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Abstract In this paper, we compare the performance of Inclan and Tiao’s (IT) (1994) and San-
so, Arago and Carrion’s (AIT) (2004) iterated cumulative sums of squares (ICSS) algorithms by
means of Monte Carlo simulation experiments for various data-generating processes with
conditional and unconditional variance. In addition, we investigate the impact of regime shifts
on the asymmetry and persistence of volatility from the vantage point of modelling volatility in
general and, in particular, in assessing the forecasting ability of the GARCH class of models in
the context of the Indian stock market.
ª 2012 Indian Institute of Management Bangalore. Production and hosting by Elsevier Ltd. All
rights reserved.
Introduction

Volatility, in general, represents risk or uncertainty asso-
ciated with an asset and, hence, exploring the behaviour
of volatility of asset returns is relevant for the pricing of
financial assets, risk management, portfolio selection,
trading strategies and the pricing of derivative instruments
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(Poon & Granger, 2003). Existing literature recognises the
time varying nature of the conditional volatility of the
financial asset returns. The dynamic nature of volatility can
be modelled by using the Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) class of models
(Engle, 1982 and Bollerslev, 1986) by specifying the condi-
tional mean and conditional variance equations. Numerous
extensions of GARCH models have been proposed in the
literature. For instance, Engle and Bollerslev (1986)
propose the Integrated GARCH (IGARCH) model to capture
the impact of a shock on the future volatility over an
infinite horizon. The EGARCH model (Nelson, 1991), GJR-
GARCH model (Glosten, Jagannathan, & Runkle, 1993) and
APARCH model (Ding, Granger, & Engle, 1993) are all
popular models that can in addition capture the asym-
metric behaviour of the volatility of returns. The Indian
stock market has shown significant growth in the last
decade and has made available enormous opportunities for
market participants. Like in other emerging markets,
investors in India also face higher risk. (See the higher
n and hosting by Elsevier Ltd. All rights reserved.
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weekly standard deviation as shown in Table 5.) Hence, it is
essential to study the dynamic behaviour of the volatility of
returns from the Indian stock market under the impact of
sudden changes in volatility.

Volatility of the returns of financial assets may be
affected substantially by infrequent structural breaks or
regime shifts due to domestic and global macroeconomic
and political events. The standard GARCH model does not
incorporate sudden changes in the variance and hence, may
be inappropriate for investigating volatility persistence and
volatility forecasting. Lastrapes (1989) applies the Autore-
gressive Conditional Heteroskedasticity (ARCH) model to
exchange rates and finds a significant reduction in the
estimated volatility persistence when he accounts for
monetary regime shifts. Lamoureux and Lastrapes (1990)
investigate the persistence of volatility in the GARCH
family of models when there are sudden changes in the
variance and find that volatility persistence is overstated if
structural breaks are ignored. Sudden changes in the vari-
ance can also influence the intensity or the direction of
information flow among markets, stocks or portfolios as
shown by Ross (1989).

Incl�an and Tiao (1994) propose the Iterated Cumula-
tive Sum of Squares (ICSS) algorithm which can help in
detecting structural breaks in the volatility of a financial
time series. The ICSS algorithm detects both a significant
increase and decrease in volatility and, hence, can help
in identifying both the beginning and the ending of
volatility regimes. Wilson, Aggarwal, and Inclan (1996)
apply the ARCH model on oil price futures and the asso-
ciated firm portfolios and find that volatility persistence
gets reduced if sudden changes in volatility are accoun-
ted for in the model. Aggarwal, Inclan, and Leal (1999)
apply the ICSS algorithm on some emerging market
indices for the period from 1985 to 1995, and find that
volatility shifts are impacted mainly by the local
macroeconomic events and the only global event over
the sample period that affected several emerging
markets was the October 1987 stock market crash in the
United States. Malik (2003) applies the ICSS algorithm in
detecting time periods of sudden changes in the volatility
of five major exchange rates, and finds that volatility
persistence is overstated if those sudden changes are
ignored. Fernandez and Arago (2003) utilise the ICSS
algorithm to detect structural changes in the variance for
European stock indices and their findings are in confir-
mation with the findings of Aggarwal that the markets
not only react to local economic and political news, but
also to news originating in other markets. Malik, Ewing,
and Payne (2005) find that controlling for regime shifts
in volatility dramatically reduces the persistence of
volatility in the Canadian stock market. Hammoudeh and
Li (2008) also obtain similar findings for the Gulf Coop-
eration Council (GCC) stock markets. Wang and Moore
(2009) find that, with the new European Union
members, the persistence in volatility is significantly
reduced when the model incorporates regime changes.

The central aim of this paper is to study of the impact
of sudden changes in the variance on the asymmetry and
persistence of volatility in the Indian stock market
(specifically S&P CNX Nifty, CNX 100, S&P CNX 500, CNX
Nifty Junior, CNX Midcap and CNX Smallcap) from the
vantage point of volatility modelling and to assess the
forecasting ability using the GARCH class of models. The
most widely used methods for detecting sudden changes
in volatility are Incl�an and Tiao’s (1994) (IT) ICSS algo-
rithm and the Sanso, Arago, and Carrion (2004) (AIT)
ICSS algorithm. It is also a widely known fact that the
financial time series exhibit fat tails. The present study
compares the performance of these two methods for
various data-generating processes, such as GARCH and
stochastic volatility processes. In particular, earlier
studies had not assessed these two methods with
respect to stochastic volatility processes. In addition,
we take into account leptokurtosis by making use of the
Student t distribution with 5 degrees of freedom in the
simulations. We then investigate empirically whether or
not the inclusion of regime shifts in the GARCH class of
models reduces the asymmetry and persistence of
volatility in the Indian stock market. In addition, we
compare the out-of-sample performance of the GARCH
class of models with and without sudden changes by
considering the one-step-ahead forecasting ability. We
find that incorporating regime shifts in the GARCH model
provides better performance in terms of forecasting
ability. The study of the impact of structural changes in
volatility on the accuracy of volatility forecasts has
largely been ignored in the context of the Indian stock
market and hence, our paper has a significant contri-
bution to make in this area.

