

where � is as defined in Eq. 5. The thickness of the DMPC
membrane was that determined in Smondyrev and Berkow-
itz (2001) with h � 3.4 nm, and the prestressed state
modulus was calculated in Ayton et al. (2002a) as 32.7
amu/nm ps2. The conservative force as defined here is
similar in spirit to bonded forces used in polymer networks
as in Groot and Warren (1997), Groot and Madden (1998),
and Groot et al. (1999), except that the current formulation
bonds EM-DPD particles in a two-dimensional (2D) net-
work rather than a linear spring.

The original configuration for our EM-DPD model was
obtained from an isotropic 2D EM-DPD fluid. Also, be-
cause the original equilibrium atomistic MD simulation
conditions were under zero-stress conditions, the traditional
linear conservative force as defined in Espanol and Warren
(1995) and Groot and Warren (1997) was not included. The
present EM-DPD formulation is designed to model devia-
tions from a zero-stress state. In the case that a solvent, or
another membrane, was to be explicitly included in the
EM-DPD simulation, this repulsive interaction would have
to be specified.

The dissipative and random forces are as defined in Groot
and Rabone (2001), but they are now expressed explicit in
units of amu nm/ps2 as

Fij
D � 	

�2f�rij�
2

2kBT
�vij � r̂ij�r̂ij, (9)

Fij
R �

�f�rij��

�
t
r̂ij. (10)

In these expressions, � is the usual strength parameter for
the random DPD force (Groot and Warren, 1997), and has
the value of � � 4 amu nm/ps3/2, kB is Boltzmann’s con-
stant, T � 308 K, vij � vi � vj, where the velocity of
particle i is defined in terms of its momenta pi, pi � mivi,
and the mass of the EM-DPD particle is mi � �mNDPDA.
The time-step used was set at 
t � 0.04 ps, and � is a
random variable assigned for each pair of interacting parti-
cles. Details of the requirements on � and � are described in
Groot and Warren (1997).

The mass density �m for DMPC was that found from an
equilibrium MD simulation (Smondyrev and Berkowitz,
2001), �m � 595.8 amu/nm3, and NDPD � 6920. Because
this is a pure system, dimensionless units as in Espanol and
Warren (1995) and Groot and Warren (1997) are possible.
However, to focus on the relevant time and length scales,
retaining the fundamental units of mass, length, and time
makes comparison with microscopically determined quan-
tities and experiment easier. The weighting function in Eqs.
9 and 10 is given as f(rij) � (1 � rij/h) for rij 
 h, and is zero
otherwise.

In this model, the dissipative and random forces model
the heat-dissipating viscous fluid-like properties of the
membrane, and the viscous interaction of the bilayer with
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the solvent. Because the parameters used in the EM-DPD
model arose from detailed atomistic-level MD simulations
with full hydration and long range electrostatics, the effect
of the solvent has been collapsed down onto the observed
material properties of the membrane itself. The calculation
of the bulk modulus at the atomistic level includes the
surrounding solvent, and thus incorporates the effects of
lipid–water interactions. The dissipative and random inter-
actions now model only the heat transfer between mem-
brane and solvent.

Algorithm

The EM-DPD simulation was constructed via the following
algorithm, starting from our atomistic-level MD as done in
Ayton et al. (2002a).

STEP 1 Determine the expansion bulk modulus for a
DMPC bilayer via NEMD from an atomistic-level MD
simulation. This modulus describes the stress response to
uniform area dilations upon expansion from an initial
state. The system sizes used in the microscopic level
calculation are on the order of N � 15,000 atoms, with
length scales on the order of 3–5 nm. For these small
system sizes, thermal fluctuations are dampened via the
periodic boundaries. The zero-stress conditions used in
the atomistic-level MD correspond to a larger length-
scale state of high surface tension. To achieve a “flat”
membrane under real conditions, a large surface tension
must be applied to “pull out” thermal oscillations.

STEP 2 Construct the meso-scale EM-DPD particle. From
NEMD, the “undulation free” modulus originating from a
microscopic zero-stress state confirms elastic behavior,
� � ��A/A0, where A0 is the initial zero-stress area.
Thus, deviations from this initial area will result in an
increase in energy given by Eq. 2. As the atomistic-level
response for a specific length-scale has been determined,
a reasonable choice for the fundamental EM-DPD parti-
cle is the atomistic simulation itself. In contrast to Groot
and Rabone (2001), the EM-DPD particles here do not
represent lipids; rather they are designed to model the
bulk response of a meso-scale region of membrane due to
area dilations.

