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The voltage-gated Ca2+ channel β subunit (Cavβ) is a cytosolic auxiliary subunit that plays an essential role in
regulating the surface expression and gating properties of high-voltage activated (HVA) Ca2+ channels. It is
also crucial for the modulation of HVA Ca2+ channels by G proteins, kinases, Ras-related RGK GTPases, and
other proteins. There are indications that Cavβ may carry out Ca2+ channel-independent functions. Cavβ
knockouts are either non-viable or result in a severe pathophysiology, and mutations in Cavβ have been
implicated in disease. In this article, we review the structure and various biological functions of Cavβ, as
well as recent advances. This article is part of a Special Issue entitled: Calcium channels.
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1. Introduction

Most voltage-gated ion channels are large protein complexes
composed of a pore-forming subunit and one or more auxiliary
subunits that regulate channel properties. Unlike the majority of
voltage-gated channels, high‐voltage-activated (HVA) Cav1 and Cav2
Ca2+ channels absolutely require an auxiliary β subunit (Cavβ) for
plasma membrane expression and proper gating [1]. Cavβ was first
purified as part of the complex of skeletal muscle voltage-gated
Ca2+ channels and was cloned in 1989 [2,3]. Subsequent cloning
efforts revealed four subfamilies of Cavβs (β1–β4), encoded by four
distinct genes and each with splice variants. In addition, early studies
determined that Cavβ binds with high affinity to the pore-forming α1

subunit (Cavα1) of voltage-gated calcium channels (VGCCs). The
high-affinity site is located in the cytoplasmic linker connecting the
first two of the four homologous repeats of Cavα1 (i.e., the I–II linker)
andwas named theα-interaction domain or AID (Fig. 1) [4–6]. Several
crystal structures of Cavβ have been solved, providing great insights
into themolecular mechanisms of Cavβ function. A comprehensive re-
view on Cavβ is available [7]. Here, we highlight the most important
features of Cavβ structure, function, and involvement in cell physiolo-
gy and pathophysiology.

2. Structure of CAVβ

Based on amino acid sequence alignment, biochemical and func-
tional studies, and molecular modeling, it became clear that Cavβ
Fig. 1. VGCC topology and the structure of the Cavβ core in complex with the AID. (A) Schema
The AID, marked in red, is located on the I–II linker. ‘P’ indicates the pore loops, located betw
voltage sensor. (B) Amino acid sequence alignment of the AID from the indicated calcium ch
the most critical residues underlined. Residue numbers are indicated on both sides of the
panel. The lower panel shows the crystal structure of the Cavβ3 core in complex with the
the SH3 domain (gold), part of the HOOK region (purple, residues 121–169), and the GK
included. The AID region of Cav1.2 (residues 422–446) is colored in orange.
consists of a conserved core region flanked by non-conserved N- and
C-termini (Fig. 1) [8–10]. The core region is composed of two highly
conserved regions homologous to the Src homology 3 (SH3) and
guanylate kinase (GK) domains, connected by a weakly conserved
HOOK region. This SH3-HOOK-GK core can recapitulate many key
functions of Cavβ [8,11–17]. In 2004, three independent research
groups reported the crystal structures of the Cavβ core region of β2a,
β3 and β4, alone or in complex with the AID [11,18,19]. The structures
confirmed the existence of an SH3-HOOK-GKmodule in the Cavβ core.

2.1. The N- and C-termini

The amino and carboxyl termini of Cavβ (abbreviated as Cavβ-NT
and Cavβ-CT) are highly variable. They have not been crystallized,
but an NMR structure has been obtained for the N-terminus of
β4. This structure reveals a fold consisting of two α-helices and
two anti-parallel β-sheets [20]. There are currently no structures of
Cavβ-CT.

2.2. The GK domain

Guanylate kinases catalyze the formation of ADP and GDP from ATP
and GMP. The general structural features of guanylate kinases [21,22]
are preserved in the Cavβ GK domain (Cavβ-GK), but structural varia-
tions exist in the catalytic site, and many key catalytic residues are
absent in Cavβ-GK [11,18,19]. Thus, Cavβ-GK is catalytically inactive.
Instead, Cavβ-GK has evolved into a protein interactionmodule, binding
tic representation of the predicted transmembrane topology of the α1 subunit of VGCC.
een transmembrane regions S5 and S6. ‘+’ indicates the charged amino acids in S4—the
annel α1 subunits. Residues involved in interactions with Cavβ are marked in red, with
sequence. (C) Cavβ is organized into 5 regions represented schematically in the upper
AID (PDB accession code 1VYT) with the following regions: N-terminus (light blue),
domain (green). Residues 137–166 of the HOOK region were disordered and are not



1532 Z. Buraei, J. Yang / Biochimica et Biophysica Acta 1828 (2013) 1530–1540
tightly to Cavα1 through its high-affinity interaction with the AID
(Fig. 1) [11,18,19,23]. Importantly, a large surface of the GK domain
remains free to interact with other proteins, such as RGK GTPases (see
review by Colecraft and colleagues in this issue) and BK channels [24].

