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Abstract

In [hep-th/0004063] Pilch and Warner (PW) constructedN = 2 supersymmetric RG flow corresponding to the m
deformation of theN = 4 SU(N) Yang–Mills theory. In this Letter we present exact deformations of PW flow when
gauge theory 3-space is compactified onS3. We consider also the case with the gauge theory world-volume beingdS4 instead
of R3,1. The solution is constructed in five-dimensional gauged supergravity and is further uplifted to 10d.
 2003 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Probably the most intriguing aspect of the gau
theory/string theory duality [1] (see [2] for a review
is the fact that it provides a dynamical principle f
the nonperturbative definition of string theory in t
asymptotically anti-de Sitter space–time, where th
is no notion of anS-matrix. The best understood e
ample of this duality is for theN = 4 SU(N) super-
symmetric Yang–Mills theory. Given the original co
respondence [1], new examples can be constructe
deforming the gauge theory by relevant operators.
now there is an extensive literature on such, renorm
ization group (RG) flow deformations [2]. In [3] it wa
suggested that the duality can be extended to c
when one deforms the gauge theory space–time.
thermore, in [4,5] it was suggested that gauge theo
on nondynamical de Sitter backgrounds might be
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evant for understanding string theory in backgrou
with cosmological horizons. Unfortunately it is diffi
cult to use space–time deformations of [3–5] for dev
oping a detailed gauge/string theory duality map. T
main problem stems from the fact that the examp
considered there typically involve gauge theory w
not well understood ultraviolet properties. It seems
sirable to construct nontrivial examples of such de
mations for “simpler” gauge theories in the UV.

Probably the simplest candidate is to consi
space–time deformations of the massiveN = 4 RG
flow. In this Letter we discuss how to construct su
deformations for theN = 2∗ RG flow of Pilch and
Warner [6]. We should emphasize that though
concentrate on the flow [6], the construction presen
here can be applied to other RG flows.

The Letter is organized as follows. In the ne
section we review the Pilch–Warner RG flow in fi
dimensions, and discuss it’sS3 anddS4 deformations.
In Section 3 we discussed the details of the 10d up
of the deformations. We conclude in Section 4.

http://www.elsevier.com/locate/npe
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2. N = 2∗ RG flow and its deformations in five
dimensions

2.1. The gauge theory story

In the language of four-dimensionalN = 1 super-
symmetry, the mass deformedN = 4 SU(N) Yang–
Mills theory (N = 2∗) in R3,1 consists of a vecto
multiplet V , an adjoint chiral superfieldΦ related by
N = 2 supersymmetry to the gauge field, and t
additional adjoint chiral multipletsQ and Q̃ which
form the N = 2 hypermultiplet. In addition to the
usual gauge-invariant kinetic terms for these fields,
theory has additional interactions and hypermultip
mass term summarized in the superpotential1

(1)

W = 2
√

2

g2
YM

Tr
([Q,Q̃]Φ)+ m

g2
YM

(
TrQ2 + Tr Q̃2).

When m = 0 the gauge theory is superconform
with gYM characterizing an exactly marginal defo
mation. The theory has classical 3(N − 1)-complex-
dimensional moduli space. This moduli space is p
tected by supersymmetry against (non)perturba
quantum corrections. Withm 	= 0, theN = 4 super-
symmetry is softly broken toN = 2. This mass defor
mation lifts {Q,Q̃} hypermultiplet moduli directions
leaving the(N − 1)-complex-dimensional Coulom
branch of theN = 2 SU(N) Yang–Mills theory, pa-
rameterized by expectation values of the adjoint sc

(2)Φ = diag(a1, a2, . . . , aN),
∑
i

ai = 0,

in the Cartan subalgebra of the gauge group.
generic values of the moduliai the gauge symmetry i
broken to that of the Cartan subalgebraU(1)N−1, up to
the permutation of individualU(1) factors. Addition-
ally, the superpotential (1) induces the RG flow of t
gauge coupling. While from the gauge theory persp
tive it is straightforward to study thisN = 2∗ gauge
theory at any point on the Coulomb branch [7], t
PW supergravity flow [6] corresponds to a particu
Coulomb branch vacuum. More specifically, match
the probe computation in gauge theory and the d

1 The classical Kähler potential is normalized(2/g2
YM )×

Tr[Φ̄Φ + Q̄Q+ ¯̃
QQ̃].
PW supergravity flow it was argued in [8] that the a
propriate Coulomb branch vacuum corresponds
linear distribution of the VEVs (2) as

(3)ai ∈ [−a0, a0], a2
0 = m2g2

YMN

π
,

with (continuous in the large-N limit) linear number
density

(4)ρ(a)= 2

m2g2
YM

√
a2

0 − a2,

a0∫
−a0

da ρ(a)=N.