STEP 3 Construct the meso-scale EM-DPD membrane.
Constructing the EM-DPD model of the bilayer requires
both the specification of the conservative force and the
geometry of the membrane. A lipid bilayer, due to its
elastic bulk response, differs from other systems that have
been modeled with DPD. To model the solid-like elastic
response, an algorithm was developed that results in an
isotropic elastic membrane. First, a 2D EM-DPD fluid in
the xy plane at �* � N�DPD

2 /A � 5 was constructed. In
this case the fundamental unit of length, �DPD, was cho-
sen to be h, the membrane thickness. A brief equilibration
in two dimensions was performed using parameters as

prescribed in Groot and Warren (1997) to generate a 2D
EM-DPD fluid. At the end of this equilibration, a replica
of the system was created and located a distance h� in the
z direction. The two EM-DPD systems are designed to
model each leaflet of the bilayer. About each EM-DPD
particle, a cut-off radius rcut � h was used to “tag” all
other particles within that radius, including particles in
the lower bilayer. With �* � 10, rcut � h � 3.4 nm, and
NDPD � 6920, each EM-DPD particle was linked with, on
average, 16 � 8 other EM-DPD particles within the
cutoff. The initial length of a bond, rij

0, between a pair of
EM-DPD particles is as specified from the distance de-
termined from the initial configuration. In this way, the
isotropic fluid correlations between particles remains in-
tact. Local fluctuations in density will result in some
regions of the EM-DPD membrane being more rigid,
whereas some regions are less strongly networked. For
example, lower initial densities resulted in regions of the
membrane where EM-DPD particles were not sufficiently
bonded to others, resulting in “holes.” The EM-DPD
density is not related to the actual membrane density, but
is more akin to the numerical resolution of the model.
Higher densities resulting in densely cross-linked net-
works gave similar final results. The chosen density is a
trade off between computational speed and membrane
stability. For the chosen final density of �* � 10, for one
monolayer, each particle is bonded with 6–8 particles,
near the coordination number of a 2D particle at high
density.

This EM-DPD model does not attempt to capture any
viscous fluid material behavior. As long as shear stresses are
not present, or diffusion within the membrane is not re-
quired, this model should reasonably represent a membrane
at meso-scale dimensions. Also, as stated earlier, no explicit
solvent is incorporated. The EM-DPD dissipative force de-
scribed in detail in Groot and Warren (1997) and Groot and
Rabone (2001) acts in this situation to model the viscous
fluid–membrane interaction. The exclusion of the explicit
solvent may affect the time dependence of membrane os-
cillations, but the steady-state properties should not be af-
fected as long as the dissipative force is included. As such,
the viscosity of the surrounding fluid is not required, and the
magnitude of the dissipative force is chosen to satisfy con-
servation of kinetic energy.

THERMAL OSCILLATIONS

The EM-DPD model as previously described uses small
cross-linked domains that are parameterized to respond to
area dilations in accord with a detailed atomistic model. The
resulting membrane model is free to buckle, and, for undu-
lations out of the plane, the resulting magnitude of the
oscillations will arise from frustrations within the random
“material bond” network. So, to validate that the model has
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the correct flaccid behavior, the zero surface tension oscil-
lation spectrum can be used to not only determine the
wave-vector dependence of the resulting thermal oscilla-
tions, but also the bending modulus, kc, itself. In contrast to
the original atomistic MD model, the EM-DPD model is not
used to calculate explicitly the bending modulus, rather the
resulting bending modulus arising from the bulk modulus
parameterization is used as a qualitative diagnostic to ex-
amine the behavior of the resulting thermal undulations. A
detailed discussion of the treatment of membrane undula-
tions can be found in Sackmann (1994), Lindahl and Ed-
holm (2000), and Marrink and Mark (2001), and here we
will only summarize some important points.

A membrane with area A in the xy plane under zero
surface tension will exhibit oscillations in the z direction
with a displacement at r � rx î � ry ĵ given by u(r). This
can be expressed as an expansion over Fourier modes u(q)
as

u�r� � �
q

u�q�e�iq�r, (11)

where, in the situation that A � L2, the wave vector is q �
(2
/L)(nx î � ny ĵ), and nx, ny are integers. The total
undulation energy over A is given by Eund � 1⁄2kc � ��2u(r)�2

dr, where kc is the bending modulus. This expression holds
in the case that q 

 h�1 and simplifies in Fourier space to

Eund�q� �
1
2

kcA �
q

u�q�u��q�q4. (12)

On average, in the case of zero surface tension, � � 0,
equipartition gives (Lindahl and Edholm, 2000, Marrink
and Mark, 2001)

	u�q�u��q�
 �
kBT

kcAq4 , (13)

where kB is Boltzmann’s constant. This expression predicts
the undulation spectrum with a 1/q4 wave-vector depen-
dence that is inversely related to the bending modulus kc.
Typical values for the bending modulus for lipid bilayers
are 24–30 amu (nm/ps)2 (or 4–5 � 10�20 J) (Lindahl and
Edholm, 2000; Marrink and Mark, 2001). We will report the
bending modulus in amu (nm/ps)2 to reflect the fundamental
units of mass, length, and time that govern the meso-scale
simulation.

RESULTS

The results presented here will be divided into two sections.
First, the high surface tension regime will be examined, and
then the zero surface tension regime will be studied to
quantify the oscillation behavior of the membrane.