2.3. The SH3 domain and the HOOK region

Classical SH3domainsmediate specific protein–protein interactions.
They have a highly conserved hydrophobic surface, the PxxP-binding
site, which binds to PxxP-sequences in target proteins. In general,
SH3 domains have a well conserved and compact fold consisting of
five sequential β-strands (βstrand 1–5) assembled into two orthogonally
packed sheets [25]. However, in the Cavβ SH3 domain (Cavβ-SH3) the
last two β-strands are non-continuous, separated by the HOOK region
[11,18,19] so that the SH3 domain has the following primary structure:
SH3βstrand 1–4-HOOK-SH3βstrand 5 (Fig. 1). The crystal structures show
that the PxxP-binding site in Cavβ-SH3 is occluded by part of the
HOOK region and a long loop connecting two of the four continuous
β-sheets. It is conceivable that these two regions move and expose
the PxxP-binding site, either when Cavβ is bound to full-length Cavα1

and/or when it interacts with other partners. Nevertheless, while
binding between Cavβ and PxxP-containing proteins, such as dynamin,
has been demonstrated [26], the putative PxxP-binding site itself has
yet to be implicated.

The HOOK region is variable in length and amino acid sequence
among the Cavβ subfamilies. In the crystal structures, a large portion
of the HOOK is unresolved due to poor electron density, indicating
that it has a high degree of flexibility [11,18,19]. As will be discussed
later, the HOOK region plays an important role in regulating channel
inactivation.

2.4. The SH3-GK intramolecular interaction

The crystal structures show that the SH3 and GK domains interact
intramolecularly [11,18,19]. This interaction is strong enough that
NT-SH3βstrand 1–4-HOOK module and the SH3βstrand 5-GK-CT module
can associate biochemically in vitro and reconstitute the functionality
of full‐length Cavβs in situ [14,15,17,19,27–29].

It has recently been proposed that the intramolecular SH3-GK
interaction can be disrupted by dynamin and replaced by an
intermolecular interaction resulting in the dimerization of two
Cavβs—a proposed mechanism for dynamin-mediated Ca2+ channel
endocytosis (discussed later) [30].

2.5. The AID–Cavβ interaction

All Cavβs bind to the 18 amino acid AID in the I–II linker of Cav1 and
Cav2 α1 subunits (Fig. 1) [5]. The affinity of the AID–Cavβ interaction
ranges from 2 to 54 nM in vitro [5,15,31–38]. Single mutations of
several conserved residues in the AID, including Y10, W13 and I14,
greatly weaken the AID–Cavβ interaction in vitro, and reduce or
abolish Cavβ-induced stimulation of Ca2+ channel current in heterolo-
gous expression systems [4,12,31,35,36,39–44], firmly establishing the
role of the AID as the principal anchoring domain for Cavβ.

The Cavβ crystal structures reveal a big surprise in regard to the
region of Cavβ that interacts with the AID. A 31-amino acid segment
of Cavβ, referred to as the β-interacting domain or BID, had been
described as the main binding site for the AID [8]. The BID was able
to slightly enhance Ca2+ channel current and modulate gating [8],
and several BID point mutations were able to weaken the Cavβ/
Cavα1 interaction and reduce BID-stimulated Ca2+ channel currents
[8,31]. Thus, it had been generally accepted that Cavβ interacted
with Cavα1 primarily through the BID. However, crystal structures
of different AID–Cavβ core complexes reveal that the AID does not
even contact the BID [11,18,19,23], which is buried inside Cavβ.
Thus, mutating the BID most likely alters the folding and/or structure
of Cavβ, which explains the disruptive effect of BID mutations [8,31].
The current enhancement by the BID peptide, on the other hand,
is likely a non-specific effect, since a random peptide had a similar
effect [11].

The crystal structures show that the AID binds to a hydrophobic
groove in the GK domain termed the AID-binding pocket or ABP
(Fig. 1, α-helices 3, 6 and 9 and some of their flanking loops)
[11,19,35]. The interactions between the AID and the ABP are exten-
sive and predominantly hydrophobic. These interactions account for
the nM affinity of the AID–Cavβ binding. Functional studies show
that mutating two or more key residues in the ABP severely weakens
or completely abolishes the AID–Cavβ interaction [12,13].

Binding to the AID does not significantly change the Cavβ struc-
ture, except for some small and localized changes near the ABP. On
the other hand, the AID undergoes a dramatic change in secondary
structure when it is engulfed by the ABP. When alone, the AID
forms a random coil in solution, as shown by circular dichroism
spectrum measurements [18]; when bound to Cavβ, the AID forms a
continuous α-helix, as shown in the crystal structures. Importantly,
the 22 amino acid region that links the first S6 segment of Cavα1

(i.e., IS6) to the AID seems to form an α-helix [45]. Thus, a picture
emerges that in the presence of Cavβ the entire region from IS6 to
the AID adopts a continuous α-helical structure. Indeed, two recent
crystal structures of a β2 core in complex with large parts of the I–II
linker of Cav1 or Cav2 channels show a continuous α-helical structure
upstream of the AID (towards IS6), albeit with some differences
between Cav1 and Cav2 channels [23]. This rigid structure is crucial
for Cavβ regulation of Ca2+ channel gating, as will be discussed later.

