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Abstract

A new definition for the approximate symmetriefsli® dynamical system is given. Determining
systems of approximate symmetries for I1td and Stratonovich dynamical systems have been obtained.
It has been shown that approximate conservation laws can be found from the approximate symme-
tries of stochastic dynamical systems which doarige from a Hamiltonian. The results have been
applied to an example.
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1. Introduction

There has been a growing interest in the literature to extend Lie’s theorems to stochastic
differential equations (see, for instance, [1-6]). The symmetry definition given in [5] maps
It6 differential to another Itd differential. Therefore, determining systems for the symme-
tries of the It and the Stratonovich stochastic dynamical systems become deterministic
(i.e., no Wiener terms appear). Here we adopt the approach to symmetries of stochastic
systems given in [5] and apply it for determining approximate symmetries.
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Approximate symmetry analysis of the deterministic differential equations has been
developed by Baikov et al. [7] (see also [8]). It has been extended by incorporating reso-
nances occurring in deterministic dynamical systems in [9]. Approximate symmetries of
the stochastic dynamical systems have not tstedied in the literature. Therefore we will
investigate this problem in the sequel.

Here we consider the Ité dynamical system of the form

dxi = (f20x, )+ efr(x,0))dt + e ciadBy (i=1,...,n;a=1,....r), (1)

Wherefl.o(x, 1) + efil(x, t) is an approximate drift vectoe;,, is a constant diffusion ma-
trix, d B, is a vector valued Wiener process, anek 1 is a small positive perturbation
parameter.

We begin Section 2 by giving the definitions of approximate symmetries. This allows
us to obtain deterministic hierarchy of determining system involving random variables.

It has been shown that the approximate symmetries of the Fokker—Planck equation
and the approximate symmetries of the 1t6 systems are related. Furthermore it has been
shown [5] that approximate conservation laws can be obtained from approximate symme-
tries without resorting to Noether’s theoneWe illustrate this result by an example of a
concrete problem.

In what follows, the summation convention applies to repeated indices.

2. Approximate symmetries of stochastic dynamical systems

Consider a one-parameter family of curves

z2=¢:()
parametrized by.
If ¢ is a small continuous (deterministic) parameter, then the above family of curves de-
fines what is called in [7] aapproximate transformationt is usually written, by replacing
t by a, in the form
Xx=¢(x,a,e),
wherex denotes the transformed point.
If one replaces the deterministic parametély a random variable, one obtains what

is called astochastic proce§sometimes termed also a random process). It is written in the
form

Xo(1).
Different stochastic processes are distinguished by choaesiingm different probability
spaces.
2.1. Approximate symmetries of deterministic equations
We outline here the main notions of the theory of approximate symmetries in the first
order of precision. Recalhe approximate equatiofi~ g means that
fx,e)=g(x,e)+o(e)
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or equivalently
flx,e)=g(x, &)+ 0.

Given a functionf (x, a, ¢), we will choose the standard representative of the class of all
functionsg(x, a, &) ~ f(x,a, ¢) in the form

fo(x,a) +efi(x, a). (2)
An approximate transformation

)Ei%fé(x,a)—i—sfl"(x,a), i=1,...,n, )
is the set of all invertible transformations

= fi(x,a,¢) (4)
such that

fi(x,a,e)~ fi(x,a) +efi(x,a). (5)

It is assumed that the functiorfg'(x, a) and f{ (x, a) are defined and regular in a neigh-
borhood ofa = 0 and that, in this neighborhood,

fo,a)=x',  fi(x,a)=0
if and only ifa = 0.
We say that Eq. (3) defines a one-paramafgroximate transformation groupany
representation (4) of (3) satisfies the group property
f(f(x,a,8),b,6)~ f(x,c,8), c=¢(a,b). (6)

Upon introducing the canonical parameterthe group property (6) can be written in the
form

f(f(x,a,e),b,e)~ f(x,a+b,e). (7)

In this definition, unlike the usual group properf,does not necessarily denote the
same function at each occurrence. Spedificéhe approximate group property can be
equivalently written in the form

f(g(x,a,s),b,s)%h(x,a+b, €) (8)

with any functionsf ~ g ~ h.

Example 1. Let us consider the one-dimensional case-(1) and consider the family of
functions approximately equal to

1
f(x,a,e):x—i—a(l—i—ex—i—éea).