High surface tension regime

We begin by examining the initial EM-DPD membrane at
�* � 10, originally constructed in the xy plane at a state of
zero stress and energy (Eq. 2). The initial dimensions of the
membrane in the x and y directions were 90 nm, and the
separation between EM-DPD membrane layers was set at
h� � 3. Because no explicit solvent is included, the length
of the z direction of the simulation cell (Lz) was chosen such
that the membrane was free to undulate without periodic
boundary effects. The simulations were performed under
constant NVT conditions. However, given that the density
of the membrane is unaffected by altering Lz (beyond
periodic effects), a better description of the simulation
state parameters is constant NAT, where A is the effec-
tive area of the membrane. The actual area includes the
thermal undulations.

An initial equilibration run of 40 ns (1 � 106 time steps
with a time step of 
t � 0.04 ps) was performed, followed
by a subsequent production run of the same duration. As the
membrane was allowed to thermally oscillate in all direc-
tions, the final equilibrium stress was found to be � �
4.23 � 0.2 amu/nm ps2 with a corresponding surface ten-
sion of 12.19 � 0.01 amu/ps2. The inclusion of thermal
modes at wavelengths beyond the original atomistic-level
simulation thus resulted in a substantial surface tension. A
snapshot of the simulation is shown in Fig. 1, where inspec-
tion reveals that the planar profile of the membrane is
almost intact. However, small oscillations clearly persist
even under this high surface tension. This suggests that the
zero-stress microscopic state corresponds to a meso-scale
membrane under significant surface tension, but that there is
still sufficient thermal energy for small thermal undulations
to persist. The persistence of such modes even at high
surface tension is in agreement with the experimental ob-
servations in Evans and Rawicz (1990, 1997).

In Fig. 2, the stress as a function of various EM-DPD
simulation areas is shown. The membrane as previously

FIGURE 1 A snapshot of the initial EM-DPD membrane under � �
12.19 � 0.01 amu/ps2. Small thermal undulations still persist at this high
surface tension.
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described was subjected to either an expansion or contrac-
tion in area to different states. Upon either a dilation or
contraction, the membrane was allowed to equilibrate under
constant NAT to the new geometry for 40 ns, and then
production runs of similar lengths were performed. The total
stress was found from the negative value of (Pxx � Pyy)/2
for that specific area. The solid square corresponds to the
initial flat membrane that was allowed to thermally undu-
late, and now lies near the onset of the linear stress-versus-
area regime. Below this point, the stress-versus-area curve
is no longer linear as thermal buckles begin to develop. At
absolute areas lower than 6500 nm2, thermal undulations
dominate the behavior (Evans and Rawicz, 1990, 1997).

A more direct examination is found by using the zero
surface tension area A� to evaluate ln(�) versus (A �
A�)/A�. The determination of the � � 0 area will be dis-
cussed in the next section. The slope of this plot in the low
tension regime is related to the elastic bending modulus kc,
and, as tension increases, a crossover regime is found where
the slope approaches the elastic expansion modulus KA

(Evans and Rawicz, 1990; Rawicz et al., 2000) where KA �
�h. From Fig. 3, the EM-DPD membrane exhibits both the
thermally dominated low strain regime at (A � A�)/A� 

0.05, and a linear elastic regime above (A � A�)/A� � 0.1.
With enough simulation points around � � 0, the bending
modulus kc could, in principle, be calculated from this slope.
Alternatively, kc can also be calculated via the undulation
spectrum and Eq. 13, and it is this latter method that is used
in the present work.

To calculate the high-strain bulk modulus, it is better to
examine the stress � versus strain (A � A0)/A0 for an initial
area, A0, that corresponds to a prestressed state. An obvious
choice for the prestressed state is the initial starting point
(the solid square in Fig. 2). From this prestressed starting
point, thermal undulations have been severely dampened

but not erased. So, it is predicted that the corresponding
stress versus strain behavior will include small perturbations
due to the presence of soft thermal modes. Keeping in mind
that the initial parameterization for the EM-DPD unit had
� � 32.7 amu/nm ps2, as found from Ayton et al. (2002a),
the stress-versus-strain behavior about the initial starting
area (shown as the solid symbols in Fig. 4) yields a modulus
slightly less than the input value, with �DPD � 31.8 � 0.3
amu/nm ps2.

The above result explains the consistently overestimated
expansion moduli as calculated from small atomistic-level
simulation using NEMD. The small system sizes used in
Ayton et al. (2002a,b) by definition cannot exhibit thermal
undulations, and the calculated modulus reflects that ideal
planar geometry. When that information is bridged to the
meso-scale, thermal effects introduce soft undulation
modes, and the resulting modulus is less. In this way, the

FIGURE 2 Absolute stress versus area for the EM-DPD fluid. The solid
circle corresponds to results using a constant N�T algorithm with � � 0.
The solid square corresponds to the initial perfectly planar starting state of
the membrane.

FIGURE 3 ln(�) versus strain (A � A�)/A� starting from � � 0. The low
strain regime, (A � A�)/A� 
 0.05, is governed by thermal undulations,
whereas the high strain regime (A � A�)/A� � 0.1 is dominated by linear
elastic behavior.