3. The functions of Cavβ

Cavβ regulates multiple aspects of HVA channel physiology in-
cluding surface expression, degradation, and gating (Fig. 2). Cavβ is
also critical for the regulation of VGCC by lipids, G proteins, RGK
GTPases (Rem, Rem2, Rad and Gem/Kir, reviewed in this issue by
Colecraft and colleagues), kinases, phosphatases, and other signaling
proteins (Fig. 2) [for a comprehensive review see 7]. We highlight
here the most important functions of Cavβ as well as recent advances.

3.1. Membrane targeting of Cavβ

Cavβs are cytosolic proteins. This is based both on primary se-
quence analyses [3,46] and subcellular localization when Cavβ is
expressed alone, in the absence a Cavα1 [16,42] (a few important
exceptions are discussed below). In the presence of Cavα1, Cavβ
switches its localization from cytosolic to membrane-bound. This
translocation depends on the AID–Cavβ interaction. Single point
mutations in the AID of Cav1.2 that disrupt binding with Cavβ abolish
bothmembrane localization and dendritic clustering of Cavβ in hippo-
campal neurons [47].

Some Cavβs can independently be localized to the plasma mem-
brane [48,49], most notably β2a [50–53]. β2a is tethered to the plasma
membrane through dynamic palmitoylation of two cysteines (Cys 3,
4) in its N-terminus [50–53]. However, palmitoylation alone may not
be sufficient for membrane localization because implanting the β2a

N-terminus into other Cavβs imparts palmitoylation but not mem-
brane localization [51]. Thus, β2a probably possesses some additional
determinants that help target it to the plasma membrane. Importantly,
membrane tethering of Cavβ coincides with many functional effects,
especially slowed inactivation, as we discuss later.

3.2. Cavβ is required for normal channel expression

Cav1 and Cav2 α1 subunits show little or no surface expression and
produce very small or no currents when expressed without auxiliary
subunits. Upon the coexpression of Cavβ, Ca+2 currents are increased



Fig. 2. Major functions of Cavβ. (A) Cavβ enhances Cavα1 localization to the plasma membrane by preventing Cavα1 degradation and exposing ER export signals on Cavα1. (B) Cavβ
promotes VGCC gating, resulting in an overall enhancement of current. (C) Cavβ interacts with the ryanodine receptor (RYR) in the sarcoplasmic reticulum (SR) of muscle cells and
is critical for excitation–contraction coupling. (D) Cavβ can be translocated into the nucleus where it may participate in transcriptional regulation. (E) Cavβ interacts directly with
many intracellular proteins that regulate VGCC function. The strongest of those regulators are RGK proteins, which potently inhibit VGCCs (reviewed in this issue by Colecraft and
colleagues, also see [7]). Other partners include ion channels (e.g., BKCa and bestrophin), synaptic proteins (e.g., synaptotagmin I and RIMI), and signaling proteins (such as kinases,
phosphatases, dynamin, and Ahnak) [for extensive review see 7].
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by orders of magnitude [9,54–57] due to enhanced channel surface
expression and open probability. The dramatic increase in surface
expression of all Cav1 and Cav2 α1 subunits can be observed both in
native cells [58–60] and in various heterologous expression systems
with any of the four subfamilies of Cavβ. Thus, Cavβ is required for
HVA channel surface expression. The increased surface expression is
dependent on Cavβ binding to the AID, as point mutations in the AID
or the ABP that weaken or abolish the AID–Cavβ interaction severely
reduce or abolish Cavβ-stimulated Ca2+ channel current [4,12,13].
The GK domain itself can largely recapitulate the chaperone function
of full‐length Cavβs, greatly increasing Ca2+ channel surface expres-
sion and current in Xenopus oocytes and mammalian cells [12,62].

It should be noted that some expression systems, such as Xenopus
oocytes, have endogenous Cavβs that can transport a small number
of exogenously expressed Cavα1 to the plasma membrane [62].
This yields small Ca2+ channel currents that can be suppressed by
antisense oligonucleotides against endogenous Cavβ [34,62].

How does Cavβ enhance Ca2+ channel surface expression? An
early hypothesis was that Cavβ shields or disrupts one or more ER
retention signals on the I–II linker of Cavα1 [63]. However, several
results are inconsistent with this hypothesis: (i) I–II linkers from
several different Cavα1 subunits do not cause ER retention of CD8 or
CD4 peptides [64,65]; (ii) In the absence of Cavβ, transplanting the I–II
linker of different HVA Cavα1 subunits (Cav2.2, Cav2.1 and Cav1.2)
into a T-type channel (Cav3.1), which does not require Cavβ for its func-
tion, causes current upregulation instead of downregulation [45,66];
(iii) several labs implicated regions other than the I–II linker in Cavα1

trafficking [64,67–71].
These inconsistencies prompted a re-evaluation of the mechanism

of Cavβ-mediated upregulation of HVA channel expression. In a recent
study [66], all of the L-type Cav1.2 channel intracellular linkers were
systematically transplanted into the T-type channel, individually
or in combination. This was followed by careful examination of
the linkers’ ER export and ER retention properties, in the presence
or absence of a Cavβ, by monitoring channel surface expression. The
results suggest that the I–II linker of Cav1.2 has an ER export signal
composed of 9 acidic residues downstream of the AID. All other intra-
cellular linkers, including the N- and C-termini, were found to contain
overall ER retention signals. Thus, it was proposed that the intracellu-
lar regions of Cavα1 form a complex that yields a prevailing ER reten-
tion signal, and when Cavβ binds to the I–II linker, it orchestrates a
switch in the complex such that the ER export signal becomes domi-
nant, enhancing Cavα1 surface expression. In this process, the Cavα1