The remainder of this paper is organised as follows: The
next section introduces the tests we will use in this study. In
the third section, we undertake Monte Carlo simulation
experiments to evaluate the IT and AIT ICSS algorithms. The
fourth section describes the data and discusses the
computational details. The fifth section reports the
empirical results and the sixth section concludes with
a summary of our main findings.

Methodology

Detecting points of sudden changes in variance

Inclan and Tiao’s (IT) (1994) ICSS algorithm
Suppose 3t is a time series with zero mean and with
unconditional variance s2. Suppose the variance within
each interval is given by tj

2, where j Z 0, 1,........., NT and
NT is the total number of variance changes in T observa-
tions, and 1 < k1 < k2 < .... < kNT < T are the change
points.

s2
tZt20 for 1< t< k1 ð1aÞ

s2
tZt21 for k1 < t< k2 ð1bÞ

s2
tZt2NT for kNT < t< T ð1cÞ

In order to estimate the number of changes in variance
and the time point of each variance shift, a cumulative sum
of squares procedure is used. The cumulative sum of the
squared observations from the start of the series to the kth
point in time is given as:
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where k Z 1,....., T. The Dk (IT) statistics is given as:
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where CT is the sum of squared residuals from the whole
sample period.

If there are no sudden changes in the variance of the
series then the Dk statistic oscillates around zero and when
plotted against k, it looks like a horizontal line. On the
other hand, if there are sudden variance changes in the
series, then the Dk statistics values drift either above or
below zero. Critical values obtained from the distribution
of Dk can be used to detect the significant changes in the
variance under the null hypothesis of a constant variance.
The null hypothesis of constant variance is rejected if the
maximum absolute value of Dk is greater than the critical
value. Hence, if maxkO(T/2)jDkj is more than the pre-
determined boundary, then k* is taken as an estimate of the
variance change point. The 95th percentile critical value
for the asymptotic distribution of maxkO(T/2)jDkj is 1.358
(Incl�an and Tiao (1994) and Aggarwal et al. (1999)) and
hence the upper and the lower boundaries can be set at
�1.358 in the Dk plot. If the value of the statistic falls
outside these boundaries then a sudden change in variance
is identified.

Sanso, Arago and Carrion (AIT) (2004) ICSS algorithm
Sanso et al. (2004) find certain drawbacks in the ICSS
algorithm that invalidates its use for financial time series.
To wit, the ICSS algorithm neglects kurtosis properties of
the process and also it does not take into consideration the
conditional heteroskedasticity. To circumvent these prob-
lems, they propose the AIT algorithm as a modification of IT
algorithm which employs a non-parametric adjustment
based on the Bartlett kernel and is given by:

AITZmaxk
ffiffiffiffi
T

p
jGkj ð3Þ
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The lag truncation parameter m is estimated using the
procedure in Newey and West (1994) estimator. The 95th
percentile critical value for the asymptotic distribution of
AIT statistic is 1.4058.

Incl�an and Tiao (1994) find that if the series has multiple
change points, then it is difficult for Dk statistic to detect
the correct change points in different intervals due to the
masking effect. To overcome this problem of the masking
effect, Incl�an and Tiao (1994) propose an algorithm that
looks at the different segments of the time series for the
identification of change points in variance. The ICSS algo-
rithm looks for one break point at a time by means of Dk

statistic. Once the breakpoint is detected, then the sample
series is further segmented to look for another break point.
We also apply a similar iterative procedure for the AIT
algorithm. When all the breakpoints in the series have been
identified then the next step is to estimate the GARCH
models with and without sudden changes in variance.

GARCH model

The log returns are calculated from the stock price indices;
i.e.

ytZln

�
Pt

Pt�1

�
)100

Where Pt is a value of the index at time t and ln is the
natural logarithm.

The standard generalised autoregressive conditional
heteroskedasticity (GARCH) model is given as:

ytZmþ 3t; 3tZztst; ztwNð0;1Þ ð4Þ

s2
tZuþ aðLÞ 3

2
t þ bðLÞs2

t ; ð5Þ

Equation (5) can be rewritten as infinite-order ARCH
process (assuming that ai� 0 and bi � 0 for all i),

f
�
L
�

3
2
tZuþ ½1� bðLÞ�nt; ð6Þ

Where ntZ 32t � s2t is interpreted as an innovation for the
conditional variance.

GJR-GARCH model

The GARCH model has the tendency to capture volatility
clustering and it responds symmetrically irrespective of
whether the news is good or bad. Engle and Ng (1993) find
that a negative return shock is likely to cause more vola-
tility than a positive return shock of the same magnitude
and argue that the GARCH model underestimates the
amount of volatility when responding to bad news and
overestimates the amount of volatility when responding to
positive news. One solution to this shortcoming in the
GARCH model is provided by Glosten et al. (1993), who
propose the GJR-GARCH model. The conditional variance
function of a GJR-GARCH (p, q) model is given as follows:

s2
tZuþ

Xq
iZ1

	
ai 3

2
t�i þ gi 3

2
t�iD

�
t�i



þ
Xp
jZ1

bjs
2
t�j; ð7Þ

where D�
t�i is a dummy variable and it equals 1 when 3t�i is

less than zero and zero otherwise.
The term giDt�i allows good news ( 3t�i>0) and bad news