FIGURE 4 Expansion and contraction stress and strain for the EM-DPD
fluid around the initial state point. Absolute values of � and �A/A0 are
shown for the compressed states.
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EM-DPD simulation acts as a thermal-reservoir that in-
cludes thermal-undulation perturbations to the original non-
perturbed modulus.

In Ayton et al. (2002a) it was also observed that the
compression modulus �cont was over a factor of three larger
than the corresponding expansion modulus �exp. This was in
apparent disagreement with experiment (Koenig et al.,
1997), where the two moduli were found to be nearly equal.
The explanation for the discrepancy at that time was attrib-
uted to the fact that, in real experiments, it is essentially
impossible to compress a membrane without exciting the
soft bending modes, as opposed to directly compressing the
membrane within in a perfect plane. However, with the
atomistic MD-scale system sizes used in Ayton et al.
(2002a), the compression modulus reflects the latter sce-
nario. The same situation can be examined using EM-DPD.
Upon compression from the initial state, the corresponding
meso-scale modulus (as found from the slope of stress
versus strain) is, in fact, slightly less than the expansion
modulus, despite the EM-DPD parameterization containing
the modulus determined from atomistic MD. At the meso-
scale, the explanation is clear: under compression, the EM-
DPD particles will not compress in the plane according to
Eq. 2 (with � � �cont upon contractions and � � �exp upon
expansions), rather they will respond by buckling out of
plane to create an undulation. This deformation is not as
energetically costly as a direct compression.

A series of simulations where Eq. 2 was modified to
include both � � �exp (for local expansions) and � � �cont

(for local contractions) was used to test this hypothesis, and
the resulting high-strain expansion EM-DPD modulus was
indeed larger than the original atomistically MD-determined
input value. This result makes sense: the membrane will
never elect to directly compress within the plane, even
locally. Even under prestressed states, compressive local
fluctuations persist due to the persistence of high-strain
thermal undulations. In these regions, the response of the
membrane to the compressive stress will take the form of
undulation, protrusion, and peristaltic bending modes (Mar-
rink and Mark, 2001). Thus the inclusion of the compres-
sion modulus in Eq. 2 does not correctly model the bilayer’s
compressive behavior, and thus will overestimate the stiff-
ness of the membrane.

It is noteworthy that the original experimental set-up used
to calculate the compression modulus involved multi-lamel-
lar systems (Koenig et al., 1997), and not a single bilayer.
An obvious question to be raised involves the effects of
small thermal undulations in multi-lamellar systems. The
existence of small out-of-plane thermal undulations, even in
a multi-lamellar case, might alter the membrane’s compres-
sive behavior. Upon compression, a bilayer within the
multi-lamellar system could respond not only by compres-
sion within the plane of the membrane, but also by buckling
out of plane. One can even imagine a scenario where
collective bucklings of adjacent bilayers might occur.

As a first probe into the effects of membrane buckling in
multi-lamellar systems, we have performed EM-DPD sim-
ulations of a multi-lamellar system including solvent inter-
actions. The inter-bilayer spacing was set to match that
found in the experimental system at �50 Å. Three EM-DPD
membranes (with the original parameterization as used in
the Algorithm) under periodic boundaries with a DPD sol-
vent as described in Groot and Warren (1997) were used to
construct a meso-scale multi-lamellar system. An identical
simulation protocol as described in High Surface Tension
Regime was used. We present these results here only to
indicate the possibility of undulatory modes in a multi-
lamellar system. The exact EM-DPD–solvent interaction
has not been tuned to explicitly represent the solvent–lipid
interaction; rather it acts only to propagate undulations from
one bilayer to the next via DPD particle interactions.

In Fig. 5, we show the stress–strain compression plot,
where the slope gives the compression modulus of 27.9
amu/(nm ps2) (cf. 32.7 amu/(nm ps2) is the NEMD result),
demonstrating that small thermal undulations persist even in
multi-lamellar systems, and that the behavior of the EM-
DPD system is considerably different from the completely
dampened atomistic-level bilayer simulation. We note that
the system used in the microscopic NEMD calculations was
also under periodic boundaries and, as such, represents a
perfectly flat multi-lamellar system. The slightly smaller
modulus obtained from the stress–strain plot is due to ther-
mal undulation modes.

Small undulatory modes are visible in Fig. 6 where a
cut-away snapshop of the multi-lamellar EM-DPD system is
shown. Panel a shows the full DPD solvent (white) and
EM-DPD membrane (grey), whereas panel b shows another
cut-away view of the same system where only the EM-DPD
membrane is shown. These results are shown as a qualita-
tive demonstration that undulation modes can persist in
multi-lamellar systems. We present these new results to
reinforce our viewpoint that the value of the compression

FIGURE 5 Compression stress versus strain for a multilamellar EM-
DPD membrane.
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modulus obtained from NEMD and multi-lamellar osmotic
stress experiments is different due to the drastically differ-
ent boundary conditions. The small system size used with
atomistic NEMD results in an ideal compression modulus
that only contains the effects of in-plane membrane com-
pression. Real systems can contain small out-of-plane un-
dulations, even in multi-lamellar systems, and the present
EM-DPD multi-lamellar results support this point.