Unfortunately, the extension of theN = 2∗ gauge/grav
ity correspondence of [6,8,9] for vacua other than
is not known.

In [8,9] the dynamics of the gauge theory on t
D3-brane probe in the PW background was stud
in details. It was shown in [8] that the probe h
one-complex-dimensional moduli space, with bulk
duced metric precisely equal to the metric on
appropriate one-complex-dimensional submanifold
the SU(N + 1) N = 2∗ Donagi–Witten theory
Coulomb branch. This one-dimensional submanif
is parameterized by the expectation valueu of the
U(1) complex scalar on the Coulomb branch of t
theory whereSU(N + 1) → U(1) × SU(N)PW, and
the PW subscript denotes that theSU(N) factor is in
the Pilch–Warner vacuum (4). Asu coincides with any
of the ai of the PW vacuum, the moduli space m
ric diverges, signaling the appearance of the additio
massless states. Identical divergence is observed
for the probe D3-brane at theenhanconsingularity of
the PW background. Away from the singularity locu
u = a ∈ [−a0, a0], the gauge theory computation
the probe moduli space metric is 1-loop exact. Thi
due to the suppression of instanton corrections in
large-N limit [8,10] of N = 2 gauge theories.

Consider now theR3,1 → R × S3 or R3,1 →
dS4 deformations of theN = 2∗ gauge theory. Both
deformations introduce a new scale, let us call itµ,
to the model—theS3 scale in the former case an
the Hubble parameter in the latter. Depending on
ratioµ/m we expect an interesting interplay betwe
the strongly coupledN = 2∗ IR dynamics and the IR
curvature induced cutoff. For one reason, we exp
that for the sufficiently highµ the number density
distributionρ(a) should be just aδ-function at zero. In
what follows we present and indication for this pha
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the future.

2.2. PW RG flow

The gauge theory RG flow induced by the sup
potential (1) corresponds to five-dimensional gau
SUGRA flow induced by scalarsα ≡ lnρ andχ . The
effective 5d action is

(5)

S =
∫

dξ5 √−g

(
1

4
R − 3(∂α)2 − (∂χ)2 −P

)
,

where the potentialP is2

(6)P = 1

48

(
∂W

∂α

)2

+ 1

16

(
∂W

∂χ

)2

− 1

3
W2,

with the superpotential

(7)W = − 1

ρ2
− 1

2
ρ4 cosh(2χ).

The PW geometry [6] has the flow metric

(8)ds2
5 = e2A(−dt2 + dx̄2)+ dr2.

The scalar equations of motion and the Einst
equations can be reduced to the first order equatio

dα

dr
= 1

12

∂W

∂α
,

dχ

dr
= 1

4

∂W

∂χ
,

(9)
dA

dr
= −1

3
W.

2.2.1. Asymptotics of the PW flow
Given the explicit solution of the flow equations (

in [6] is it easy to extract the UV/IR asymptotics. In th
ultraviolet,r → +∞, we find

(10)UV: ρ → 1−, χ → 0+, A → 1

2
r,

while in the infrared,r → 0

(11)IR: ρ → 0+, χ → +∞, A → −8

3
χ.

2 We set the 5d gauged SUGRA coupling to one. This co
sponds to settingS5 radiusL= 2.
2.3. Deformations of the PW flow

Unlike the PW flow, the deformed flows brea
the supersymmetry and are given by second o
equations. From (5) we have Einstein equations

(12)
1

4
Rµν = 3∂µα∂να + ∂µχ∂νχ + 1

3
gµνP,

plus the scalar equations

0 = 6√−g
∂µ
(
gµν

√−g ∂µα
)− ∂P

∂α
,

(13)0 = 2√−g
∂µ
(
gµν

√−g ∂µχ
)− ∂P

∂χ
.

We consider two deformations of the flow me
ric (8):

(a) ds2
5 = e2A(−dt2 + e2B dS2

3

)+ dr2,

(14)(b) ds2
5 = e2A(−dt2 + cosh2 t dS2

3

)+ dr2.