( 3t�i<0) to impact differently the conditional variance. ai
represents the impact of good news and (ai þ gi) represents
the impact of bad news on conditional volatility. Hence, if
gi > 0, the GJR-GARCH model can capture the asymmetric
property of volatility.
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Combined model of sudden changes with GARCH
and GJR-GARCH model

The GARCH (p, q) model with sudden changes in variance
can be expressed as follows:

ytZmþ 3t; 3tZztst; ztwNð0;1Þ

s2
tZuþ d1D1 þ...:þ dnDn þ aðLÞ 3

2
t þ bðLÞs2

t ; ð8Þ

And the GJR-GARCH (p, q) model with sudden changes in
variance can be expressed as follows:

s2
tZuþ d1D1 þ...:þ dnDn þ
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iZ1

	
ai 3

2
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2
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2
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where D1, .........., Dn are the dummy variables taking
a value of 1 from each point of sudden change in variance
onwards and 0 elsewhere.

Engle and Ng (1993) propose the sign bias, negative size
bias, positive size bias and joint tests in the standardised
residuals to determine the response of the asymmetric
volatility models to news. From Equation (4), zt Z 3t/st.
Suppose S�t is a dummy variable which takes value 1 if 3t�1 is
negative and Sþt is a dummy variable that takes value 1 if
3t�1 is positive and zero otherwise. Hence, the regression
equations for the sign bias, negative size bias, positive size
bias and joint tests are as follow:

Sign bias test: z2tZaþ bS�t þ et
Negative size bias test: z2tZaþ bS�t 3t�1 þ et
Joint test: z2tZaþ bS�t þ cS�t 3t�1 þ dSþt 3t�1 þ etwhere a,

b, c and d are constants. et is the residual series of the
regression equations.

Monte Carlo simulation experiments

The most widely used methods for detecting sudden
changes in volatility are Incl�an and Tiao’s (1994) (IT) ICSS
Table 1 Size properties of tests for random numbers with no c

T Z 100 T Z

IT
Uniform 0.000 0.000
Normal 0.031 0.037
Logistic 0.116 0.138
Exponential 0.267 0.316
Student t 0.241 0.309
Lognormal 0.642 0.768

AIT
Uniform 0.028 0.031
Normal 0.022 0.027
Logistic 0.018 0.022
Exponential 0.016 0.020
Student t 0.014 0.017
Lognormal 0.009 0.011
algorithm and the Sanso et al. (2004) (AIT) ICSS algorithm.
The comparison of IT and AIT algorithms help in assessing
their relative performance in detecting sudden changes in
the unconditional variance for various data-generating
processes representing a variety of financial data series. In
this section we undertake extensive Monte Carlo simulation
experiments to study the small sample properties of the
Iterated Cumulative Sum of Square (ICSS) tests which
includes Inclan and Tiao’s (IT) and the Sanso, Arago and
Carrion’s (AIT) tests and to compare their performance by
means of different data-generating processes (DGP). In the
first part of our analysis, we study the size properties of the
IT and AIT ICSS tests. The second part analyses the power
properties of the IT and AIT test. For all the data-generating
processes, we have taken samples of varying sizes
(T Z 100, T Z 200, T Z 500 and T Z 1000). Also, the
number of Monte Carlo trials is set to 10,000 and the
significance level is set at 5%.

First, we consider the data-generating processes which
do not have conditional dependence and this includes the
sequence of iid zero mean random numbers (the uniform
distribution U(�0.5, 0.5), the standard normal distribution
N(0,1), the standard logistic distribution, the standard
exponential distribution, the Student t distribution with 5
degree of freedom and the standard lognormal distribu-
tion). Table 1 reports the rejection frequencies for both the
tests for varying sample sizes.

The results indicate that the IT test suffers from a severe
size distortion for all the unconditional data-generating
processes except for the case of the uniform and the
normal distributions. However, the AIT test exhibits desir-
able size properties for all the unconditional data-gener-
ating processes. The results are in confirmation with the
assumptions of Incl�an and Tiao (1994) which shows desir-
able size properties for iid Normal series.

Next, we consider the data-generating processes which
take into account the conditional dependence of the series
and this includes sequences from the GARCH (1,1) and the
stochastic volatility (SV) processes. The following models
are considered to evaluate the size properties of the tests
used:
onditional dependence.

200 T Z 500 T Z 1000

0.000 0.000
0.041 0.043
0.161 0.170
0.366 0.390
0.392 0.446
0.886 0.938

0.032 0.035
0.031 0.033
0.027 0.031
0.026 0.029
0.022 0.025
0.014 0.016
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Model 1: GARCH (1,1)

YtZ
ffiffiffiffiffi
ht

p
3t; htZuþ a 3

2
t�1 þ bht�1

Model 2: Stochastic volatility

YtZexpð0:5 htÞ 3t; htZdht�1 þ 3t0; 3t0wNð0;0:1Þ

In both the processes, we use two types of random
errors: the standard normal distribution ( 3t w N(0,1)) and
the Student t distribution with 5 degree of freedom. For the
case of the standard normal distribution which is not re-
ported here, we find desirable size properties for the
GARCH (1,1) and SV processes which again confirms the
underlying assumption of the IT and AIT tests. Table 2
reports the rejection frequencies of the IT and AIT tests
Table 3 Size properties of tests for the stochastic volatility (SV

d T Z 100 T Z 200

IT
0.1 0.244 0.312
0.2 0.251 0.319
0.3 0.243 0.317
0.4 0.257 0.308
0.5 0.249 0.317
0.6 0.251 0.318
0.7 0.257 0.318

AIT
0.1 0.014 0.018
0.2 0.015 0.017
0.3 0.014 0.017
0.4 0.016 0.018
0.5 0.014 0.018
0.6 0.015 0.019
0.7 0.015 0.019

Table 2 Size properties of tests for the GARCH (1,1) processes

u Z 0.001 and a Z 0.1

b T Z 100 T Z 200

IT
0.1 0.287 0.378
0.2 0.298 0.417
0.3 0.316 0.388
0.4 0.317 0.395
0.5 0.346 0.469
0.6 0.372 0.479
0.7 0.415 0.548

AIT
0.1 0.020 0.044
0.2 0.035 0.035
0.3 0.033 0.045
0.4 0.045 0.054
0.5 0.059 0.069
0.6 0.057 0.082
0.7 0.089 0.130
for the GARCH (1,1) model when the random errors are
drawn from the Student t distribution.