The functionf has the standard form (2f,= fo(x, a) + €f1(x, a) with

2
folx,a)=x+a, fl(x,a)zax—i—%.
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The family in question forms an approximate transformation group since
ab(2x +a) .
> .

The generatorof an approximate transformation group (3) is the set of all first-order
linear differential operators

F(fx,a,e),b,6)=f(x,a+b,e)+

X =& (x,6)—
o T dxt
such that’ (x, &) ~ &} (x) + e&} (x), where

dfg(x, a) : 3fi(x,a)

Jov . EHx) = iV T ,
da a=0 da a=0

Itis convenient to identifyX with its canonical representative

Eh(x) = i=1....n.

. . 3

X = (Eo(x) + e61(0)) 5~ ©)
Let

X=Xo+eX1 (10)

be a given approximate generator, where
Xo= 00—,  Xy=E(0)—
0= 50 gy R P
The corresponding approximate transformation group
P =xbtex, i=1,....n,

is determined by the following system of equations [7]:

dzt » _

_aO :g(l)(XO)a x(l)|a:0 =x’, (11)
did G [9g0) o p

da :I;xl'[ It L%%ﬂxo» ©,_0=0. (12)

They are called thapproximate Lie equations
Example 2. Letn =2 and let

a a
X = (1+8x2)— +exy—.
dax dy

Here&o(x, y) = (1,0) and&1(x, y) = (x2, xy), and the approximate Lie equations (11)—
(12) are written as

dxo dyo _ _

_ = :I_7 —_— = 07 X =0=X, =0=)Y,

T T 0la=0 Yola=0=y

dx1  _ oo - -

—= =(%0)?, —— =2X0j0, X1la=0=0, J1la=0=0.

da da
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Integration yields

3 2
- 2,2 ,9 - a
x%x—i—a—i—e(ax +a x—i—E), y%y—i—e(axy—i—iy).

Let us denote by = (z1,...,zY) = (x, u, uay, - .., k) the set of independent vari-
ablesx = (x1, ..., x") and dependent variables= (x1, ..., u™) together with the partial
derivativesu(yy, . . ., ux) of u with respect tor of the respective orders 1 ., k. Consider

an approximate differential equation of order

F(z,8) = Fo(z) + eF1(z) ~ 0. (13)
We include here also the systems of equations assumingFthahd F; can be vector
valued functions. LeG be a one-parameter approximate transformation group and let its
prolongation to the derivatives involved in Eq. (13) have the form
7~ f(zoa,8) = fi(z,a) +efi(z,a), i=1,...,N. (14)
We say that Eq. (13) iapproximately invarianif the equationF' (f (z, a, ¢), ) = o(¢)
holds whenever = (7%, ..., z) satisfies (13). We write this condition as follows:
F(f(z.a,),¢)| 44 =o0().

Consider an approximate transformationyp of the independent and dependent vari-
ables with the generator

X=X"4+ex? (15)
where
. 0 0 . 0 0
0 1
X =§6(x,u)—8x,- +n8‘(x,u)—8ua, X =§i(x,u)—8x,- +n‘i‘(x,u)—aua- (16)

We will write the prolongation o to the derivatives involved in Eq. (13) in the following
form:

- - ~ 0 9
_ %0 1_ .k k
X=X"+¢eX :(0(1)8—%+8§1(Z)8—Zk. a7
Equation (13) is approximately invarianhder the approximate transformation group
with the generator (15) if and only if
[X°Fo() + &(X Fo(@) + X°F1(2))]| (15 = 0(&). (18)

Equation (18) is theletermining equatioffior infinitesimal approximate symmetries and
can be written in the form (see, e.g., [10, Section 9.5.2])

XOFo(z) = M(2) Fo(2), (19)
X1Fo(z) + X°F1(z) = M(2) F1(2). (20)

The factori(z) is determined by (19) and then substituted into (20). The latter equation
must hold for all solutions of(z) = 0.

It follows from the determining equations that X = X° + ¢ X! is an approximate
symmetry withx? = 0, then the operator
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. 9 0
0_
X —éé(x,u)ﬁJrnS‘(x,u)W (21)
is an exact symmetry for the unperturbed equation
Fo(z) =0.

The corresponding approximate symmetry generatee X° + ¢X?! for the perturbed
equation (13) is called deformation of the infinitesimal symmety of Eq. (21) caused
by the perturbation Fi (z).

