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Abstract

In [hep-th/0004063] Pilch and Warner (PW) construct§d= 2 supersymmetric RG flow corresponding to the mass
deformation of the\V = 4 SU(N) Yang—Mills theory. In this Letter we present exact deformations of PW flow when the
gauge theory 3-space is compactified&?n We consider also the case with the gauge theory world-volume B&ipinstead
of R31. The solution is constructed in five-dimensional gauged supergravity and is further uplifted to 10d.

0 2003 Elsevier B.V. Open access under CC BY license.

1. Introduction evant for understanding string theory in backgrounds
with cosmological horizons. Unfortunately it is diffi-

Probably the most intriguing aspect of the gauge CUlt 0 use space-time deformations of [3-5] for devel-
theory/string theory duality [1] (see [2] for a review) ©OPINg a detailed gauge/string theory duality map. The
is the fact that it provides a dynamical principle for Main problem stems from the fact that the examples
the nonperturbative definition of string theory in the Cconsidered there typically involve gauge theory with
asymptotically anti-de Sitter space—time, where there n_ot well understood ultra\(lqlet properties. It seems de-
is no notion of anS-matrix. The best understood ex- Sirable to construct nontrivial examples of such defor-
ample of this duality is for theV = 4 SU(N) super- mations for “simple_r" gauge theo_ries in_the UVv. _
symmetric Yang—Mills theory. Given the original cor- Probably the simplest candidate is to consider
respondence [1], new examples can be constructed bySPace—time deformations of the massive= 4 RG
deforming the gauge theory by relevant operators. By flow. In thls Letter we discuss how to construct such
now there is an extensive literature on such, renormal- deformations for theV' = 2* RG flow of Pilch and
ization group (RG) flow deformations [2]. In [3]itwas ~ WVarner [6]. We should emphasize that though we
suggested that the duality can be extended to caseLoncentrate on theflow [6], the construction presented
when one deforms the gauge theory space—time. Fur-N€re can be applied to other RG flows.
thermore, in [4,5] it was suggested that gauge theories 1N Letter is organized as follows. In the next

on nondynamical de Sitter backgrounds might be rel- S€ction we review the Pilch-Warner RG flow in five
dimensions, and discuss it$$ andd S4 deformations.

In Section 3 we discussed the details of the 10d uplift
E-mail addressabuchel@umich.edu (A. Buchel). of the deformations. We conclude in Section 4.
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2. N =2* RG flow and its deformationsin five
dimensions

2.1. The gauge theory story

In the language of four-dimension&f = 1 super-
symmetry, the mass deforméd = 4 SU(N) Yang—
Mills theory (V' = 2*) in R®! consists of a vector
multiplet V, an adjoint chiral superfield related by
N = 2 supersymmetry to the gauge field, and two
additional adjoint chiral multiplet®? and QO which
form the A/ = 2 hypermultiplet. In addition to the
usual gauge-invariant kinetic terms for these fields, the
theory has additional interactions and hypermultiplet
mass term summarized in the superpotehtial
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When m = 0 the gauge theory is superconformal
with gym characterizing an exactly marginal defor-
mation. The theory has classicald — 1)-complex-
dimensional moduli space. This moduli space is pro-
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PW supergravity flow it was argued in [8] that the ap-
propriate Coulomb branch vacuum corresponds to a
linear distribution of the VEVs (2) as
2,2
ag - w €)
T

with (continuous in the large¥ limit) linear number
density

ag
2
pla)= 2—2\/a5—a2, /da,o(a):N. (4)
m=&ym A

Unfortunately, the extension of theé = 2* gauge/grav-
ity correspondence of [6,8,9] for vacua other than (4)
is not known.