The results shows that the IT test is severely oversized
for the shocks from the Student t distribution and this is
because of a violation of the assumption of normality (iid)
in the case of the IT test. The results from the AIT test
indicate that it is also mildly oversized for some of the
cases when volatility is more persistent, but not to the
extent of the IT test.

Table 3 reports the rejection frequencies of the IT and
AIT tests for the stochastic volatility (SV) model when the
random errors are drawn from the Student t distribution.

Again, the IT test results showasevere sizedistortion for all
the cases. In contrast, the AIT test exhibits substantially good
size properties across all parameterisations.
) processes.

T Z 500 T Z 1000

0.403 0.445
0.388 0.444
0.395 0.449
0.407 0.457
0.391 0.454
0.400 0.453
0.410 0.463

0.020 0.024
0.022 0.024
0.020 0.025
0.023 0.026
0.019 0.026
0.024 0.023
0.023 0.025

.

T Z 500 T Z 1000

0.486 0.561
0.486 0.574
0.525 0.607
0.547 0.591
0.577 0.660
0.633 0.695
0.690 0.769

0.037 0.061
0.051 0.074
0.071 0.048
0.065 0.078
0.086 0.089
0.124 0.119
0.158 0.192



Table 4 Power of the test when there is a change in a variance.

l T Z 100 T Z 200 T Z 500 T Z 1000

IT
0.10 0.062 0.109 0.245 0.462
0.25 0.212 0.460 0.882 0.995
0.50 0.657 0.945 1.000 1.000
1.00 0.990 1.000 1.000 1.000
1.50 1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000

AIT
0.10 0.042 0.077 0.202 0.416
0.25 0.158 0.388 0.854 0.993
0.50 0.522 0.913 1.000 1.000
1.00 0.943 1.000 1.000 1.000
1.50 0.993 1.000 1.000 1.000
2.00 0.997 1.000 1.000 1.000
2.50 0.999 1.000 1.000 1.000
3.00 0.999 1.000 1.000 1.000
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Table 4 reports the power of the IT and AIT tests when
there is break in the volatility of the series. We consider
a sequence of iid standard Student t distribution with 5
degree of freedom for the first half of the sample and iid
Student t distribution with 5 degree of freedom with the
change in standard deviation by (1 þ l) times for the second
half of the series. The parameter l indicates the
percentage change in the unconditional volatility of the
series.

Results show that both the tests possess desirable power
properties when there is a significant break in the volatility
of the series.

By means of Monte Carlo simulation experiments, we
find that AIT test exhibits desirable size and power prop-
erties but that the IT test exhibits a severe size distortion
for the case of fat tailed distributions. Hence, we apply the
AIT test to detect sudden changes in the volatility of the
Indian stock market.

Data and computational details

In order to investigate the impact of sudden changes in
volatility on the volatility persistence of the Indian stock
market, we have used weekly price data2 of six indices of
National Stock Exchange of India Ltd. The indices3 used are
S&P CNX Nifty (the most commonly used index, composed of
50 firms from 24 sectors), CNX100 (composed of 100 firms
from 38 sectors), S&P CNX 500 (the first broad based bench-
mark of the Indian capital market), CNX Nifty Junior
2 Because daily observations may be associated with the biases due
to nontrading, the bid-ask spread, asynchronous prices (Lo and
MacKinlay, 1988).
3 The indexes used in this paper use free float market capitalisation
methodology.
(composed of the next 50 liquid stocks after S&P CNX Nifty),
Nifty Midcap 50 (to capture the movement in the midcap
segment of the market), CNX Smallcap Index (which reflects
the movement in the small capitalised segment of the
financial market) covering all the major segments of the
Indian market. All data are obtained from www.nseindia.
com. The period of study for S&P CNX Nifty is from 4-May-
1994 to 27-Apr-2011 (886 observations); for CNX100 is from1-
Jan-2003 to 27-Apr-2011 (434 observations); for S&P CNX 500
is from 9-Jun-1999 to 27-Apr-2011 (620 observations); for
CNX Nifty Junior is from 4-Oct-1995 to 27-Apr-2011 (812
observations); for Nifty Midcap 50 is from 3-Jan-2001 to 27-
Apr-2011 (538 observations) and for CNX Smallcap Index is
from 7-Jan-2004 to 27-Apr-2011 (381 observations). Each of
these indices has comeabout at a different point in time. The
choice of the sample period therefore depends on when
these indices have come into existence. Furthermore,weare
studying the impact of sudden changes in the variance on the
asymmetry and persistence of the volatility of each indi-
vidual index when considered alone and do not undertake
any test across different indices. The weekly data are asso-
ciated with Wednesday. If Wednesday is a holiday, Tuesday
data points are used.