Zero surface tension regime

The zero surface tension regime can be used to examine the
thermal undulation behavior via Eq. 13. A planar membrane
under � � 0 conditions is expected to have a 1/q4 undula-
tion spectrum behavior for q 
 q0, where q0 is a critical
frequency. Above the critical frequency, a 1/q2 behavior is
expected. Simulation studies by Lindahl and Edholm (2000)
and Marrink and Mark (2001) observed this behavior and
found q0 � 1 nm�1. The system sizes used in that study
were on the order of 20 nm for a typical box length. So,
q0 � 1 nm�1 corresponds to an undulation wavelength of
�6 nm. Above this frequency, protrusion and peristaltic
modes dominate.

The current EM-DPD model consists of linked particles
with a fundamental length scale of 3.4 nm, almost an order
of magnitude in linear dimension larger than atomic length

scales. Thus at high frequencies, the resolution of the model
reaches its coarse-grained limit. For that reason, the undu-
lation spectrum of the EM-DPD simulation is expected to
break down above some critical frequency, where the de-
tailed atomistic model spectrum must be resolved. How-
ever, at low frequencies, the undulation spectrum of the
EM-DPD model may be examined.

The EM-DPD membrane as constructed in the Algorithm
section, and exactly as used in the previous high-tension
results was now examined under a state of zero surface
tension. Again, the EM-DPD bilayer was composed of two
leaflets with a separation of h� � 3 nm, and cut-off at rcut �
3.4 nm. The combination of the degree of cross-linking of
the EM-DPD bonds, along with the separation of the EM-
DPD leaflets results in a resistance to bending undulations.
Thus, calculating the bending modulus from an examination
of the undulatory mode spectrum can be used as a test of the
parameterization of the model.

To examine the zero surface tension regime, a variation
of the EM-DPD algorithm in the spirit of Elliot and Windle
(2000) was implemented. Nose–Hoover feedback was used
to keep the average surface tension � � h[Pzz � 1⁄2(Pxx �
Pyy)] equal to zero on average. Specifically, this was ac-
complished by augmenting the equations of motion in the x
and y directions, the details of which are described in the
Appendix. To test the algorithm, results from detailed con-
stant NAT runs �� � 0 were compared to the results from
the constant � � 0 algorithm. The resulting areas from the
N�T simulations were in excellent agreement with the NAT
values. This is shown in Fig. 2, where the solid circle is the
resulting stress and area under � � 0 conditions.

Under these dynamics, a state of � � 0 is maintained, and
Eq. 13 can be used to calculate the bending modulus of the
membrane. For this model, the calculation of the bending
modulus is used as a quantitative measure of the low-strain
thermal oscillations for the EM-DPD model. Recall that the
parameterization of the EM-DPD model contains the mem-
brane thickness, density, and bulk modulus. By examining
the oscillation spectrum for the EM-DPD model, not only
can the q�4 regime be examined, but the resulting value of
the bending modulus gives an indication whether the current
EM-DPD parameterization is too soft or too rigid.

In Fig. 7, the raw undulation spectrum 	u2(q)
A/kBT for
� � 0 is shown. Fitting this curve to 1/q4 in the regime
where 1/q4 undulations dominate gives the bending modu-
lus as kc � 27.4 � 1 amu nm ps�2 (4.6 � 0.2 � 10�20 J),
which is in excellent agreement with simulation (kc � 4 �
10�20J) (Lindahl and Edholm, 2000) and experiment (kc �
5 � 10�20 J) (Evans and Rawicz, 1990). A more detailed
examination of the high-frequency regime is shown in Fig.
8, where the data is represented logarithmically. A cross-
over regime between q�4 and q�2 behavior is observed
around q � 0.2 nm�1. The location of the cross-over point
occurs at a lower frequency than is observed in atomic-level
simulation (Lindahl and Edholm, 2000; Marrink and Mark,

FIGURE 6 Snapshots of the EM-DPD multilamellar system where (a)
includes the solvent (white) and (b) shows the same system but with only
the EM-DPD membrane. Small bilayer undulations are observed.
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2001), where the cross-over point occurs at q � 1 nm�1.
The reason for the shift is due to the size of the EM-DPD
particle (3.4 nm) versus typical atomistic length-scales (0.3
nm) as discussed earlier. With meso-scale particles, high-
frequency undulations do not exist for length scales below
�DPD. Correspondingly, undulations at frequencies just be-
low q � 2
/�DPD are also perturbed. The resulting effect
of increasing the fundamental coarse-grained-size unit is
to shift the cross-over between q�4 and q�2 to lower
frequencies.

