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Abstract

This paper is a short survey of optimal shape design (OSD) for 0uids. OSD is an interesting 1eld both math-
ematically and for industrial applications. Existence, sensitivity, correct discretization are important theoretical
issues. Practical implementation issues for airplane designs are critical too.

The paper is also a summary of the material covered in our recent book, Applied Optimal Shape Design,
Oxford University Press, 2001.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Optimization; Shape design; Finite elements; Mesh adaptation; Aerodynamics

1. Industrial demand

Since control is a natural desire once the simulation is completed, the applications of OSD are
uncountable. For instance the design of a harbor which minimizes the waves coming from far can
be done at little cost by standard optimization methods once the numerical simulation of Helmholtz
equation is mastered (see Ref. [1]) as shown in Fig. 1. Other applications include

• weight reduction in car engine, aircraft structures, etc,
• electromagnetically optimal shapes, such as in stealth airplanes,
• wave canceling fore bulbe in boat design,
• drag reduction for airplanes, cars and boats.

However, there are no automatic solutions to these problems because most of the time engineering
design is made of compromises due to the multi-disciplinary aspects of the problems (see Fig. 2),
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Fig. 1. Optimization of a brake-water (computed by A. Baron).

the necessity of doing multi-point constrained design and because the solvers are not always made
in house and appear as black-box solvers.

1.1. An example in 1D

To understand the diDculties of OSD problem let us consider the problem of design a string of
thickness � and length s for a musical instrument which gives a response as close to  d as possible:
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Fig. 2. Optimal design of an airfoil to minimize in a sector, with angle between 180◦ and 225◦, the re0ection
of a monochromatic incident radar wave. The optimal shape is not admissible from the aerodynamic view point; a
multi-disciplinary optimization is necessary (computed by A. Baron).

Find s¿b and �¿ 0 such that

min
�;s∈Sd

{∫ b

a
| −  d|2 :  +

d
dx

(
�

d 
dx

)
= f in (0; s);  (0) = 0;  (s) =  d(s)

}
:

To discretize the problem, take I mesh points xi, call  i ≡  (xi); �xi+1=2 = xi+1 − xi; �xi = (xi+1 −
xi−1)=2 xI = s and consider

min
�xi∈DSd




∑
i∈[ia; ib]

|  i −  di |2�xi :  i +
1
�xi

[
�i+1=2

 i+1 −  i

�xi+1=2
− �i−1=2

 i −  i−1

�xi−1=2

]
= fi




with  0 = 0  I =  dI , i.e., with � =  −  d,

min
�̃x∈D

{�TB(̃�x)� :A(̃�; �̃x)� = F}:

It is seen here that the problem is akin to control in the coeDcient of PDEs [8], that the discrete
problem has a greater unknown space than the continuous problem because the mesh comes also as
a degree of freedom.

Nevertheless the problem is diHerentiable and so gradient methods should work. For this we will
need the derivatives of the cost function with respect to all the unknowns, s; �; �xi. This can be a
momentous task and so whenever possible automatic diHerentiation is of great help (see Refs. [6,5],
and the bibliography therein).
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2. Principle of automatic di�erentiation

Consider the problem of 1nding J ′(u) when j(u) is given by a computer program. Because the
program is made of diHerentiable lines, J ′ can be computed by diHerentiating every line and adding
them to the computer program immediately above each line. For instance

Program for J lines to add to the program
x = 2u(u + 1) dx = 2 ∗ u ∗ du + 2 ∗ du ∗ (u + 1)

y = x + sin(u) dy = dx + cos(u) ∗ du

J = x ∗ y dJ = dx ∗ y + x ∗ dy

If this new program is run with u=u0, du=1, dx=0, dy=0, dJ=0, then dJ is the derivative of
J with respect to u at u0.

2.1. Automatic AD

However, diHerentiating each line can be long and tedious. It can be done by the compiler by
overloading the operators of arithmetic and the functions in the standard C-library. Operator overload-
ing is available in Fortran 90 and C + +. We present brie0y an implementation in C + + because
it seems diDcult to make an eDcient implementation in Fortran 90 [16]. Consider the following
procedures:

• Step 1: if the program is in FORTRAN use f2C from http://www.netlib.org/f2c/
• Step 2: change 0oat and double into ddouble and add #include ddouble.h

2.2. The library ddouble

Each variable has now two 1elds: its value and the value of its derivative. So we de1ne a class
of diHerentiable variables and stores these values in v. Every time an arithmetic operation is done,
the corresponding operation on the derivatives must be done too. For instance below we give the
overloading of the multiplication and of the addition:

class ddouble{ public:
float v[2];
ddouble(double a, double b = 0)

{ v[0]= a; v[1]= b;}
== intialise la derivee a 0 sauf si b! = 0

friend ddouble operator *
(const ddouble& a, const ddouble& b)

{ ddouble c;
c.v[1]= a.v[1] * b.v[0]+ a.v[0] * b.v[1];