C-terminus plays an essential role since it is absolutely required (but
not sufficient) for Cavβ-dependent channel upregulation [66].

A few recent studies have proposed that Cavβ increases channel sur-
face expression by preventing Cavα1 ubiquitination and proteasomal
degradation [71–73]. In the absence of Cavβ, a proteasome inhibitor
(MG132) can rescue Cavα1 surface expression. Cavβ coexpression, on
the other hand, decreased Cav1.2 ubiquitination and association with
proteins involved in proteasomal degradation, suggesting that Cavβ
could be rerouting channels away from predestined proteasomal
degradation. This mechanism was proposed for Cav2.2 channels [72].
However, Cav2.1 channels do not appear to be subject to this type of
regulation [71]. For an extensive review on VGCC trafficking see [74].

3.3. Cavβ regulates Ca2+ channel gating

Besides enhancing channel surface expression, Cavβ regulates
channel gating. Here we describe the effects of Cavβ on channel acti-
vation and voltage- and Ca2+-dependent inactivation. We also dis-
cuss a unifying model for the mechanism of Cavβ-mediated gating
regulation. The effects of Cavβ on Ca2+ channel facilitation have been
reviewed previously [7].

3.3.1. Cavβ enhances channel activation
All Cavβs facilitate channel opening by shifting the voltage depen-

dence of channel activation by ~10–15 mV to more hyperpolarized
voltages [75–77]. This is reflected as an increase in the open proba-
bility at the single channel level [78,79], with β2a producing the most
dramatic increase in channel open probability [79–81]. Cavβ also often
speeds channel activation [1,82], which is observed as a shortened

image of Fig.�2
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latency to first channel opening in single channel recordings [83,84].
Many of these effects can be reconstituted by the core region of Cavβ
[12] and, in some cases, the GK domain alone [85].

3.3.2. Cavβ enhances inactivation, except β2a

Calcium channels inactivate in a voltage- and Ca2+-dependent
manner (VDI and CDI respectively). This process is modulated by
Cavβ in at least 3 ways: (1) Cavβ generally shifts the voltage depen-
dence of inactivation to more hyperpolarized voltages by ~10–
20 mV (Fig. 3), enhancing VDI. Similarly, Cavβ increases CDI [86].
β2a, however, shifts the voltage dependence of inactivation to more
depolarized voltages by ~10 mV, reducing VDI [12,87]. (2) Cavβ
(except β2a) promotes Cav2 channels’ ‘closed state’ inactivation
[88,89]. (3) Cavβ generally accelerates inactivation kinetics, but β2a

and β2e decelerate inactivation kinetics (Fig. 3).
The unique effects of β2a on inactivation are largely due to

its palmitoylation [90,91], but it seems that membrane anchorage
rather than palmitoylation per se is critical [91,92]. Indeed, the non-
palmitoylated but membrane-attached β2e has properties similar to
β2a [49].

The molecular determinants on Cavβ that regulate channel inacti-
vation are many. The N-terminus is clearly important, as indicated
by the observation that natural β2 and β4 splice variants differing in
their N-termini exhibit markedly different effects on VDI [49,93–95].
The C-terminus, on the other hand, seems to play a limited or no
role in regulating VDI [12,96]. All Cavβ-GK domains, including that
of β2a, speed VDI and hyperpolarize the voltage dependence of
VDI [12,61,97]. The HOOK domain is also important as swapping
the HOOK between the core regions (SH3-HOOK-GK) of β1b and β2a

also swaps their effects on VDI [12].

3.3.3. How does Cavβ regulate voltage-dependent activation and
inactivation of HVA channels?

To answer this question, it is necessary to mention the molecular
determinants of voltage-dependent activation (VDA) and inactivation
(VDI) of VGCCs. For VDA, they include (i) the external pore and the
ion selectivity filter formed by the pore loop between the S5 and S6
transmembrane segments of Cavα1 [98–101], (ii) the inner pore
formed by all four S6 segments of Cavα1 [102], and (iii) the activation
gate, located at the cytoplasmic end of the S6 segments [103].