We have used the following abbreviations for the
indices in this paper, that is Nifty for S&P CNX Nifty,
CNX100 for CNX 100, CNX500 for S&P CNX 500, JUR for CNX
Nifty Junior, MID for Nifty Midcap 50, SMA for CNX Small-
cap index. Table 5 provides the descriptive statistics of
the weekly returns for all the indices under study. The
median weekly return for Nifty Midcap 50 is the highest of
all the indices. The mean weekly returns of CNX 100, Nifty
Midcap 50 and CNX Smallcap index are nearly the same
and higher than other indices. CNX Nifty junior seems to
be more volatile than the other indices. Higher weekly
standard deviation for all the indices points towards
a higher risk in the Indian stock market. JarqueeBera
statistics confirm the significant non-normality in the

http://www.nseindia.com
http://www.nseindia.com


Table 5 Descriptive statistics of stock returns.

Nifty CNX100 CNX500 JUR MID SMA

Mean 0.002 0.004 0.003 0.003 0.004 0.004
Median 0.004 0.008 0.007 0.006 0.009 0.008
Min �0.154 �0.157 �0.168 �0.196 �0.181 �0.192
Max 0.161 0.172 0.177 0.235 0.216 0.198
Quartile 1 �0.020 �0.014 �0.013 �0.021 �0.014 �0.012
Quartile 3 0.026 0.028 0.027 0.031 0.028 0.029
St dev 0.038 0.039 0.041 0.048 0.041 0.045
Skewness �0.120 �0.429 �0.673 �0.433 �0.622 �0.870
Kurtosis 1.369 2.406 2.354 2.712 3.417 3.245
JB-stat 72.310*** 120.255*** 192.358*** 276.864*** 300.313*** 218.984***
N 886 434 620 812 538 381
ARCH-LM 58.874*** 47.438*** 85.743*** 108.807*** 40.941*** 47.979***
Q(20) 33.425** 55.736*** 41.298*** 43.088*** 57.356*** 60.494***
KPSS 0.159 0.139 0.076 0.068 0.092 0.160
ADF �8.651*** �6.635*** �7.242*** �8.223*** �6.545*** �5.407***

*** Means significant at 1% level and ** means significant at 5% level, respectively.Where ARCH-LM indicates the Lagrange multiplier test
for conditional heteroskedasticity with 10 lags and JB-stat indicates the JarqueeBera statistic.
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weekly returns of all the indices. A significant negative
skewness and excess kurtosis are also present in the
returns of all the indices. Hence, the choice of AIT ICSS
algorithm in detecting sudden changes in variance seems
to be valid as the AIT ICSS algorithm exhibits desirable size
and power properties for distributions with fat tails. The
ARCH-LM test provides evidence in support of the pres-
ence of conditional heteroskedasticity in the returns
series.

Box-Pierce Q-test strongly rejects the presence of no
significant autocorrelations in the first 20 lags for all the
returns series. Insignificant KPSS statistics for all indices
support the non-rejection of the null hypothesis of statio-
narity of the series. Also the ADF test rejects the null
hypothesis of a unit root in all indices returns series.

Empirical results

Sudden changes in variance

Table 6 presents the number of sudden changes in the
variance, the time periods identified as when such sudden
changes have occurred and the standard deviation of the
returns over the respective time periods between variance
changes for S&P CNX Nifty, CNX 100, S&P CNX 500, CNX
Nifty Junior, CNX Midcap and CNX Smallcap indices.

We apply the AIT (modified ICSS) algorithm to identify the
break points in the volatility for all the indices under study.
Wedetect four break points in the S&PCNXNifty index, three
break points in CNX 100, five break points in S&PCNX500, five
break point in CNX Nifty Junior, three break points in CNX
Midcap and two break points in CNX Smallcap which repre-
sent the presence of (nþ1) distinct volatility regimes in the
time series of returns, where n represents the number of
break points in the series. The time points of the sudden
change in the volatility of indices are associated with various
domestic and global economic and political events to
a moderate degree. In May 2006, Indian stock market indices
suffered a major decline of about 1100 points. The
turbulence in the period from 2008 to 2009was caused by the
impact of the global financial crisis (sub-prime crisis) which
adversely impacted the Indian stockmarket also. In 2009, the
UPA election victory was a major event that impacted the
Indian stock market in terms of reducing the uncertainty
about the future of the Indian economy. These macroeco-
nomic and political factors may have contributed to the
increase inmarket return volatility which in turn contributed
to the overall uncertainty in the Indian stock market also. In
particular, we observe a higher standard deviation during the
period of the sub-prime crisis for all the indices considered in
this study.

Fig. 1 presents the graphical representation of the
sudden changes in the variance and the related volatility
regimes for all the indices under study. The bands represent
�3 standard deviations for the time point when sudden
changes are experienced. Hence, the figure clearly displays
where the regimes begin and end, as identified by the AIT
ICSS algorithm.

GARCH (1,1) and GJR-GARCH (1,1) estimation with
and without sudden changes

After identifying the time points of sudden changes in the
variance of the index returns using the AIT (modified ICSS)
algorithm, the next step is to introduce these sudden
changes in the variance in the GARCH class of models. We
apply GARCH (1,1) and GJR-GARCH (1,1) models to evaluate
the impact of sudden breaks on volatility asymmetry and
persistence. We set aside the last 50 observations for an
evaluation of the out-of-sample performance of the GARCH
class of models used in this study and the remaining
observations are used for in-sample estimation.

Tables 7e12 present the parameter estimates and
diagnostics obtained from the GARCH model and the GJR-
GARCH model, with and without accounting for sudden
changes in the volatility in the models for all the indices
under study. The ARCH and GARCH coefficients (a and b)
are significant at conventional level of significance for each



Table 6 Sudden changes in volatility identified by the ICSS algorithm.