In the first case from (12), (13) we find

0 = α′′ + (4A′ + 3B ′)α′ − 1

6

∂P
∂α

,

0 = χ ′′ + (4A′ + 3B ′)χ ′ − 1

2

∂P
∂χ

,

0 = B ′′ + 4A′B ′ + 3(B ′)2 − 2e−2A−2B,

1

4
A′′ + (A′)2 + 3

4
A′B ′ = −1

3
P,

−A′′ − (A′)2 − 3

2
A′B ′ − 3

4
B ′′ − 3

4
(B ′)2

(15)= 3(α′)2 + (χ ′)2 + 1

3
P,

while in case (b) we find

0 = α′′ + 4A′α′ − 1

6

∂P
∂α

,

0 = χ ′′ + 4A′χ ′ − 1

2

∂P
∂χ

,

1

4
A′′ + (A′)2 − 3

4
e−2A = −1

3
P,

(16)−A′′ − (A′)2 = 3(α′)2 + (χ ′)2 + 1

3
P .

It is easy to check that above equations are consis
Thus for the deformed flows we could use the sa
scalars as in the PW case.
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2.3.1. Asymptotics of theS3 deformation
The flow equations are given by (15). The nons

gular in the IR flows are represented by a two para
ter {ρ0 > 0, χ0} Taylor series expansion3

eA = 1+
( ∞∑

i=1

αir
2i

)
,

eB = r

(
1+

∞∑
i=1

bir
2i

)
,

ρ = ρ0 +
( ∞∑

i=1

ρir
2i

)
,

(17)χ = χ0 +
( ∞∑

i=1

χir
2i

)
,

with the first terms being

a1 = 1

24
ρ−4

0 + 1

12
ρ2

0 cosh(2χ0)− 1

96
ρ8

0 sinh2(2χ0),

b1 = − 1

36
ρ−4

0 − 1

18
ρ2

0 cosh(2χ0)

+ 1

144
ρ8

0 sinh2(2χ0),

ρ1 = 1

48
ρ−3

0 − 1

48
ρ3

0 cosh(2χ0)+ 1

96
ρ9

0 sinh2(2χ0),

(18)χ1 = − 1

16
ρ2

0 sinh(2χ0)+ 1

128
ρ8

0 sinh(4χ0).

We expect that for an appropriate choice of{ρ0, χ0}
we recover the UV asymptotics (10). It is tempting
identify the 2 dimensionless parameters of the reg
in the IR flow with the ratio ofm/µ of the gauge
theory (theχ0 parameter), and theρ0 parameter as
a characteristic of the brane distribution (similar
the enhancon scalea0 in (4)) in the IR. Notice, tha
unlike PW flow, whereχ → +∞ in the IR, here it
is consistent to choose4 χ0 = 0. In factχ(r) ≡ 0 is a
solution to (15).5

3 Without loss of generality we setA|r=0 = 0. This corresponds
to rescaling the time coordinate in (14).

4 We would like to interpretχ0 = 0 flow as a supergravity dua
to theN = 2∗ flow induced by theN = 4 scalar expectation value
Typically, scalar expectation value does not give rise to an
flow. Since these scalars are conformal (and thus couple to thS3

curvature), given them an expectation value would induce a flow
5 Also,χ(r)≡ 0 andρ(r) ≡ 1 is a trivial solution correspondin

to the globalAdS5.
The nonsingular flows that asymptote to (10) wo
have a well defined (finite) mass, being a function
{ρ0, χ0}, characterizing phases of the model.6

2.3.2. Asymptotics of thedS4 deformation
The flow equations are given by (16). The nons

gular in the IR flows are represented by a two para
ter {ρ0 > 0, χ0} Taylor series expansion

eA = r

(
1+

∞∑
i=1

air
2i

)
,

ρ = ρ0 +
( ∞∑

i=1

ρir
2i

)
,

(19)χ = χ0 +
( ∞∑

i=1

χir
2i

)
,

with the first terms being

a1 = 1

72
ρ−4

0 + 1

36
ρ2

0 cosh(2χ0)

− 1

288
ρ8

0 sinh2(2χ0),

ρ1 = 1

60
ρ−3

0 − 1

60
ρ3

0 cosh(2χ0)

+ 1

120
ρ9

0 sinh2(2χ0),

(20)χ1 = − 1

20
ρ2

0 sinh(2χ0)+ 1

160
ρ8

0 sinh(4χ0).

As in the case of theS3 deformation it is also
consistent here to chooseχ(r)≡ 0.