Example 3. Consider the following perturbation of the wave equation:
Uy — Uxx — Uyy +eu; =0. (22)

The operator

i D e D
= X— —_— — —=XU—
Yor Thax T 2"

is one ofexactsymmetries for Eq. (22). An example of an approximate symmetries of
Eq. (22) is

9 9 9 9 e 9
X:tz 2 2y 2tx — 2l——l———l2 2 2 —.
P T P AL

The symmetryx© of the unperturbed equation (21) is calledtable symmetrif there
exists X! such thatX = X° + ¢ X1 is an approximate symmetry for the perturbed equa-
tion (13). In particular, if the most general symmetry Lie algebra of Eq. (21) is stable, we
say that the perturbed equation (I1¥)erits the symmetries of the unperturbed equation.

2.2. Approximate symmetries of the 1td dynamical system

Definition 1. If infinitesimal transformations
G ax+a(Edx 1) +egrx, ), i~t+a(®x, 0+ et (x, 1) (23)
leave Eq. (1) and the identities (see [11])
(i) dBydBg=354pdt, (i) dtdB,=0, (i) drdt=0, (24)
approximately form invariant, i.e.,
di; = [ 2%, 0) + e fH(%, )] df + Ve cio (X, 1) d By
(i=1...,n,a=1,...,1), (25)

then they are called approximate symmetry transformations for the 1t dynamical system.
Herea is a group parameter.

Why do we require (24) to remain invariant under the transformations (23)? To be able
to provide an answer to this question, we now consider the evolution of the sufficiently
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smooth scalar functiori(x, ) under the flow of the 1t6 equations (1), i.e., 1td 's formula
(see, e.g., [11] and [17)
1
AL 1) =Lpdt +1jdxj+ S jkdx;dx. (26)
Substitution ofdx; defined by (1) into Eq. (26) yields

dl = (L, + (f2+eff)1;)dt + el jcjoadBy +21 jkCjaCkp dBy dBg

1
+ S L[ (FF +ef7) (£ + efid) dede + e (£ +ef)ews dr d By

+ Ve (f+eft)cjadt dBy]. (27)
Using the identities given in (24) in (27) leads to It6 differential of the scalar function
I(x, 1),

1
SCjaCkal >i|dt+«/gcjal idBy. (28)

dI = [1,, + 7L+ s(fjll,j +3

Form invariance of (1) under transformations (23) requires that 1td differentiaf>of)
should read as

_ 1
dI—|: +f I]—i—e(f I]—i—zc]acka ]k>j|dt+ljg]adB (29)
For this to happen the idéties (24) have to remain form invariant under (23):

(i) dBydBpg=384pdt, (i) dtdB,=0, (i) didi=0. (30)

This justifies the idea behind the symmetry definition.
We now proceed to seek the determining system for the symmetries of (1). To achieve
this we have to calculate each term in (29jerms of the original variablesands,

fr(x+a(E+egl), t +ax® +eth)
= 1) + a1 + O e (6 T )] + 0@ (31)
The 1t6 differential of (23) reads
(i) dii=dx; +a(dgl + ed&l) + 0(a?),
(i) di=dt +a(dt®+ edth) + 0(d?), (32)

where

d&"

1
I:g + ijElm] + 8<f];§l.'z. + Ec'jackafﬁjk)} dr + “/Ecjag,'l?lj dB,,

1
dr'"z[fm"‘ft +e(ft + c,acka ,k)i|dt+«/gcjaff7d3a-

1 We will use the comma for the partial derivative wittrspect to the coordinate appearing in the subscript,
e.g.l;=0I/ot.
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Rendering (32)(ii) back to the right-hand side of (30)(i) yields
dBydBy=dBydBy +a [0 700+ (1 T 70k 4efte 4 %c,ackatgk>
+ &2, (104 et %} dB, dBg.

Let us first seB = « in above equation and then Taylor expansion leads to

_ 1 1
dBy=dBy+ 5a [rf,’ + %+ e(r} + 705+ S5+ Sejacka rf}k)

dB
+81/2c,-y(r°+ezl),jd—ty}d3a. (33)

Note, that the infinitesimal transformation law given in (33) has been partially captured
in [3] by considering so-called projectable symmetries, i.e., by imposing the restriction
7 = 7(¢), and hence obtaining the similar restriction of the infinitesimal transformations of
probability density function. In [4], the authors obtain exactly the same formula but they
rely on a theorem given in [12].