Index Number of change points Time period Standard deviation

S&P CNX Nifty 4 11-May-1994e18-Apr-2001 0.040
25-Apr-2001e10-May-2006 0.028
17-May-2006e09-Jul-2008 0.043
16-Jul-2008e17-Jun-2009 0.065
24-Jun-2009e27-Apr-2011 0.027

CNX 100 3 08-Jan-2003e14-Jul-2004 0.035
21-Jul-2004e10-May-2006 0.024
17-May-2006e17-Jun-2009 0.051
24-Jun-2009e27-Apr-2011 0.027

S&P CNX 500 5 16-Jun-1999e18-Apr-2001 0.055
25-Apr-2001e17-May-2006 0.030
24-May-2006e19-Jul-2006 0.088
26-Jul-2006e09-Jan-2008 0.031
16-Jan-2008e17-Jun-2009 0.061
24-Jun-2009e27-Apr-2011 0.026

CNX Nifty Junior 5 11-Oct-1995e18-Apr-2001 0.053
25-Apr-2001e19-Apr-2006 0.035
26-Apr-2006e19-Jul-2006 0.088
26-Jul-2006e09-Jan-2008 0.034
16-Jan-2008e13-May-2009 0.077
20-May-2009e27-Apr-2011 0.030

CNX Midcap 3 10-Jan-2001e23-Jun-2004 0.038
30-Jun-2004e10-May-2006 0.025
17-May-2006e03-Jun-2009 0.056
10-Jun-2009e27-Apr-2011 0.029

CNX Smallcap 2 14-Jan-2004e19-Dec-2007 0.039
26-Dec-2007e10-Jun-2009 0.068
17-Jun-2009e27-Apr-2011 0.032
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index when sudden changes in the model are not accounted
for. This indicates the time varying nature of the volatility
associated with all the indices. Additionally, the volatility
persistence (a þ b) is quite high (�0.930) for S&P CNX Nifty,
CNX 100 and S&P CNX 500. The persistence is between
0.930 and 0.888 for other three indices. On the other hand,
when structural breaks are accounted for in the GARCH
model, we find a significant reduction in volatility persis-
tence for all the indices (0.698 for S&P CNX Nifty, 0.534 for
CNX 100, 0.659 for S&P CNX 500, 0.643 for CNX Nifty Junior,
0.575 for CNX Midcap and 0.767 for CNX Smallcap). These
results are consistent with the earlier findings of
Lamoureux and Lastrapes (1990), Aggarwal et al. (1999),
Malik et al. (2005) and others, who have argued that the
standard GARCH model overestimates volatility persistence
when ignoring sudden changes in the unconditional vari-
ance. Our results also support the same notion in the
context of the Indian stock market that volatility persis-
tence is significantly reduced when we explicitly incorpo-
rate regime shifts in the model.

We evaluate the accuracy of model specifications by
means of several diagnostic tests. In the case of the GJR-
GARCH (1, 1) model, when sudden changes in volatility are
not considered, the significant value of the asymmetry
coefficient (g) implies that an unexpected negative shock is
followed by greater volatility than an unexpected positive
shock of the same magnitude. However, if we account
sudden changes in volatility, the asymmetry coefficient (g)
becomes insignificant at 5% level of significance for all the
indices.

We find no significant serial correlations (Qs(20)) and
ARCH effect (ARCH-LM (10)) in the variance equations at 5%
level of significance for all the GARCH class models used in
this study. However, the GARCH class of models with struc-
tural breaks provides a statistical improvement over the
GARCH class of models that does not incorporate structural
changes based on the highest value of log-likelihood and the
lowest value of the Schwarz Bayesian Information Criteria
(SIC) evaluations. In addition, we do not find any significant
bias from the perspective of the sign bias, negative size bias,
positive size bias and joint tests in standardised residuals, as
proposed by Engle and Ng (1993), for the estimated GJR-
GARCH model that incorporate structural changes for all
the indices under study at 1% level of significance.

Out-of-sample forecasts

In this section, we investigate the forecasting ability of the
GARCH class of models used in this study with and without
incorporating sudden changes in the variance. We use the
squared return as a volatility proxy for the out-of-sample
evaluation. We calculate root mean squared error (RMSE),
mean absolute error (MAE) and logarithmic loss errors (LL)
to measure the forecast accuracy of the models used.

If s2
f,t is a volatility forecast for day t and s2a,t is the

actual volatility on day t, then



Fig. 1 Time plots for returns with band of �3 standard deviation for all the indices.
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where T is the number of forecasting data points.
Table 13 presents the forecast evaluation of 50 one-
step-ahead forecasts generated from the GARCH class of
models used.

The results indicate that the GARCH class of models
which incorporates sudden changes in the variance provides
relatively good forecasts of the Indian stock market vola-
tility whereas the GARCH class of models without consid-
ering regime control variables seems to be a poor
alternative. Hence, the results of the one-step-ahead
forecast evaluation analysis suggest that the volatility
models which account for sudden changes in the variance
provide excellent out-of-sample predictability.