The molecular determinants of VDI include the cytosolic ends of
the S6 segments, the I–II linker, considered to be the inactivation
gate, and the N- and C-termini of Cavα1 [for review, see 86,104,105].
Fig. 3. Modulation of HVA Ca2+ channel gating by Cavβ. (A) Activation: Cavβ shifts
the current–voltage curve (left panel) and the activation curve (right panel) to more
hyperpolarized voltages. (B) Inactivation: Cavβ shifts the voltage dependence of
inactivation to more hyperpolarized voltages, except β2a, which shifts it to more
depolarized voltages (left panel). All Cavβ subunits speed the kinetics of inactivation,
except β2a, which slows the kinetics of channel inactivation (right panel). All traces
are schematic representations.
Thus, the S6 segments are critical for both VDA and VDI. Notably, the
AID, to which Cavβ binds, is connected to the IS6 segment through a
short linker. Based on extensive studies [12,18,29,35,45,55,86,106,107],
a unified model for Cavβ regulation of VDA and VDI of VGCCs has
emerged. First, when Cavβ is bound to the AID, the entire region
starting with IS6 to the end of the AID becomes a continuous α-helix
[18,23,45,86]. This rigid structure allows Cavβ to regulate both activa-
tion and inactivation, most likely by changing the energetics of
voltage-dependent movement of both IS6 and the inactivation gate.
When the integrity of this rigid α-helix is disrupted by the insertion
of glycine residues, the ability of Cavβ to regulate VDA, VDI and CDI is
severely compromised, while Ca2+ channel surface expression remains
unaffected [13,86,107]. These results underscore the essential role of
a rigid IS6-AID linker in Cavβ regulation of VGCC gating. Further
supporting this notion, the GK domain, which is the minimal part of
Cavβ that can bind to the AID and presumably induce the formation of
the rigid α-helix, can significantly impact (but not entirely normalize)
activation and inactivation [12,61,97].

Second, and equally important for the model, the anchoring of
Cavβ to Cavα1 through the AID-GK interaction enables the formation
of intrinsically low-affinity interactions between Cavβ and other
parts of Cavα1 that fully normalize channel gating [reviewed in 7].

An additional factor important for Cavβ regulation of gating is
the orientation of Cavβ relative to Cavα1 [13,107,108]. Insertions or
deletions in the IS6-AID linker, which are expected to maintain the
α-helical structure of the linker but induce a 180° rotation of Cavβ
with respect to Cavα1, diminish Cavβ regulation of activation and
inactivation [13,107]. These studies are consistent with the notion
that additional contacts between Cavβ and Cavα1 besides the AID-GK
domain interaction are critical for VGCC gating.

4. Cavβ stoichiometry with Cavα1

4.1. Cavα1 and Cavβ are paired with a 1:1 stoichiometry

Early biochemical studies suggest that skeletal and neuronal
VGCCs contain a single Cavα1 and a single Cavβ [109,110]. Extensive
recent studies indicate that this is indeed the case and that the
1:1 stoichiometry is determined by the AID-GK domain interaction.
(i) Covalently linked Cav1.2 and Cavβ2b (Cav1.2-Cavβ2b) have the
same gating properties as channels formed by the coexpression
of Cav1.2 and β2b. Moreover, when β2a, which slows inactivation, is
coexpressed with Cav1.2-β2b, gating properties remain unchanged
[111]. (ii) The simultaneous coexpression of β2a and β3 with Cavα1

yields two biophysically distinct channel populations, rather than a
single population with intermediate biophysical properties [92,112].
(iii) The crystal structures of the AID–Cavβ core complexes clearly
show that each Cavβ binds a single AID [11,18,19,23], and mutations
of key residues in the AID or the ABP abolish both Cavβ-mediated
Ca2+ channel surface expression and gatingmodulation [4,12,13,39,44].

4.2. Dimerization of Cavβ

Several recent studies suggested that Cavβ fragments can associate
to form GK–GK [83,113] or SH3–SH3 domain dimers [30]. While the
molecular mechanism of GK–GK domain dimerization is unclear
[113], SH3 domain dimerization seems to depend on a cysteine
residue that participates in forming an SH3–SH3 domain disulfide
bond [30].

In addition to fragment dimerization, full-length Cavβ dimerization
and oligomerization have been proposed, including homodimerization
for β3 and β2a, and heterodimerization between β3 and other Cavβs
[30,113]. Higher order Cavβ oligomers (3 or more Cavβs) have also
been reported, based on limited data from co-immunoprecipitation and
native gel analyses under reducing and non-reducing conditions [113].
The molecular mechanisms of full‐length Cavβ oligomerization are

image of Fig.�3
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unknown. Mutating the cysteine that holds together the SH3 dimer
disrupts SH3–SH3 dimerization but fails to prevent full‐length Cavβ2a

from dimerizing [30]. Similarly, mutations that can individually disrupt
GK fragment dimerization fail to prevent full-length Cavβ3 dimerization
[113]. It is possible that both the GK and SH3 domains lend residues
for Cavβ dimerization.

It was recently reported that Cavβ dimerization is critical for
dynamin-mediated channel internalization [26,30]. However, this was
shown for Shaker K+ channels and Ca2+ channels with a deleted AID,
while WT Cav1.2 channels prevent both Cavβ dimerization and
dynamin-mediated internalization. The steps in dynamin-mediated in-
ternalization are unclear but may involve the formation of a quaternary
complex between two Cavβs and two dynamin molecules [30]. Finally,
the fact that WT Cavα1 prevents Cavβ dimerization is consistent with
a 1:1 stoichimetry of the Cavα1/Cavβ complex.