The low-frequency undulations, however, are consistent
with a DMPC bilayer under zero surface tension. The ac-
cessible length and time scales used in the current EM-DPD
model make examinations over length scales on the order of
100 nm and time scales on the order of 50 ns feasible. The
low-frequency oscillations that result indicate that, under
zero surface tension, significant undulations exist. A snap-
shot of the � � 0 system after 50 ns of equilibration is

shown in Fig. 9. In contrast to the original state (Fig. 1),
significant undulations now persist. Comparing these two
figures clearly demonstrates the effect of what a micro-
scopic zero-stress state corresponds to when longer length
scales are examined. The true zero surface-tension state is
one where significant thermal undulations are present, and,
to resolve these undulations, the minimum system size
seems to be around that used in Lindahl and Edholm (2000)
and Marrink and Mark (2001). With the present EM-DPD
model, system sizes at least an order of magnitude larger
than those in the previous references are feasible. Further-
more, by virtue of the larger EM-DPD time step and short-
ranged effective interaction, the accessible time scales are
easily on the order of 100–1000 ns or even greater.

Alternative EM-DPD
membrane parameterizations

The current parameterization for the EM-DPD membrane
has a reduced density of �* � 10, a EM-DPD cut-off of
rcut � h � 3.4 nm, and a membrane leaflet separation of
h� � 3 nm, resulting in each EM-DPD particle being linked
with, on average, 16 � 8 other EM-DPD particles within the
cutoff. It is possible that other alternative parameterizations
could be constructed. Moreover, the particular choice of the
cut-off, along with the parameterization set, may have an
effect on the structure of the EM-DPD membrane.

The EM-DPD parameterization and implementation, as
discussed in detail in the Algorithm, begins with the calcu-
lation of the bulk modulus at the microscopic level, origi-
nating from a small system under periodic boundary con-
ditions. The small system size at the MD level inhibits any
long-wavelength undulations, and, as such, the calculated
bulk modulus is representative of an idealized perfectly flat
bilayer. If a larger MD cell were chosen, it is possible that
thermal buckles may begin to develop and the calculated
modulus will differ. The choice of the cut-off of 3.4 nm is
representative of the size of the MD cell from which the
bulk modulus was obtained; thus the cut-off is restricted to
length scales similar to those of the original the MD cell.

FIGURE 7 The undulation spectrum for � � 0. The dotted line corre-
sponds to the 1/q4 curve fit yielding kc � 27.4 � 1 amu nm ps�2.

FIGURE 8 The undulation spectrum for � � 0. The high-frequency
regime exhibits a cross-over regime at q � 0.22 nm�1. The dotted line
designates the region dominated by undulations with a 1/q4 behavior.

FIGURE 9 A snapshot of the � � 0 system. This image was acquired
after over 50 ns of equilibration.
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Using much larger cut-offs would require a new set of
MD-level simulations to calculate a new bulk modulus. We
constructed two additional parameterizations within the al-
lowable length scales. For each, the separation between
EM-DPD leaflets was decreased to h� � 2.5 nm (from h� �
3 nm) and the cut-off was decreased to rcut � 2.72 nm.
However, the density of the EM-DPD points was varied
from NDPD�2/A � 10 (resulting in each EM-DPD particle
being bonded, on average, to 6 other particles) to NDPD�2/
A � 20 (resulting in each EM-DPD particle being bonded,
on average, to 12 other particles). In Fig. 10, the oscillation
spectrum is shown for the two different parameterizations.
The solid circles correspond to NDPD�2/A � 10, whereas the
solid squares correspond to the NDPD�2/A � 20 system. The
open circles are the oscillation spectrum for the original
parameterization.

Qualitatively, the high-density system (solid squares)
exhibits an oscillation spectrum similar to the original pa-
rameterization, whereas the low-density system (solid cir-
cles) exhibits larger thermal oscillations. These results sug-
gest that it is the combination of the cut-off and density that
determines the bending stiffness of the membrane. Inter-
estingly, the original parameterization had each EM-DPD
particle being bonded, on average, to 16 other particles,
which is similar to the present NDPD�2/A � 20 high-
density system.

It should be noted that the bending modulus was not an
initial input to the model, rather it was measured in the
simulation to “tune” the model. The resultant bending-mode
amplitudes are determined, roughly speaking, by the degree
of cross-linking within the membrane. A high-density cross-
linked membrane will exhibit significant bending resis-
tance, whereas a low-density structure will have greater
bending-mode amplitude.

As a rough guide to obtain alternative EM-DPD param-
eterizations in terms of cut-off and density, the resulting
bond network should contain, on average, at least 12 to 16
particles. The chosen values for the cut-off should be similar
to the original dimensions of the MD simulation.

Finally, one important point is to discuss the effect of not
including the shear viscous behavior associated with real
bilayers. The consequence of a bilayer being defined by a
state of zero shear modulus, and instead possessing a shear
viscosity, is that the membrane cannot support a shear. If a
particular deformation resulted in a shear stress, the lipids in
a real membrane would diffuse, and the shear would not be
supported. For the present model, where we have parame-
terized the EM-DPD interaction according to the bulk mod-
ulus, we can examine only those deformations that result in
no shear stress on average. A nonzero value of the off-
diagonal component of the pressure tensor Pxy will indicate
the presence of a shear stress, and if this is observed, then
the present model cannot be used. For the high surface
tension regime � � 12 amu ps�2, Pxy � 0.045 � 0.03
amu/nm ps2 as averaged over 40 ns. Likewise, for � � 0
under constant N�T dynamics, Pxy � �0.03 � 0.01
amu/nm ps2, indicating that, within simulation error, the
membrane is not under shear stress, and that the bulk
modulus parameterization is valid.