Conclusion

In this study, we compare the performance of Inclan and
Tiao’s (IT) (1994) and Sanso, Arago and Carrion’s (AIT) (2004)



Table 7 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for S&P CNX Nifty.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.292* (0.131) 0.221y (0.125) 0.257* (0.124) 0.187 (0.121)
u 2.492 (2.511) 1.048* (0.483) 3.100 (1.953) 1.521 (0.937)
a 0.124# (0.043) 0.139# (0.039) 0.025 (0.035) 0.087* (0.037)
b 0.574* (0.262) 0.793# (0.058) 0.483# (0.174) 0.742# (0.095)
(a þ b) 0.698 0.932 0.508 0.829
g 0.233 (0.395) 0.135# (0.011)
Log-likelihood �2258.729 �2271.328 �2252.682 �2268.178
SIC 5.464 5.466 5.462 5.467
JB-stat 16.878# 31.661# 12.985# 33.480#

0.000 0.000 0.002 0.000
Q(20) 28.477y 27.026 30.167y 29.476y

0.099 0.135 0.067 0.079
Qs(20) 12.052 7.677 15.183 8.500

0.845 0.983 0.649 0.970
ARCH-LM(10) 0.588 0.292 1.008 0.513

0.825 0.983 0.435 0.882
Sign bias test 2.238* 0.792 1.153 1.068

0.025 0.428 0.249 0.285
Negative size bias test 0.212 0.827 0.928 0.392

0.832 0.408 0.353 0.695
Positive size bias test 1.151 1.847y 0.862 1.527

0.250 0.065 0.389 0.127
Joint test 19.390# 16.069# 4.370 8.891*

0.000 0.001 0.224 0.031
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.

Table 8 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for CNX 100.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.711# (0.206) 0.541# (0.183) 0.571# (0.112) 0.525# (0.170)
u 4.152 (5.717) 1.257y (0.654) 6.349# (2.295) 1.732 (1.752)
a 0.113 (0.123) 0.187* (0.079) 0.083# (0.025) 0.138 (0.093)
b 0.421 (0.493) 0.746# (0.088) 0.187 (0.253) 0.696# (0.193)
(a þ b) 0.534 0.933 0.270 0.834
g 0.252y (0.144) 0.126# (0.032)
Log-likelihood �1042.194 �1051.343 �1032.905 �1050.623
SIC 5.537 5.538 5.547 5.549
JB-stat 29.758# 88.016# 53.253# 87.602#

0.000 0.000 0.000 0.000
Q(20) 36.288* 31.996* 32.950* 34.898*

0.014 0.043 0.034 0.021
Qs(20) 11.303 7.333 9.846 7.574

0.881 0.987 0.937 0.984
ARCH-LM(10) 0.686 0.438 0.580 0.507

0.738 0.927 0.830 0.885
Sign bias test 1.171 1.078 1.242 1.432

0.242 0.281 0.214 0.152
Negative size bias test 0.326 0.070 0.909 0.799

0.745 0.944 0.363 0.424
Positive size bias test 1.517 1.439 1.436 1.235

0.129 0.150 0.151 0.217
Joint test 12.533# 9.240* 7.860* 8.083*

0.006 0.026 0.049 0.044
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.



Table 9 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for S&P CNX 500.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.538# (0.149) 0.432* (0.167) 0.541# (0.146) 0.426# (0.158)
u 3.054y (1.592) 1.200y (0.683) 4.226# (1.611) 1.577 (1.593)
a 0.161# (0.057) 0.207# (0.080) 0.081* (0.034) 0.173* (0.070)
b 0.498# (0.095) 0.738# (0.094) 0.384# (0.080) 0.700# (0.170)
(a þ b) 0.659 0.945 0.465 0.873
g 0.362 (0.232) 0.092# (0.032)
Log-likelihood �1555.248 �1577.945 �1549.677 �1577.391
SIC 5.557 5.581 5.549 5.590
JB-stat 41.357# 101.100# 39.560# 99.713#

0.000 0.000 0.000 0.000
Q(20) 40.052# 38.059# 41.585# 40.130#

0.005 0.009 0.003 0.005
Qs(20) 16.978 7.376 22.372 6.419

0.525 0.987 0.216 0.994
ARCH-LM(10) 0.937 0.415 0.854 0.369

0.499 0.940 0.577 0.960
Sign bias test 0.351 0.705 0.898 0.611

0.726 0.481 0.369 0.541
Negative size bias test 0.343 0.059 1.064 0.374

0.732 0.953 0.287 0.708
Positive size bias test 2.117* 1.910y 0.568 1.921y

0.034 0.056 0.570 0.055
Joint test 8.405* 10.314* 2.453 8.310*

0.038 0.016 0.484 0.040
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.

Table 10 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for CNX Nifty Junior.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.618# (0.153) 0.512# (0.176) 0.539# (0.149) 0.468# (0.151)
u 4.510* (2.092) 2.886* (1.273) 5.110# (1.915) 4.696* (2.326)
a 0.203# (0.056) 0.227# (0.074) 0.025 (0.049) 0.116 (0.072)
b 0.440# (0.103) 0.661# (0.112) 0.406# (0.077) 0.557# (0.157)
(a þ b) 0.643 0.888 0.431 0.673
g 0.293 (0.216) 0.242# (0.079)
Log-likelihood �2202.100 �2226.092 �2195.404 �2222.529
SIC 5.858 5.878 5.849 5.877
JB-stat 23.902# 117.830# 17.225# 194.840#

0.000 0.000 0.000 0.000
Q(20) 39.965# 42.382# 39.038# 44.606#

0.005 0.002 0.007 0.001
Qs(20) 18.963 13.737 19.583 10.847

0.394 0.746 0.357 0.901
ARCH-LM(10) 0.802 0.687 0.811 0.602

0.627 0.738 0.618 0.813
Sign bias test 1.803y 1.130 1.488 0.813

0.071 0.258 0.137 0.416
Negative size bias test 0.582 0.046 1.247 0.637

0.561 0.963 0.212 0.524
Positive size bias test 0.689 0.916 0.423 0.431

0.491 0.360 0.673 0.667
Joint test 8.370* 6.645y 2.591 1.675

0.039 0.084 0.459 0.642
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.
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Table 12 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for CNX Smallcap.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.829# (0.220) 0.756# (0.218) 0.779# (0.202) 0.732# (0.206)
u 2.473y (1.271) 2.122# (0.797) 3.641* (1.537) 2.956 (2.392)
a 0.138* (0.056) 0.230# (0.073) 0.058 (0.044) 0.144 (0.142)
b 0.629# (0.062) 0.681# (0.071) 0.556# (0.074) 0.629# (0.178)
(a þ b) 0.767 0.911 0.614 0.773
g 0.280 (0.195) 0.159# (0.049)
Log-Likelihood �937.548 �949.273 �931.627 �948.400
SIC 5.770 5.806 5.752 5.818
JB-Stat 75.344# 97.110# 82.660# 130.410#