In [8,9] the dynamics of the gauge theory on the
D3-brane probe in the PW background was studied
in details. It was shown in [8] that the probe has
one-complex-dimensional moduli space, with bulk in-
duced metric precisely equal to the metric on the
appropriate one-complex-dimensional submanifold of
the SUN + 1) N = 2* Donagi—Witten theory
Coulomb branch. This one-dimensional submanifold

a; € [—ao, aol,

tected by supersymmetry against (non)perturbative is parameterized by the expectation valuef the

guantum corrections. Wit # 0, the A/ = 4 super-
symmetry is softly broken td/ = 2. This mass defor-
mation lifts {0, O} hypermultiplet moduli directions,
leaving the(N — 1)-complex-dimensional Coulomb
branch of the\ = 2 SU(N) Yang—Mills theory, pa-

U (1) complex scalar on the Coulomb branch of the
theory whereSUN + 1) — U (1) x SU(N)pw, and
the PW subscript denotes that t8&)(N) factor is in
the Pilch—Warner vacuum (4). Ascoincides with any
of the ¢; of the PW vacuum, the moduli space met-

rameterized by expectation values of the adjoint scalar ric diverges, signaling the appearance of the additional

@ =diag(ay, az, ...,an), Za,:o, (2)

in the Cartan subalgebra of the gauge group. For
generic values of the modul} the gauge symmetry is
broken to that of the Cartan subalgebrél)V —1, up to

the permutation of individual/ (1) factors. Addition-
ally, the superpotential (1) induces the RG flow of the
gauge coupling. While from the gauge theory perspec-
tive it is straightforward to study thid/ = 2* gauge
theory at any point on the Coulomb branch [7], the
PW supergravity flow [6] corresponds to a particular
Coulomb branch vacuum. More specifically, matching
the probe computation in gauge theory and the dual

1 The classical Kahler potential is normalize@/g2,,) x
Td® + 00+ 00].

massless states. ldentical divergence is observed [8,9]
for the probe D3-brane at thenhancorsingularity of
the PW background. Away from the singularity locus,
u = a € [—ao, ao], the gauge theory computation of
the probe moduli space metric is 1-loop exact. This is
due to the suppression of instanton corrections in the
large-V limit [8,10] of N = 2 gauge theories.

Consider now theR®! — R x $% or R31 -
d S, deformations of thev = 2* gauge theory. Both
deformations introduce a new scale, let us cajkjt
to the model—thes® scale in the former case and
the Hubble parameter in the latter. Depending on the
ratio u/m we expect an interesting interplay between
the strongly couple&v = 2* IR dynamics and the IR
curvature induced cutoff. For one reason, we expect
that for the sufficiently highu the number density
distributionp (a) should be just &-function at zero. In
what follows we present and indication for this phase
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transition while postponing the detailed analysis for 2.3. Deformations of the PW flow
the future.
Unlike the PW flow, the deformed flows break
2.2. PW RG flow the supersymmetry and are given by second order
equations. From (5) we have Einstein equations
The gauge theory RG flow induced by the super-

potential (1) corresponds to five-dimensional gauged —R,,,, = 39, ad,a + 8, x dy x + }glwp, (12)
SUGRA flow induced by scalaks=In p andy. The 4 3
effective 5d action is plus the scalar equations
6 oP
/dg /_< R —3(da)? — (3x)% - ) 0= —d,(g"" V=g duc) —
v—g F
®) 2 P
here the potentiaP is? 0=——=0u(g""V—80ux (13)
where the potentigP is J=g (8" i X) = ax
P 1 aw 2+ 1 aw 3 }WZ ©6) We consider two deformations of the flow met-
~ 48 16 37 ric (8):
with the superpotentlal @ dsg ZeZA(_dt2+eZB dS%) tdrl
__ iz _ % 4 cosh2y). 7 b dsg=e*(—di® +cosfrdsi) +dr’. (14)
P ) In the first case from (12), (13) we find
The PW geometry [6] has the flow metric
1P
" / N
dsé = eZ‘Ll(—clt2 + diz) +dr2. (8) O=0a" + (44" +3B)a’ — 69’
The s_calar equations of motior_1 and the Ein_stein 0=yx"+ (4A' +3B))x' — 19P
equations can be reduced to the first order equations 20x
2 —2A-2B
da_ l 8W O=B//+4A/B/+3(B/) —26 ,
dr 12 da’ }A//+(A/)2+§A/B/=—}P,
dx 13w 4 4 3
, 3 3 3 .5
dr 48X —A//—(A/) __A/B/__B//__(B/)
2 4 4
dA 1W ) 1
dr ~ 3" =3@)?+ (" + 3P, (15)
2.2.1. Asymptotics of the PW flow while in case (b) we find