We continue our calculations and consider the remaining conditions. Let us consider
(30)(ii). Substituting (32)(ii) and (33) into the left-hand side of (30)(ii) we obtain

dtdBy = gjot,;dt =0.
This leads to
cjaTy=0,  cjat=0. (34)

Rendering (34) back into (33) yields

_ 1 1
dBy=dBy + Sa |:r’? + 7%+ s(r} + 705+ ef T+ Sejucka tﬂk)} dB,.
(35)

Equation given in (30)(iii) do not introduce new constraintsr@x, t) andd By (¢).

Remark. Note, that the transformation law (35) for the infinitesimal increments of Wiener
processes is different from the one given in [4] (namely, cf. (35) with Eq. (20) in [4])
and it generalizes the result obtained in [3]. Notice also that the first condition (34) was
imposed in [4] as a sufficient condition to get rid of stochastic terms thus simplifying the
determining equations. On the contrary, we show that this condition is not only sufficient
but also necessary and that Eq. (34) follows from Eq. (24) of the symmetry definition.

We now substitute (31), (32) and (35) into equation given in (25) to obtain
0 1 Ve
dxi = (f, +ef7)dt +eciadBo +a|Ti — Zi + 7chdBDl ,

where
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E=Fﬁﬂ+ﬂﬁ+£ﬁ+ﬁﬁﬁ+{af+rn+ﬂr+f
1
+ft + c,acka jk>+$f,]+r fl,+t,f +ff i|

1
Zi= [Si?t + fjoéi?j + 8(5,']:; + fjoé,ll + f,lfloj + Ecjackagi(,)jk>j| dt
+ \/g (Cja%—,'?j + SCjaE,%j) dBy,
1
Q=£+ﬁﬁ+%ﬁ+ﬁﬁ+ﬁ%+yW%%0'
We deduce from these equations the following theorem.

Theorem 1. The infinitesimal transformatior{&3) provide approximate symmetries for the
It6 equationq1) if and only if the infinitesimalg; (x, ) and (X, ¢) satisfy the following
determining equations

g2+ ngQ — gf.’fiq - Tof,o — 00 - fl.ofjofs. =0,
Ci
Cjoté,'?j 2a (T + fo 0) 0, Cjaf,c;' =0, (36)
and
g+ e - Y =T S = o= 1A
——ﬁ%+%nﬁwﬂwﬁm+ﬁﬁﬂ+ﬁﬁﬂ

0
_Cjackaéi,jky

1
0 0
+ _f,' Cjackaf,jk - >

1 G Ci 10,1 0 1
cjabij— lza ( + f ) % (fj T+ Ecjﬁckﬁf.,jk)’ ¢jat;=0. (37)
Notice that this system does not involve Wiener terms (@8,,) and hence, it is deter-
ministic.
2.3. Approximate symmetries of Stratonovich dynamical systems

The Stratonovich dynamical system with a small parametends as
dxi = (f20% 1) + fH (X, 1)) di + Ve cio (X, 1) 0 d By, (38)
wherei =1,...,n;a=1,...,r, ando denotes the Stratonovich derivative.
Theorem 2. The infinitesimal transformation@3) provide approximate symmetries for

the Stratonovich dynamical syst€88)if and only if the infinitesimal; (x, ¢) and z (X, 1)
satisfy the following determining equations

g2+ ngQ - ng.Q — 1078 — 00— fl.ofjofs. =

Ci
ciakl; — 2"‘ 0+ fx%) =0 cjt% =0 (39)
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and

1 0e1 1,0 1,0 0.1 _ 0,01

§,+ & =& i, — v i it — T
1.0 0,1 0,1 1.0, ;1,00 , 0,10
=ik & ST i T

S+ el =F(1}79).  curf=0 49)

gl T
cjaki 2 2 Vit

The proof of this theorem is similar to that of Theorem 1. For the sake of brevity we
omit the proof. However, one should notice that the Stratonovich differential obeys the
standard chain rule [11]. This, in turn, leads to

dBy = dBy+ Ja[t0+ [0S (et 4 102 + [10) o B
del" = &/ + f7E!" + ef J&]'; ] di + Ve cjak]'; dBa,
dr" =[] + fjor’”; + 8fjl7,')r7] dt +/ecjat"; dBy,
which is used in the proof of Theorem 2.
Let us define the vector fields
a a a a

0
D" = — + fm_ XM — M +€__m Cy = Cly

- . 2 2 m=01 (4
or 7 ax; ar ok x o (1)

Equation (40) of the determining system can be rewritten now in the following form:
1
(D%, X% = (o] + f775)D°%  [Ca, X% =5 (] + £}'75)Ca:
[D°% X1 = —[DL X0+ (x] + Pl + £12%)D% + (9 + £)5) D1,
1
[Ca, Xl] = E(T} + fjofl, + f}TS‘)Cav (42)

where the expressions in the left-hand sides are the Lie brackets.