5. The role of Cavβ in Gβγ inhibition of Cav2 channels

Cav2 channels are susceptible to several kinds of inhibition by
hormones and neurotransmitters through the activation of G protein
coupled receptors (see Currie and Zamponi review in this issue).
The most prominent type of inhibition is the membrane-delimited,
voltage-dependent inhibition mediated by the direct binding of G
protein Gβγ subunits to the channel's α1 subunit [114,115].

5.1. Cavβ is required for voltage-dependent Gβγ inhibition

Many studies indicate that Cavβ is essential for Gβγ-dependent
channel inhibition. In COS-7 cells, G protein inhibition of N-type
Ca2+ channels was markedly enhanced by coexpressed Cavβs [116];
in tsA-201 cells, a point mutation in the AID of Cav2.2 (W391A) that
disrupted Cavβ binding abolished voltage-dependent G protein inhi-
bition [43]. In a recent study that directly tested whether Cavβ is
required for Gβγ inhibition [13], large populations of Ca2+ channels
devoid of Cavβ were obtained by washing away a mutant Cavβ that
was loosely bound to the AID but was still able to chaperone channels
to the membrane. Such β-less channels were still inhibited by puri-
fied Gβγ protein applied to the cytoplasmic side of the macropatch;
however, all the hallmarks of voltage-dependent inhibition were
absent [13,117,118]. When Cavβ was supplied, Gβγ inhibition became
voltage-dependent [13]. These results suggest that in the absence
of Cavβ, Gβγ can bind the channel and inhibit it in a voltage-
independent manner [13,43]. They also suggest that under physiolog-
ical conditions, Cavβ remains bound to the channel during Gβγ inhibi-
tion, enhancing the dissociation of Gβγ from the channels and giving
rise to the voltage dependence of inhibition [119]. There is further
evidence supporting the notion that Cavβ remains associated with
Cavα1 during Gβγ modulation. (1) Different Cavβs have different
effects on voltage-dependent Gβγ inhibition, with β2a being the least
effective in promoting this inhibition [61,120–123]. In addition, the
efficacy of the four Cavβs to increase the rate of Gβγ dissociation
from the channel is different [121,122]. (2) VDA and VDI, which are
significantly modulated by Cavβ, remain unchanged before, during,
and after Gβγ modulation [13,117,123].

5.2. An allosteric model for the voltage-dependent G protein inhibition
of VGCC

An allosteric model was recently proposed for the origin of the
voltage dependence of Gβγ inhibition of Cav2 channels [13]. There
are several components in this model. First, although the Gβγ-binding
pocket in the holo-channel is still unknown, it is likely formed by
several regions including the I–II linker, the N-terminus, and the
C-terminus of Cavα1 [124]. Second, binding of Cavβ transforms IS6
and a large portion of the I–II linker, including the AID, into an
α-helix. This allows movements in IS6, following a depolarization,
to be efficiently transduced to dismantle the Gβγ binding pocket,
causing Gβγ dissociation. In the absence of Cavβ, the AID is a random
coil [18] and IS6 movements cannot be efficiently transmitted to
the I–II linker. Thus, Gβγ stays on the channel, inhibiting it with no
voltage dependence. Corroborating this model, mutations that
disrupt the rigid α-helix encompassing IS6 and the AID abolish the
voltage dependence of Gβγ inhibition in the presence of Cavβ [13,61].

6. Role of Cavβ in the regulation of Ca2+ channels by PIP2 and
arachidonic acid

6.1. β2a dampens the inhibitory effect of PIP2 depletion

Phosphatidylinositol-4, 5-biphosphate (PIP2), a membrane phos-
pholipid composed of two long fatty acid chains attached to a
phosphoinositol head group, is necessary for the maintenance of
HVA currents [125–128], and PIP2 depletion following Gq-coupled
receptor stimulation results in voltage-independent inhibition of
HVA channels [92,125,129,130]. Recently, it was demonstrated that
the coexpression of β2a with Cav2.1, Cav2.2 and Cav1.3 channels can
largely prevent channel inhibition upon PIP2 depletion [92]. This
effect was the direct result of β2a palmitoylation since preventing
palmitoylation abolished channel protection from PIP2 depletion.
Moreover, imparting palmitoylation to β3, by fusion to an unrelated
palmitoylated peptide, enabled the modified β3 to protect the chan-
nels from PIP2 depletion [92]. The proposed molecular mechanism
for β2a’s action is that the two β2a palmitoyl groups, which are long
fatty acid chains, can stabilize Ca2+ channels by substituting for PIP2.
Although the PIP2 binding site on VGCCs is unknown, it was proposed
to be ‘bidentate’—one region binds the PIP2 fatty acid chains, and the
other binds to the PIP2 head group. When both sites are occupied,
the channel is ‘stretched’ in a more active conformation. It was further
suggested that β2a can engage both sites to maintain channel activity
even in the absence of PIP2 [92].