Given the explicit solution of the flow equations (9)
in [6] is it easy to extractthe UV/IR asymptotics. Inthe o= o" 4+ 44’0/ — }E

ultraviolet,r — +o0, we find 6 0o’
1 OZX//+4A/X/ 187)
uv: p—-1., x—0;, A—)Er, (10) 28
o . 1 " N2 3 —2A 1
while in the infraredr — 0 ZA + (A" — Ze = —573,
8 /" N2 N2 N2 1
IR: p—> 04, x— +o0, A—>—§)@ (1) —A" —(AHY" =3+ (x) +§73. (16)

It is easy to check that above equations are consistent.
2 e set the 5d gauged SUGRA coupling to one. This corre- Thus for the deformed flows we could use the same
sponds to setting® radiusL = 2. scalars as in the PW case.
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2.3.1. Asymptotics of th§® deformation The nonsingular flows that asymptote to (10) would
The flow equations are given by (15). The nonsin- have a well defined (finite) mass, being a function of
gular in the IR flows are represented by a two parame- {po, xo}, characterizing phases of the moélel.
ter {po > 0, xo} Taylor series expansién
0 2.3.2. Asymptotics of theS, deformation
A_q4 (Zairzl')’ Thg flow equations are given by (16). The nonsin-
gularin the IR flows are represented by a two parame-
ter{po > 0, xo} Taylor series expansion

° .
A:r<1+ Za,'rz'),
i=1
e .
p=po+ (Zpir2’>,
i=1
e .
x=x0+ (Zx,-rzl), (19)
i=1

o0
B =r<1—|—2bir2i>,
i=1
e .
p=po+ (Zpi721>,
i=1
e .
X=x0+ (sz‘rzl) 17
i=1

with the first terms being

1 4 1 with the first terms being
a1= —pg po 5 cosh(20) — —p§ sint?(2xo),
24 12 96 1, 2 costizre
1 ai = ;P — P COoSN2xo0
bi=——py* - po 5 cosh2xo) 7270 7360
36 18 1
(2 ~ 2880 S'”#(ZXO)
+ mﬂo sintf (2x0), 1 "
1 1 1 p1= —p’ p cosh2xo)
p1= _3 — —p3cosh2xo) + —pg SiNkF(2x0), 600 607
48"0 48 96
1 1 120po Jsinf?(2x0),
X1=—=—=pg SiNN2x0) + ——=p8 sinh(4xo). (18)

16 128

We expect that for an appropriate choice{p#, xo} X1=— 55,0 SINN2x0) + 60
we recover the UV asymptotics (10). It is tempting to
identify the 2 dimensionless parameters of the regular
in the IR flow with the ratio ofm/u of the gauge
theory (thexo parameter), and theg parameter as

a characteristic of the brane distribution (similar to . . .
the enhancon scal in (4)) in the IR. Notice, that > 1heten-dimensional solutions

unlike PW flow, wherey — +o0 in the IR, here it ] ]
is consistent to choodep = 0. In factx(r) =0 is a 3.1. Type IIB SUGRA equations of motion

solution to (150

TanP0 5 sinh(4x0). (20)

As in the case of thes® deformation it is also
consistent here to choogér) =0

We use mostly positive convention for the signature
_ (—+---4) ande1...10 = +1. The type 1IB equations

3 Without loss of generality we set|,_g = 0. This corresponds consist of [11]:
to rescaling the time coordinate in (14).

4 We would like to interpretyg = 0 flow as a supergravity dual
to the N = 2* flow induced by the\ = 4 scalar expectation values.
Typically, scalar expectation value does not give rise to an RG a 3 )
flow. Since these scalars are conformal (and thus couple t6he Run =Ty +Tyn+Tyn- (21)
curvature), given them an expectation value would induce a flow.