0.000 0.000 0.000 0.000
Q(20) 31.261y 33.695* 32.812* 35.223*

0.052 0.028 0.035 0.019
Qs(20) 18.556 10.589 15.609 7.662

0.420 0.911 0.620 0.983
ARCH-LM(10) 1.588 0.918 1.443 0.625

0.109 0.517 0.161 0.792
Sign Bias test 0.744 0.134 0.193 0.128

0.457 0.893 0.847 0.898
Negative size bias test 0.362 0.058 0.622 0.266

0.717 0.954 0.534 0.790
Positive size bias test 1.990* 1.475 0.729 1.185

0.047 0.140 0.466 0.236
Joint test 4.647 3.112 1.072 1.767

0.200 0.375 0.784 0.622
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.

Table 11 GARCH (1,1) and GJR-GARCH (1,1) model with and without dummy variables for CNX Midcap.

GARCH (1,1) GJR-GARCH (1,1)

With dummy Without dummy With dummy Without dummy

m 0.696# (0.182) 0.611# (0.194) 0.668# (0.167) 0.652# (0.164)
u 4.593y (2.611) 1.730y (0.984) 6.131# (2.283) 5.683# (1.971)
a 0.113 (0.078) 0.172* (0.067) 0.037* (0.017) 0.005 (0.031)
b 0.462# (0.164) 0.741# (0.104) 0.325# (0.119) 0.442# (0.130)
(a þ b) 0.575 0.913 0.362 0.447
g 0.342 (0.240) 0.417# (0.089)
Log-likelihood �1354.149 �1364.949 �1344.137 �1359.905
SIC 5.639 5.645 5.610 5.637
JB-stat 63.735# 171.500# 52.007# 300.950#

0.000 0.000 0.000 0.000
Q(20) 40.302# 40.036# 41.451# 45.661#

0.005 0.005 0.003 0.001
Qs(20) 8.732 7.105 11.747 9.116

0.966 0.989 0.860 0.957
ARCH-LM(10) 0.672 0.378 0.831 0.671

0.751 0.956 0.599 0.752
Sign bias test 0.892 0.550 0.659 0.212

0.372 0.582 0.510 0.832
Negative size bias test 0.396 0.314 0.827 0.494

0.692 0.753 0.408 0.621
Positive size bias test 1.998* 1.851y 1.458 1.540

0.046 0.064 0.145 0.123
Joint test 13.652# 9.507* 4.945 2.892

0.003 0.023 0.176 0.409
#, * and y means significant at 1%, 5% and 10% level of significance, respectively.
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Table 13 Out-of-sample forecast evaluation.

GARCH GJR-GARCH

Without dummies With dummies Without dummies With dummies

S&P CNX Nifty
RMSE 11.080 8.251 11.280 8.264
MAE 10.330 7.463 10.590 7.496
LL 14.730 12.500 14.910 12.530
TIC 0.489 0.469 0.492 0.468
CNX 100
RMSE 12.900 8.610 12.570 8.771
MAE 11.800 7.960 11.650 8.165
LL 11.430 9.009 11.370 9.023
TIC 0.514 0.469 0.510 0.467
S&P CNX 500
RMSE 13.980 8.589 13.710 8.301
MAE 12.600 7.722 12.550 7.322
LL 15.010 11.830 14.970 11.460
TIC 0.530 0.472 0.528 0.474
CNX Nifty Junior
RMSE 19.630 12.190 18.660 11.970
MAE 18.110 11.090 17.580 10.790
LL 14.950 11.650 14.670 11.460
TIC 0.552 0.492 0.546 0.492
CNX Midcap
RMSE 15.140 11.630 14.600 11.850
MAE 14.150 9.818 13.820 10.230
LL 14.070 11.690 13.830 11.920
TIC 0.503 0.497 0.504 0.495
CNX Smallcap
RMSE 18.210 14.520 17.280 14.530
MAE 16.750 11.330 15.830 11.170
LL 13.510 10.390 13.100 10.220
TIC 0.580 0.528 0.581 0.535
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iterated cumulative sums of squares (ICSS) algorithms by
means of Monte Carlo simulation experiments and find
extreme size distortions for the IT testwhereas the AIT test is
correctly sized for almost all the data-generating processes
considered. Hence,weapply theAIT ICSS algorithm todetect
regime shifts in the Indian stock market (six major indices of
Indian stock market). We also find that the regime shifts are
largely associated with domestic and global macroeconomic
and political events. These endogenously determined
regime shifts are then incorporated in the volatility models
(GARCH and GJR-GARCH models) to study the impact of
shocks on volatility asymmetry and persistence. We find that
the asymmetry and persistence in volatility are reduced
significantly when regime shifts are accounted for in the
volatility models. This suggests that ignoring sudden changes
in volatility will lead to overestimating the persistence of
volatility which in turn may lead to potential errors by risk
managers to come up with the Value-at-Risk (VaR) measure.
Also, out-of-sample forecast evaluation analysis confirms
that volatility models that incorporate regime shifts
provide more accurate one-step-ahead volatility fore-
casts than their counterparts without regime shifts.
Hence, considering sudden changes in the variance may
improve the accuracy of the estimation of the volatility
persistence and consequently in the VaR and may help in
the optimal allocation of funds.
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