3. Therelation between approximate symmetries of the Fokker—Planck equation
and the [t6 system

To every Itd stochastic ordinary differential equation there corresponds a deterministic
partial differential equation called tl®kker—Planck equatiotts normalizable solution is
the probability distribution of the solution to the stochastic differential equation (see [13]
and [14]).

For the It6 system (1), the associate Fokker—Planck equation has the form

1
F=p,+ fpi+ fp+ 8(fklp,k + fep - Eckozclap,kl> =0. (43)

Here, we will discuss a correspondence between the approximate symmetries of Egs. (1)
and (43). Since the Fokker—Planck equation is a deterministic partial differential equation
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its approximate symmetries are found by using the method given in Section 2.1. Namely,
we look for the approximate group generator (15)—(16) written in the form

i

d d d d
X =72%x.t, p)— + &%, t, p)— + 0%, t, p)— + ¢0——
T ( p)8t+€,( p)ax +IT°( p)8p+§t3p,z

a a )
+e Tl(xvtvp)_—i_éil(xvtvp) +H1(X7t7p)
at dx; ap

and consider its second prolongation:

0 d d 0 0
X =101, p)— + E9(x, £, p)— + 1O, t, p)— + ¢0—— + (0
@=1( p)at +& (X, 1, p) o +IT°(X, 1, p) o +¢& =y +¢ .

+¢f +e|tix, 1 p)3+€~1(x t p)—8 + It p)iJr{l—a
Y op.ij T T P P p T apy,
9 9
1 1
+ ; + 17 £
‘i op,i ‘i 819,17}

where

(" =1 4 p Il — p (& + P& ,) — pa (T + patly),
G =107+ pailly = prlEl + pakly) — pa(eh + patly),
¢t =Di(¢") = put’} — pik&l; — PikDEL, — Pt DT
Here,m =0, 1 and
LAY
0x; ap
The approximate invariance criterion reads (cf. Eq. (18) and [10, Section 9.5.2])
X@2)(F)|F=o(e) = 0(&).
It leads to the following determining system:

D;=

CiaClafp; + CkaCjak’; — Ciatia (19 + £79)
1 1 1 1 1
+e[cinciabt + ckaCjokl; — oo (TT + 110+ £2])] =0, (44)
0 0,0 00 0,0 0,0_0
= (Tf) T 1080 — & fi — 1 e

n e[(rO Felf0)  + fR0, + SO, — €0 sk — 6410,

2
10, #0410, (.0 40 0 £0, 0 00
O+ [P0+ (20 f3)  + s + fi fnTon

1
= Sciacjubp — PR — fERTS = 1210 +c,-acjan}] =0, (45)

1
+g[n)1,1+ o+ om0 — Ec,-ac,-ang}% (=°£5) , + (1 15),

T AOER FLE0 £ £OT0 4 £ fLe0 4 4O frsr}n} o (46)
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and
1
5+ [R5 + £, 1% + e(fklﬂi + fidT? — Eckaclan?k,) =0, (47)
where
IOx, 1, p) + el (x, t, p) = (IT*0(x, 1) + eI (x, 1)) p + [T2(x, 1, &),
=", &'=§&"'(x0, m=01

Let us suppose thgt" (x, t) andt™ (X, t) satisfy (36)—(37). We now want to determine
conditions under which they also satisfy (44)—(46). Equation (44) can be rewritten as

Cla Tko + Cka Tlo + 8(Cla Tkl + Cka T[l) =0,

where
0_ . 0 Cia 0.0 1_ . ¢1  Cia 0.1
T =cja&; 2( +fit, ) T =cjak; 2( +f +fjt,j)'