CONCLUSIONS

Dissipative particle dynamics cast in an elastic membrane
formulation (EM-DPD) has been developed to model a
DMPC bilayer at high and low surface tensions. The length
and time scales used in the meso-scale simulation are at
least an order of magnitude larger than currently feasible
with detailed atomistic MD simulations, even though the
number of EM-DPD particles (NDPD � 6920) was relatively
small. The parameterization of the EM-DPD model relies on
information obtained from equilibrium, and nonequilibrium,
MD simulations of a DMPC membrane (Ayton et al.,
2002a) examined at length scales where, by definition, no
thermal undulatory modes could develop. Construction of
the meso-scale model used the MD cell as a material prop-
erty template, where the EM-DPD particle was parameter-
ized to have the material properties corresponding to those
found for the small MD system. In this way, the fundamen-
tal coarse-grained unit was not designed to represent a
molecule, but rather a small visco-elastic unit with material
properties as required by the continuum-level constitutive
model. A bilayer of EM-DPD particles was then constructed
to model the nonviscous behavior of the membrane. It was
found that the initial state, designed to be perfectly planar
and under zero stress (in accord with the MD simulation
parameters) evolved to a state of high surface tension. The
large surface tension was required to maintain the near-
planar state. Interestingly, small thermal undulations per-
sisted even at this high � state, and the resulting bulk

FIGURE 10 The oscillation spectrum for two different parameteriza-
tions, where h� � 2.5 nm and rcut � 2.72 nm. The solid circles correspond
to NDPD�2/A � 10, whereas the solid squares correspond to the NDPD�2/
A � 20 system. The open circles are the oscillation spectrum for the
original parameterization.
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modulus was slightly less than that obtained from MD. The
inclusion of thermal modes acts to massage the modulus
calculated under perfectly planar conditions. When the
membrane was allowed to contract and reach a meso-scale
state of zero surface tension, significant thermal undulations
developed. The magnitude of the low-frequency oscillations
obeyed the predicted theoretical behavior, and the calcu-
lated bending modulus was in agreement with both exper-
imental and simulation estimates. The zero stress state was
modeled using both standard constant volume EM-DPD and
a zero surface tension algorithm. The resulting stress versus
area at zero stress was independent of the algorithm used.

The present work demonstrates that microscopically ob-
tained material properties from small periodic MD systems
can be used as a valid parameterization for a meso-scale
EM-DPD model, where the EM-DPD particle no longer
represents a molecule. In the context of a multi-scale sim-
ulation methodology, this intermediate meso-scale simula-
tion acts as a long-wavelength perturbation that can alter
averaged material properties, which are, in turn, required at
the macro-scale. In the case of a DMPC bilayer, it was
found that the inclusion of the meso-scale was critical to
deduce the observed macro-scale material properties. In
Ayton et al. (2002a), the expansion modulus was found to
be slightly higher than the experimental value. The inclu-
sion of soft undulatory modes at the EM-DPD level per-
turbed the original value by �3%, bringing it closer to the
experimental value. More importantly, the compression
modulus, which from MD was found to be a factor of 3 too
great, was found under EM-DPD dynamics to be very close
to the expansion modulus. The inclusion of soft buckling
modes, even at high surface tension, allowed the membrane
to relax to compressed states without ever having to directly
compress within itself.

The EM-DPD model can be extended to mixtures of pure
membranes and to membranes with concentrations of cho-
lesterol. Furthermore, the length and time scales accessible
with EM-DPD allow the examination of small vesicles
immersed in solvents, and the possibility of studying slow
processes such as osmotic fluxes. An extension to include
the membrane’s viscous behavior is possible within the
present model, which would involve using the current elas-
tic form as a matrix in which viscous DPD particles diffuse.
By tuning the conservative interaction such that viscous
DPD particles are bound within the elastic matrix, diffusion
within the plane of the membrane can occur.

This paper represents the first developmental stage of the
EM-DPD meso-scale membrane model. At this point, the
strain-dependent bulk modulus can be propagated to the
continuum level to model, for example, osmotic swelling of
a giant unilamellar vesicle with the inclusion of low-strain
thermal undulation effects. In terms of additional predictive
properties of the EM-DPD model, there are two distinct
possibilities: (1) The EM-DPD model as part of a micro-
meso-macro multi-scale simulation, with detailed MD at the

microscopic end and continuum level simulation (Ayton et
al., 2001a, 2002b) at the macro-scale; and (2) The EM-DPD
model as a stand-alone simulation method.