5 Also, x(r)=0andp(r) = 1is a trivial solution corresponding [
to the globalAd Ss. 6 The details of the phase structure will be discussed elsewhere.

e The Einstein equations:
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where the energy momentum tensors of the dila- we assume [6] that the 10d Einstein frame metric is

ton/axion field,, the three index antisymmetric ten-
sor field, F(3), and the self-dual five-index tensor field,
F(s), are given by

T\ = Py Py* + Py Py, (22)
1
Tll(fl)\/ = g(GPQMG?QN +G**CyGpon
1
- oG G ) 29
1
5
th(/u)vz EFPQRSMFPQRSN- (24)

In the unitary gaugé® is a complex scalar field and

Py = fZBMB, Opy = f2 Im(BaMB*), (25)
with

_ 1 26
/= a—sEn 29

while the antisymmetric tensor field s, is given by

G@ = f(Fa — BE3). (27)
e The Maxwell equations:
(VP —iQP)GMNP
2
=pF >kMNp—giFM/\IPQRGPQR. (28)
e The dilaton equation:
1
(VM —2iM\ Py = —ZGPQRGPQR. (29)
e The self-dual equation:
F) =*F5). (30)

In addition, F3, and Fs, satisfy Bianchi identi-
ties which follow from the definition of those field
strengths in terms of their potentials:

Fg =dAe),
1
Fiy=dAu) — 3 |m(A(2) A FE%)). (31)

For the 10d uplift of the RG flows in the 5d

gauged SUGRA the metric ansatz and the dilaton is (b)

basically determined by group theoretical properties of
thed = 5 = 8 scalars, and thus must be the same for
both the deformed and original PW flows. Specifically,

X1 X 1/4
dsfozﬂzds§+47(c = 32)
o
2 2, 2
1,02, 6 oy 05 +03
~146% + pPcofp L + 22
X<C P (ch X1 )
L, d¢?
+sm291), (32)
X2

whereds§ is either the original PW flow metric (8) or
its deformations (14); = cosh2y). The warp factor
is given by

1/4

92 _ (cX1X?) ’ (33)
o)

and the two function¥; are defined by

X1(r,0) = co€ 6 + p(r)® cosH2x (r)) sir? 6,

Xo(r,0) = cosi{2 (r)) cog 6 + p(r)®sinfo.  (34)

As usualg; are theSU(2) left-invariant forms normal-
ized so thatlo; = 20; A oy. For the dilaton/axion we
have

1( <CX1>1/4 (CXl)_l/4>
r=3((=7) +(5= :
2 X2 X
1/4 —1/4
() () e
2 X X2

The consistent truncation ansatz does not specify
the (3-) 5-form fluxes. As in [6] we assume the most
general ansatz allowed by the global symmetries of the
background

(35)

Ap) = ei¢(a1(r, 0)dO A o1+ az(r,0)o2 A o3

+ a3(r,0)01 Adp + as(r,0)dO A dg),
(36)

whereq; (r, 6) are arbitrary complex functions. For the
5-form flux we assume

(@ Fs=F+=*F,

F =dt Avolgi Adow,
Fs=F +*F,

F =costrdt Avolg Adw, (37)

wherew(r, ) is an arbitrary function.
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We will do all the computation in the natural
orthonormal frame given by

elocdt, ezocdr, eso(&l, e4oc&2,

5

e° x o3, e60<d9, e7o<01, 680((72,

P xos, eOxds, (38)

where 6; are againSU(2) left-invariant one forms,
such that the rounds® metric of unit radius is
@s®?=y% 652

As in the PW case, examination of the Einstein
equations reveals that 2-form potential functians
have the following propertiesis = 0, a1, ap are pure
imaginary, andiz is real.