Since; (x, )" andz (x, 1) satisfy (37), we havé," =0,m =0, 1.
Differentiating (44) with respect tg; and summing with (45) one obtains

aa09=0, .0} =0, (48)
where
QO ano"'gi(,)i _ fiot,(z)" Ql 2H11+‘§i]:i _ filt,(z)' _ intl

Differentiating (44) with respect te; andx;, then differentiating (45) with respect iq
and finally summing the resulting equations with Eq. (46) one obtains

05+ 0% =0 0L+ 0%+ fro% =0 (49)

Solutions to Egs. (48) and (49) provide a relation between the approximate symmetries
of the Fokker—Planck equation and the approximate symmetries of Itd system. In case of
constant solution€’1 andC> we find

&2+ 00+, mt=—gh + 0+ P+ ca

Hence, we have just proven the following theorem.
Theorem 3. Let
d ad
X=70" 40 " -
’ 3t+€]3x./+8< +§/8x1)
be the generator of the approximate symmetry of the 1t6 sy@gmhen

Y=X+[Co— &%+ 00 +e(Ca— &L + A0+ 21 ]p %. (50)

Likewise, one can easily show thatlf is an approximate symmetry of the Fokker—
Planck equation (43) theX is an approximate symmetry of the 1t6 system (1).
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4. Approximate conservation laws

Conserved quantities of @ionovich dynamical systems were considered in [1] and
[2] without recourse to Hamiltonian formulati. Here we give an alternative theorem for
approximate conservation laws. For more details, see [15].

Definition 2. We call 19(x, t) + e11(x, 1) an approximate conserved quantity if
1%, 1) + eIt (x,1) ~ C, C =const
on the sample paths of the stochastic dynamical system.

The It6 differential of the conserved quantityx, r) can be easily obtained from (28),
namely

d1°+edr*
— |04 7940 Jly f0g1 1,0 Ve 10 1Y g
= t+f] ,j+8( ,t+fj ,]+fj ’j)+7(CjaCka ’jk+8cjack01 ’jk) t
+ Ve (cjal® +ecjol) dBy = O(c?).
This leads to the following partial differential equations:
0 0;0 0 1 01 150 1
194 f15=0, cjul; =0, I3+ f1;=—fi1 cjl;=0 (51)

for an approximate conserved quantity to satisfy. One can easily show that an approximate
conserved quantity of the Stratonovich dynaatisystem (38) should also satisfy (51).
Using the vector fields given in (41), Eq. (51) can be rewritten as

D% =0, c(% =0, (52)
D11 = —D(19), clah=o. (53)

Theorem 4. Suppose that I1t6 dynamical syst€h)admits a stable approximate symmetry
vector field of the form

X=Xo+exi=1"2 4200 L (2l L)
at ' 0x; at "o

Xi
Then an approximate conservation ldx, 1) = 19(x, t) + e11(x, r) can be found as
Px, 0 =% - 00+ P°  1*xx,n =gk - 10— ot + P, (54)
whereP? and P! satisfy Eqs(45) and (46).

Proof. It follows immediately from the comparison between Eq. (51) and Eqgs. (48)
and (49). O

Theorem 5. Let
divD" =0 (m=0,1)
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and let
X1=X9+ex}, .., X, =X04ext
be the linearly independent symmetry vector fields satisfying the properties
r_y? + fjors- =0, 7,',} + fjor’lj + fjlts =0. (55)

Then the approximate conserved quantifyx, r) + eI1(x, r) can be obtained from the
approximate symmetries as follows

°x,0=X31X3]---1x0] %2,
oo =X xS x0 2+ x9xt X% e+
+X91x3)-xt e, (56)

where] is the interior product and2 = dx1 A - - - A dx,, is the volume form.

Proof. Let us calculate the Lie derivative &P with respect tdD° to obtain
D219 = Lpol® = (LpoX9) X3 IX0 2 +- -
X9 (L£poX9) I+ IX0 2 + X9 UX ) - IXO | (Lpo2). (57)
Using (55) in (42) we find
[D% X9 =LpoX%=0 (j=1.....n).
Since
Lpof2 =divD02

and divD® = 0, one hasCpo$2 = 0. Therefore all the terms on the right-hand side of (57)
vanish. We now calculate the Lie derivativeiwith respect taC,, to obtain

Coal® =Lc, 1= (Lc,X9) IXI )+ IXJ )2+
+X0(Le,X9) - 1X0 2 + X9 X8 1X2 J(Le, 2). (58)
Using (55) in (42) we find
[Ca. X9 =L, X0=0 (j=1.....n).