3. The ten-dimensional solutions

3.1. Type IIB SUGRA equations of motion

We use mostly positive convention for the signat
(− + · · ·+) andε1···10 = +1. The type IIB equation
consist of [11]:

• The Einstein equations:

(21)RMN = T
(1)
MN + T

(3)
MN + T

(5)
MN,

6 The details of the phase structure will be discussed elsewh
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where the energy momentum tensors of the d
ton/axion field,B, the three index antisymmetric te
sor field,F(3), and the self-dual five-index tensor fiel
F(5), are given by

(22)T
(1)
MN = PMPN

∗ + PNPM
∗,

(23)

T
(3)
MN = 1

8

(
GPQ

MG∗
PQN +G∗PQ

MGPQN

− 1

6
gMNG

PQRG∗
PQR

)
,

(24)T
(5)
MN = 1

6
FPQRS

MFPQRSN.

In the unitary gaugeB is a complex scalar field an

(25)PM = f 2∂MB, QM = f 2 Im
(
B∂MB∗),

with

(26)f = 1

(1−BB∗)1/2
,

while the antisymmetric tensor fieldG(3) is given by

(27)G(3) = f
(
F(3) −BF ∗

(3)

)
.

• The Maxwell equations:(∇P − iQP
)
GMNP

(28)= PPG∗
MNP − 2

3
iFMNPQRG

PQR.

• The dilaton equation:

(29)
(∇M − 2iQM

)
PM = − 1

24
GPQRGPQR.

• The self-dual equation:

(30)F(5) = .F(5).

In addition,F(3) and F(5) satisfy Bianchi identi-
ties which follow from the definition of those fiel
strengths in terms of their potentials:

F(3) = dA(2),

(31)F(5) = dA(4) − 1

8
Im
(
A(2) ∧ F ∗

(3)

)
.

For the 10d uplift of the RG flows in the 5
gauged SUGRA the metric ansatz and the dilato
basically determined by group theoretical propertie
thed = 5N = 8 scalars, and thus must be the same
both the deformed and original PW flows. Specifica
we assume [6] that the 10d Einstein frame metric i

ds2
10 =Ω2ds2

5 + 4
(cX1X2)

1/4

ρ3

(32)

×
(
c−1dθ2 + ρ6 cos2 θ

(
σ 2

1

cX2
+ σ 2

2 + σ 2
3

X1

)

+ sin2 θ
dφ2

X2

)
,

whereds2
5 is either the original PW flow metric (8) o

its deformations (14),c ≡ cosh(2χ). The warp factor
is given by

(33)Ω2 = (cX1X2)
1/4

ρ
,

and the two functionsXi are defined by

X1(r, θ)= cos2 θ + ρ(r)6 cosh
(
2χ(r)

)
sin2 θ,

(34)X2(r, θ)= cosh
(
2χ(r)

)
cos2 θ + ρ(r)6 sin2 θ.

As usual,σi are theSU(2) left-invariant forms normal-
ized so thatdσi = 2σj ∧ σk . For the dilaton/axion we
have

f = 1

2

((
cX1

X2

)1/4

+
(
cX1

X2

)−1/4
)
,

(35)fB = 1

2

((
cX1

X2

)1/4

−
(
cX1

X2

)−1/4
)
e2iφ.

The consistent truncation ansatz does not spe
the (3-) 5-form fluxes. As in [6] we assume the mo
general ansatz allowed by the global symmetries of
background

(36)

A(2) = eiφ
(
a1(r, θ) dθ ∧ σ1 + a2(r, θ)σ2 ∧ σ3

+ a3(r, θ)σ1 ∧ dφ + a4(r, θ) dθ ∧ dφ
)
,

whereai(r, θ) are arbitrary complex functions. For th
5-form flux we assume

(a) F5 =F + .F ,

F = dt ∧ volS3 ∧ dω,

(b) F5 =F + .F ,

(37)F = cosh3 t dt ∧ volS3 ∧ dω,

whereω(r, θ) is an arbitrary function.
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3)).
We will do all the computation in the natur
orthonormal frame given by

e1 ∝ dt, e2 ∝ dr, e3 ∝ σ̃1, e4 ∝ σ̃2,

e5 ∝ σ̃3, e6 ∝ dθ, e7 ∝ σ1, e8 ∝ σ2,

(38)e9 ∝ σ3, e10 ∝ dφ,

where σ̃i are againSU(2) left-invariant one forms
such that the roundS3 metric of unit radius is
(dS3)2 =∑

σ̃ 2
i .

As in the PW case, examination of the Einste
equations reveals that 2-form potential functionsai
have the following properties:a4 ≡ 0, a1, a2 are pure
imaginary, anda3 is real.