3.2. Lift of $3 deformation

Explicitly computing Ricci tensor with above ansatz,
we find nonvanishing component®;1, Rz, R33 =
Ras = Rss, Res, R77, Rgg = Rog, R1010, R26 = Re2.
Given the 5d flow equations (15), we find relations

R77+ Rgg = 2R13,
R11+ R33=0. (39)

The 3-form energy—momentum tensor has nontriv-

ial component@l(f) = —Tég) = —Tﬁ) = —TS(S), T;§>,
3 03 5B _ 43 -3 3 _ 73
Toe - T77' - Tgg = Tgg - T1010 T = Tgp - The non-

vanishing components of the dilaton/axion energy—
momentum tensor ar&sy, 7og , Tio10 Tag = Teg -
Finally, the 5-form energy—momentum tensor has non-

vanishing components

K =1 = 1 =1 =19 =1
= Tgg = Tipio= Al + A5,
Ty = —Tog = A3 — A2,
Tyd = TS5 = 241 A, (40)
where
./410({;—6:, Azo((r;—::. 41

Besides Einstein equations, we have nontrivial 5-
form Bianchi identity, dilaton/axion equation (29),

and 4 equations from the Maxwell equation (28) for
component$M N} ={27,67,710,89}.
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As in [6] we find the following consistency checks
on the metric and dilaton/axion ansdtz:

) @ _ e MNP
Tyo10— T11 ZWGMNPG )
Rio10— Ri1=2|Po|? — e 29 (VM — 2i 0M) py;.
(42)
Next combination is
3 3
Ri010— R77— 2| P1o? = T\ )0~ T45 - (43)

As in [6], we find that (43) (and the linearized solution
of all equations in the UV) is satisfied provided

a1 = —idtanh2y) cos,
p®sinh(2y)
1
i
4 inh(2x)
X2
Finally, from the{M N} = {11,22} Einstein equations
we find

ar=id sing co 9,

az=— sind cos 6. (44)

00 3 4A43B 1 v e

9= 3¢ (Inp)'sin2,

do 1 sl 12 i

o =g + F(—p sint?(2y) sirf 6
+2p8coshi2y) (1 4 sir6)
+2c0g6). (45)

We explicitly verified that supplementing the met-
ric and the dilaton/axion ansatz of the previous section
with (44), (45), and the 5d flow equations (15), all the
equations of 10d type 1B supergravity are satisfied.

3.3. Lift ofdS4 deformation

In this case the analysis are similar to those in the
previous section. Thus we present only the results.
First, we find the same complex functions speci-
fying the 2-form potential (36)

a1 = —idtanh2y) cos,

6 .
nh(2
ay = i4Lh(X) sind co<9,
X1
sinh(2 .
az= —4% sing cog 6. (46)
2

7 There is a typo in the second equation in (42) in [6] (Eq. (4.3)).
8 Note that there is a sign typo farz in the corresponding
equations in [6], (Eq. (4.8)).
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Second, they in the 5-form potential (37) is

| 3 .

% = —§e4A(|n p) sinX®,

do 11 1, .

— = ZeM T (—psintt(2y) sirfe

=8¢ p4( p 2x)
+2p8 coshi2y) (1 + sir?6)
+2c0g6). (47)

4, Conclusion

In this Letter we observed that certain 5d gauged
supergravity flows on the backgrou®?! x R, can
be deformed to flows on backgrouns® x R x R,
or dS4 x Ry with the same5d scalars. If the 10-
dimensional lift of the original backgrounds is known,
this implies that deformed flows can be uplifted to ten
dimensions as well. We explicitly demonstrated this
for the A/ = 2* PW flow, constructing for the first time
massive RG flow with asymptotically globaldSs

geometry. We hope that study of these backgrounds

would help develop gauge/gravity dictionary for gauge
theories in curved space-time, includidg, defor-
mations which might be relevant for understanding
strings in backgrounds with cosmological horizons
[4,5].
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