6.2. β2a suppresses channel inhibition by arachidonic acid

Many phospholipids, including PIP2, can be metabolized by lipases
to arachidonic acid (AA), an unsaturated fatty acid without a
head group. The accumulation of AA inhibits HVA Ca2+ channels
[131–133]. It was recently suggested that this inhibition was the re-
sult of occupying only a single site within the bidentate lipid binding
site on the channels [92]. The inhibitory action of AA on Cav1.3 is
attenuated in the presence of β2a, but not other Cavβs [134,135].
This dampening effect critically depends on β2a palmitoylation per
se, rather than membrane anchorage. Thus, the palmitoyl groups
of β2a can both compete with AA to prevent VGCC inhibition, and
also substitute for PIP2 and protect channels from PIP2 depletion, as
discussed above. Both actions likely occur via the same bidentate lipid
binding site on VGCCs [92,134,136]. Finally, the competition of the β2a

palmitoyl groups with AA can be prevented by manipulating the
IS6-AID linker to change the orientation of Cavβ in relation to Cavα1

[108], suggesting that β2a palmitoyl groups have a precise binding site
on the channel, likely the same site where PIP2 and AA bind.

7. Cavβ may have transcriptional activity

Several short Cavβ isoforms have been cloned that do not contain a
GK domain [83,137–140]. In the first such report, a short Cavβ that
lacks 90% of the GK domain and the entire C-terminus was cloned
form chicken brain and named β4c [140]. This cβ4c has almost no
effect on Cav2.1 channels expressed in Xenopus oocytes but it can
dose-dependently attenuate the repressor function of heterochromatin
protein 1 (HP1), a chromatin organizer. These findings suggest that
cβ4c may function as a transcription regulator. Similar results have
been recently reported for a human β4c isoform found in the nuclei
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of vestibular neurons [141]. Full‐length Cavβ has also been implicated
in transcriptional regulation. β3, for example, can directly interact
with and suppress the transcriptional activity of Pax6(S), in vitro
[142]. In HEK 293T cells, coexpression of β3 and Pax6(S) results in
the translocation of β3 from the cytoplasm to the nucleus. Several
other studies have shown nuclear targeting of Cavβ in native cells
[79,143,144]. It remains to be determined which specific genes are the
targets of Cavβ transcriptional regulation. It is also unclear whether
nuclear targeting of Cavβ is correlated with VGCC activity; one recent
study suggests that L-type Ca2+ channel activity diminishes the nuclear
targeting of β4b in the cerebellum [143].

8. Cavβ knockouts and pathophysiology

Because of the essential role of Cavβ to enable the surface expres-
sion and functionalmodulation of HVACa2+ channels, Cavβmutations
have been implicated in human disease. Cavβ knockout animals and
mutants have severe phenotypes that are in some cases lethal. Ulti-
mately, what determines the phenotypical outcome of a knockout
mouse is the ability of the remaining Cavβs to compensate for the
lost functions.

8.1. β1

Cavβ1 is expressed in brain, heart, skeletalmuscle, spleen, T cells and
other tissues [reviewed in 7]. The β1a isoform, however, is exclusively
expressed in skeletal muscle where it partners with skeletal muscle
Cav1.1, and is irreplaceable for excitation–contraction coupling. Thus,
β1 knockout mice, similar to Cav1.1 knockouts, are born motionless
and die immediately from asphyxiation [75]. A similar phenotype is
observed in zebrafish [145].

Paradoxically, the increased expression of β1a in aging mice
was recently proposed to cause skeletal muscle weakness due to
decreased levels of Cav1.1 channel expression [146]. Knockdown of
β1 in aging mice could increase muscle force and Cav1.1 expression
levels to those observed in young mice. This is a surprising effect
considering Cavβ normally enhances VGCC expression, as is the case
in young mice [146]. It remains to be determined what age-related
factors turn Cavβ from a positive to a negative regulator of Cav1.1
expression.

8.2. β2

Cavβ2 and its various splice variants are expressed in brain, heart,
lung, nerve endings at the neuro-muscular junction, T cells, osteo-
blasts and other tissues [7]. It is also the predominant Cavβ in the
heart, especially Cavβ2b [79]. β2 knockouts die prenatally at embryonic
day 10.5 due to lack of cardiac contractions [147,148]. Interestingly,
when β2 expression is restored to the heart of β2-knockout animals
using a cardiac muscle-specific promoter, the animals survive but
are deaf due to several deficiencies in the inner ear, including a
dramatic reduction in the expression of Cav1.3 channels [147,149].
These ‘rescued’ mice also have defects in vision with a phenotype
similar to human patients with congenital stationary night blindness
[150].

It is not clear whether β2 is essential only during certain stages of
development or throughout life. A recent study in which the β2 gene
was conditionally knocked out in adult mouse cardiomyocytes gave
unanticipated results [151]. Peak calcium currents were reduced by
only ~30% and the mice had no obvious impairment, suggesting
that β2 may be more critical for the developing than the adult heart
[151].