3.2. Lift ofS3 deformation

Explicitly computing Ricci tensor with above ansa
we find nonvanishing componentsR11,R22,R33 =
R44 = R55,R66,R77,R88 = R99,R1010,R26 = R62.
Given the 5d flow equations (15), we find relations

R77 +R88 = 2R11,

(39)R11 +R33 = 0.

The 3-form energy–momentum tensor has nont
ial componentsT (3)

11 = −T
(3)
33 = −T

(3)
44 = −T

(3)
55 , T

(3)
22 ,

T
(3)
66 , T

(3)
77 , T

(3)
88 = T

(3)
99 , T

(3)
1010, T

(3)
26 = T

(3)
62 . The non-

vanishing components of the dilaton/axion energ
momentum tensor areT (1)

22 , T
(1)
66 , T

(1)
1010, T

(1)
26 = T

(1)
62 .

Finally, the 5-form energy–momentumtensor has n
vanishing components

T
(5)
11 = −T

(5)
33 = −T

(5)
44 = −T

(5)
55 = T

(5)
77 = T

(5)
88

= T
(5)
99 = T

(5)
1010=A2

1 +A2
2,

T
(5)
22 = −T

(5)
66 =A2

2 −A2
1,

(40)T
(5)
26 = T

(5)
62 = 2A1A2,

where

(41)A1 ∝ ∂ω

∂r
, A2 ∝ ∂ω

∂θ
.

Besides Einstein equations, we have nontrivial
form Bianchi identity, dilaton/axion equation (29
and 4 equations from the Maxwell equation (28)
components{MN} = {27,67,710,89}.
As in [6] we find the following consistency check
on the metric and dilaton/axion ansatz:7

T
(3)
1010− T

(3)
11 = e−2iφ

24
GMNPG

MNP ,

(42)
R1010−R11 = 2|P10|2 − e−2iφ(∇M − 2iQM

)
PM.

Next combination is

(43)R1010−R77 − 2|P10|2 = T
(3)
1010− T

(3)
77 .

As in [6], we find that (43) (and the linearized soluti
of all equations in the UV) is satisfied provided8

a1 = −i4 tanh(2χ)cosθ,

a2 = i4
ρ6 sinh(2χ)

X1
sinθ cos2 θ,

(44)a3 = −4
sinh(2χ)

X2
sinθ cos2 θ.

Finally, from the{MN} = {11,22}Einstein equations
we find
∂ω

∂θ
= −3

2
e4A+3B(lnρ)′ sin 2θ,

(45)

∂ω

∂r
= 1

8
e4A+3B 1

ρ4

(−ρ12sinh2(2χ)sin2 θ

+ 2ρ6 cosh(2χ)
(
1+ sin2 θ

)
+ 2 cos2 θ

)
.

We explicitly verified that supplementing the me
ric and the dilaton/axion ansatz of the previous sec
with (44), (45), and the 5d flow equations (15), all t
equations of 10d type IIB supergravity are satisfied

3.3. Lift ofdS4 deformation

In this case the analysis are similar to those in
previous section. Thus we present only the resu
First, we find the same complex functionsai , speci-
fying the 2-form potential (36)

a1 = −i4 tanh(2χ)cosθ,

a2 = i4
ρ6 sinh(2χ)

X1
sinθ cos2 θ,

(46)a3 = −4
sinh(2χ)

X2
sinθ cos2 θ.

7 There is a typo in the second equation in (42) in [6] (Eq. (4.
8 Note that there is a sign typo fora3 in the corresponding

equations in [6], (Eq. (4.8)).
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22,
Second, theω in the 5-form potential (37) is

∂ω

∂θ
= −3

2
e4A(lnρ)′ sin2θ,

(47)

∂ω

∂r
= 1

8
e4A 1

ρ4

(−ρ12sinh2(2χ)sin2 θ

+ 2ρ6 cosh(2χ)
(
1+ sin2 θ

)
+ 2 cos2 θ

)
.

4. Conclusion

In this Letter we observed that certain 5d gaug
supergravity flows on the backgroundR3,1 × R+ can
be deformed to flows on backgroundsS3 × R × R+
or dS4 × R+ with the same5d scalars. If the 10
dimensional lift of the original backgrounds is know
this implies that deformed flows can be uplifted to t
dimensions as well. We explicitly demonstrated t
for theN = 2∗ PW flow, constructing for the first tim
massive RG flow with asymptotically globalAdS5
geometry. We hope that study of these backgrou
would help develop gauge/gravity dictionary for gau
theories in curved space–time, includingdS4 defor-
mations which might be relevant for understand
strings in backgrounds with cosmological horizo
[4,5].
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