In the context of the first possibility, the predictive pow-
ers with EM-DPD could prove to be quite powerful, which
could include lysis or phase transitions at length scales
beyond the microscopic regime. The event of lysis, for
example, would require information from the MD level on
what local strains a microscopic bilayer model can support.
This information would be used at the meso-scale to break
the EM-DPD bond network at the point where the local
strain exceeded a critical value. Phase transitions might be
handled in a manner similar to that described in Ayton et al.
(2001a). In the context of the second possibility, without
further refinement, the model is limited to elastic deforma-
tions. Because the construction of the model is motivated
from the continuum-level constitutive description of the
membrane, the shear viscous component is one obvious
extension. In that context, diffusion and convection within
the membrane is possible, as well as mixtures of different
components. These topics will be the focus of our future
work.

APPENDIX: CONSTANT SURFACE TENSION
SIMULATION WITH EM-DPD

To apply extended dynamics in EM-DPD (i.e., dynamics that generate
other ensembles such as NPT, N�T) as commonly used in MD (Hoover,
1985; Evans and Holian, 1985; Evans and Morriss, 1990), it is necessary
to show that instantaneous momentum conservation is maintained. This is
crucial for the EM-DPD algorithm to produce the correct hydrodynamics.
In Elliot and Windle (2000), it was argued that the correct form of the
equations of motion required to generate a constant pressure ensemble
(NPT) could not be used, because the addition of Nose–Hoover barostat
terms would violate pair-wise additive momentum conservation. We argue
that this is not the case. Pair-wise momentum conservation implies that, for
a pair of particles, i and j, ṗi � ṗj � 0. For this pair under NVT dynamics,
ṗi � Fij

DPD whereas ṗj � �Fij
DPD via the EM-DPD pair-wise force, Fij

DPD �
Fij

C � Fij
D � Fij

R. In the next paragraphs, the equations of motion used to
generate constant N�T dynamics will be discussed, and then it will be
shown that the resulting equations do not violate pairwise additive mo-
mentum conservation.

To write the required augmented equations of motion necessary to
generate N�T dynamics, the specific geometry of the system must be taken
into consideration. Specifically, we consider a membrane in the xy plane
that is free to undulate in the z direction. No explicit solvent is taken into
consideration, and, instead, the dissipative effect of the solvent is treated by
the EM-DPD dissipative and random forces. So, under constant NAT
dynamics, (where A is now the effective membrane area) the length of the
simulation box in the z direction only has to be large enough so that
membrane undulations are not affected by the periodic boundary. In other
words, changing the z cell length has no effect on membrane density or
stress. The actual area includes undulation effects. In order to construct a
zero-surface-tension algorithm, the z boundary condition must be handled
appropriately, and in analogous fashion to the NAT simulation, the z cell
length should not enter into the extended dynamics. A state of constant
surface tension is maintained by altering the simulation area A � LxLy,
where Lx, Ly are the lengths of the cell vectors in the x and y directions,
respectively, such that � � 0. In the situation where a EM-DPD solvent is
included, either the total volume of the system would have to remain
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constant under area dilations, or the normal stress in the z direction would
have to specified (Groot and Rabone, 2001).

For an EM-DPD membrane composed of only membrane particles
where the membrane solvent interaction is handled only by the EM-DPD
viscous interaction, and such that there are NDPD atoms each of mass mi

with positions r � r1, r2, r3, . . . , rNDPD
and conjugate momenta p � p1, p2,

p3, . . . , pNDPD
in a volume V � LxLyLz, the constant � equations of motion

are

ṙi �
pi

mi
� �̇�rxiî � ryiĵ�, (A1)

ṗi � Fi 	 �̇�pxiî � pyiĵ�, (A2)

L̇x�t� � Lx�t��̇, L̇y�t� � Ly�t��̇, (A3)

�̇ � �
1

Qp
�. (A4)

Here, the force on particle i is Fi � ¥i�j Fij
DPD. In the constant N�T

EM-DPD simulations a slightly smaller time-step of 
t � 0.01 ps was used.
To show that these equations maintain instantaneous pair-wise additive
momentum conservation, Eq. A2 must be decomposed into a pair-wise
additive form, and the resulting pair-wise force must obey Newton’s first
law, Fij

DPD � �Fji
DPD. Consider the pair-wise force,

Fij � Fij
DPD 	

�̇

NDPD
pij, (A5)

where pij � pi � pj. This pair force satisfies the previously mentioned
criteria as pij � �pji. The total force on particle i is obtained by the sum
over j � i, Fi � ¥i�j Fij

DPD � �̇/NDPD ¥i�j pij. Because ¥i�1
NDPD pi � 0, pi �

�¥i�j pj, and Eq. A5 can be rewritten as Fi � ¥i�j Fij
DPD � �̇pi. Thus,

because ¥i�1
NDPD pi � 0, the addition of barostat multipliers still conserves

instantaneous pairwise additive momentum conservation. To show that
these equations of motion generate the appropriate ensemble under EM-
DPD dynamics, a method similar to that in Elliot and Windle (2000) can
then be used.
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