Two point mutations in β2b have been implicated in cardiovascular
human diseases. The S481L mutation, which occurs in the C-terminus
of β2b, contributes to a type of sudden death syndrome characterized
by a short QT interval and an elevated ST-segment [152]. The other
mutation, in the β2b N-terminus (T11I), causes accelerated inactivation
of cardiac L-type channels and is linked to the Brugada syndrome [153].

8.3. β3

Cavβ3 knockouts are viable [154,155], with reduced perception of
inflammatory pain but unaltered mechanically or thermally induced
pain. This is likely the result of reduced N-type calcium channel
expression in dorsal root ganglia [77]. Cavβ3 knockouts also have ab-
normally high insulin secretion at high blood glucose concentrations
[156]. A high salt diet causes abnormally elevated blood pressure,
a reduction in plasma catecholamine levels, and a hypertrophy of
heart and aortic smooth muscle [155,157]. These results point to a
compromised sympathetic control in β3 knockout mice, likely due
to reduced N- and L-type channel activity [154]. Behaviorally,
β3-null mice exhibit impaired working memory, but some forms of
hippocampus-dependent learning are enhanced [158,159]. Knockout
mice also have lower anxiety, increased aggression, and increased
nighttime activity [159]. Finally, both β3 and β4 knockout mice have
abnormal T-cell signaling, revealing an unanticipated function of
Cavβs in the immune system [160].

A recent study comparing epileptic patients with non-epileptic
individuals identified 3 mutations in β3 that were present only in
patients; however, it is difficult to conclude whether these mutations
are the cause of epilepsy [161].

8.4. β4

Lethargic mice are naturally occurring β4 knockouts [162–164].
They have an insertion that causes exon skipping and a premature
stop codon in the gene for β4. These mice exhibit ataxia, seizures,
absence epilepsy, and paroxysmal dyskinesia [162,165,166]. Some of
this phenotype is contributed by a 50% upregulation of T-type Ca2+

channels in thalamic neurons [167]. Other characteristics of lethargic
mice include reduced excitatory neurotransmission in the thalamus
[168] and a modified electro-oculogram [169]. Interestingly, and
perhaps indicative of Cavβ functions that are independent of VGCC,
β4 knockouts have aberrant splenic and thymic involution [163,164]
and renal cysts [161]. Similar to β3 knockouts, CD4+ T cells have
attenuated receptor-mediated Ca2+ responses [160].

In humans, an R468Q mutation in the gene encoding β4 is associ-
ated with a history of febrile seizures, presumably due to the
enhancement of Cav2.1 currents [170]. In addition, a juvenile myo-
clonic epilepsy patient was found to have a truncated β4 (R482x)
[171]. Interestingly, two families with different disease histories—
one with episodic ataxia and the other with generalized epilepsy
and praxis-induced seizures—share the same mutation in β4 (C104F)
[171], highlighting the importance of genetic background in disease
penetrance.

9. Future directions

Past studies have provided great insights into the structure, func-
tion, and physiology of Cavβ. They have also opened new avenues for
future research and prompted many intriguing questions that remain
to be answered, some of which we highlight below.

1) Knockoutmice provide a useful tool in the study of Cavβ physiology.
Conditional and tissue-specific knockouts are particularly useful as
they circumvent compensatory mechanisms that are triggered
in conventional knockout mice. This advantage was highlighted in
several recent studies that found unexpected mouse phenotypes
when Cavβ was conditionally knocked out [147,150,151]. We an-
ticipate that future conditional knockouts would similarly provide
great insights into the physiological functions of Cavβ and the sig-
nificance of its diversity.
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2) Cavβ has functions that are independent of VGCC [reviewed in 7].
Most notable is a possible role in transcriptional regulation,
which has been demonstrated for both short splice variants and
full-length Cavβ. It is not clear, however, how and which tissues
benefit from such regulation under physiological conditions. It
would also be interesting to know which signaling events trigger
the nuclear translocation of Cavβ.

3) There are currently two prevalent hypothesis that explain the
role of Cavβ in VGCC trafficking: (1) Cavβ alters the balance of ER
retention and ER export signals on Cavα1 in favor of the latter,
and (2) Cavβ protects channels from predestined proteasomal
degradation. These two hypotheses are not mutually exclusive
but their relationship remains unclear. It also remains to be deter-
mined whether the proposed mechanisms of Cavβ-mediated
channel trafficking apply to all Cav1 and Cav2 channels.

4) The crystal structures of the Cavβ core have provided great insights
into the molecular mechanisms of Cavβ function. It would be of
great interest to obtain high-resolution structures of full‐length
Cavβ and of Cavβ in complex with its various interacting partners,
such as RGK proteins, dynamin or the ryanodine receptor. Such
structures would shed significant light on how different cellular
signals converge on Cavβ to regulate VGCC function.

5) Cavβs have many interacting partners (Fig. 2, also reviewed in
[7]), some of which significantly impact the function of VGCCs.
The recent findings that Cavβ interacts with synaptic proteins
[172,173] uncover new roles for Cavβ in the organization of the
synaptic vesicle release machinery and reveal a new facet of VGCC
physiology. We anticipate that the search and study of new Cavβ
partners will continue to be an interesting and productive area of
research in the future.
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