FurthermoreLc,$2 = 0. Therefore all the terms on the right-hand side of (58) also vanish.
Hence, Eqg. (52) holds for

XQIX3) - 1X0] 2.
Similar calculations for* given in (56) lead to the equation
Loolt = —(LpaXQ) IX3 ] IXT 12 =X (LpaXD) |- IXP 2+ -
—X$IX9 - (LX) | 2.
It can be rewritten as
Loolt=—Lpa[X2IX5]--- 1 X7 | 2],



166 N.H. Ibragimov et al. / J. Math. Anal. Appl. 297 (2004) 152-168

Since
XPIX9J---1X0 12 =1°
we arrive at the equation
Lpolt=—LpI°.
It can be easily shown that
Lc,1t=0.
Hencel® given in (56) satisfies (53). This completes the proafi

5. An application

Let us consider the following stochastic dynamical system:
dx1=xodt, dxzz(—x1+8f(x1, xz))dt—i-\/EdB.
For this problem, we have
Q=x2 fl=-x1 fi=0, fi=f(x1x2),
canr=ci2=c22=0, cau=1
The determining equations (39) for Eq. (59) are written as
£9, +xo80 —xat), — &9 —x219 —x57% =0,
£ 4 xp£0, — x£9 0 0 0_p
2.1 252,1 xl‘§2’2 + 51 + X1T; + X1x2t 1 =Y,
1
r’% =0, $£2=0, ggz — E(t’? +x2ra,) =0,

and yield

°=C1, £2=Cycos + Casing, €2 = C3cost — Casint.

Now the determining equations (40) become
EL,+ X2kl —x16] ) — &3 —xoTh —x373 =0,
53{, + xzézl,l - x1§21,2 +&+ xlr_} + xlxzf,ll =£9f1+8fo,

1
15=0. £,=0 &,— (7 +xr})=0.

It follows that

3. 1. 3., .
g%:itlxl—FZ(t), §§=§r1x2+ Erlx1+Z(t),

wherer! satisfies the equation

dr\2
= (C2cost + C3sint) f1 + (Czcost — Casint) f 2,

d (3 ..
xl—<—fl+2‘rl) +2‘Elx2+Z+Z

(59)

(60)
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where the dot denotes the differentiation with respect tbis manifest from Eg. (60) that
we have to distinguish the following two cases:

() f(x1,x2) = Ax1+ Bxo+ Cx2+ Dx1xp + Ex3,
(I f(x1, x2) is an arbitrary function.

The first case involves the following subcases:
I(i) f(x1,x2) = Ax1+ Bxa+ C(x? —x3). Then the approximate symmetry vector fields
are:

d . d . 3 0
X1= costa— —sint— +¢ <At sint — Bt cost — ECxlcost)a—

X1 dx2 X1
. 1 3 . 0
+ | Atsint — Brcost — —Cx2c0st + —Cx1sint | — |, (61)
2 2 0x2
. d d i . 3 . ad
Xo =sinf— +cost— +¢| [ At cost + Bt sint — =Cx1Sint | —
0x1 dx2 i 2 ox1
. 1 . 3 d
+ ( Arcost + Bt sint — =Cxpsint — =Cx1c0St | — |, (62)
2 2 0x2
d . d . d d
X3=¢| cost— —sint— |, X4 =¢| Sint— +cost— |. (63)
0x1 0x2 ox1 0x2

I(ii) f(x1,x2) = Ax1+ Bxz+ Dx1xz+ C(x3 — x3). The approximate symmetry vector
fields areXo, X3 andXs.

I(iii) f(x1,x2) = Ax1 + Bxz + Cx? + Ex3. The approximate symmetry vector fields
areXq, Xz andXg.

I(iv) f(x1,x2) =Ax1+ Bxo+ fo + Dx1x2+ Ex%. The approximate symmetry vector
fields areX3 andX3.

In Case Il, i.e., whery (x1, x2) is an arbitrary function, it follows from Eq. (60) that the
approximate symmetries akg andX 4.

Theorem 5 furnishes the following approximate conserved quantity for the system (59)
in the case I(i):

°=x91x3]2=1 2=dxindx,
1P =x11X%1 2+ X% x3] 2 =3Cx1+ (B — A)tcog2r) — (A+ B)sin(2r).
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