== (fg)′ = f′g+ fg′
c.v[0]= a.v [0] * b.v[0];
return c;

}

http://www.netlib.org/f2c/
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friend ddouble operator+
(const ddouble& a, const ddouble& b)

{ ddouble c;
c.v[1]= a.v[1]+ b.v[1]; == (f+ g)′ = f′ + g′
c.v[0]= a.v[0]+ b.v[0];
return c;

}
== ...
} ;

3. Well posedness

Consider the academic problem of designing a wind tunnel with required 0ow properties in a
region of space D (see Fig. 3). With a stream function formulation this would be

min
S∈Sd

{∫
D
| −  d|2: − L = 0;  |S = 0  |9C =  d

}
: (1)

Before attempting any numerical simulation we may study the existence of solutions. These are by
no means nonpractical questions because many of these optimal shape design problems do not have
solutions. For example the optimization of a hook, clamped to the wall on the left and pulled so
by weight on the right. With respect to weight under a given max constraints so that the structure
does not break: optimal structures are of composite materials; there is no simply connected solution
to this problem.

Although existence can be studied directly by using continuity results with respect to domain
boundaries, one may also map the unknown domain from a 1xed domain and consider that the
unknown is now T :C → �,

min
T∈Td

{∫
D̂
| −  d|2: ∇ · [A∇ ] = 0 in C  |9C =  d; A = T ′−1T

T ′−1 det T ′
}

(2)

or extend the operators by zero in S and take the characteristic function for unknown:

min
�∈Xd

{∫
D
| −  d|2: −∇ · [�∇ ] = 0;  (1 − �) = 0  |9C =  d

}
: (3)

This last approach, suggested in Ref. [15] has led to topological optimization.

C

S D

T

Š

Fig. 3. Inverse design for a wind tunnel with desired properties  d in D.



198 B. Mohammadi, O. Pironneau / Journal of Computational and Applied Mathematics 149 (2002) 193–205

3.1. Results

Most results are obtained by considering minimizing sequence Sn and (in the case of our academic
example) show that  n →  for some  , which is the solution of the PDE.

By using directly regularity with respect to the domain, Chenais [3] (see also Ref. [10]) showed
that in the class of all S uniformly Lipschitz, problem (1) has a solution.

Similarly Murat-Simon [9] working with (2) showed that in the class of T ∈W 1;∞ uniformly, the
solution exists.

However, working with (3) generally leads to weaker results because if �n → �, � may not be a
characteristic function; one is lead to a relaxed problem.

In two-dimensional and for the Dirichlet problem there is a very elegant result due to Sverak
[14]: assume all admissible domains � are included in a compact set D and the number connected
components of D \ � is less than a given number, then, in this class of sets, there exists a
solution.

3.2. Well-posedness by regularization

Another way to insure well posedness is to regularize the problem by changing the criteria and
adding a “cost” to the control. For problem (1)

J (�) =
∫
D

( −  d)2 + "
∫
S

dx

insures existence. More generally one may consider working with

J (�) =
∫
D

( −  d)2 + "‖S‖2
?

but the choice of norm is a delicate one. In general for second-order problem anything related to
the second derivatives would be likely to work, but it is not known if weaker norms would work
too.

4. Sensitivity analysis

Even though AD can solve the problem it is wise to check diHerentiability analytically. This can
be done by using normal variation on a reference shape (see Fig. 4)

9�� = {x + �n : x∈ 9�}: (4)

Following Cea [2], and Delfour-Zolezio [4] one may consider a velocity of deformation V (x) and
de1ne a time dependent shape

�(t) = {x + V (x)t : x∈�}
and compute dJ=dt, known as the material derivative of J .

Lately, for Neumann problems, the concept of topological derivative was introduced in Ref. [13].
One digs a small circular hole of center x − 0 in the domain and study the limit of
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Fig. 4. Normal variations on a reference shape (top). Topological variation on the shape (bottom).

(1=")( "−  ) where  " is the solution of the PDE with the hole and  the solution without the hole
(see Fig. 4).

4.1. Sensitivity: example

For the Laplace equation with Dirichlet conditions

−L "� = f in �"�  "� = 0 on %"� = {x + "�n : x∈%};
where �"� is obtained by (4) the derivative with respect to � is calculated by assuming

 "� =  + " ′
� +

"2

2
 ′′
� :

By linearity  ′ and  ′′ satisfy the PDE with zero rhs. By Taylor expansion:

0 =  "�(x + "�n) =  "�(x) + "�
9 "�

9n (x) +
"2�2

2
92 
9n2 (x) + · · · :

Therefore

−L ′
� = −L ′′

� = 0  ′
� |% = −�

9 
9n  ′′

� |% = −�
9 ′

�

9n − �2

2
92 
9n2 :
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Fig. 5. Optimization of a cooling fan for a car engine. This three-dimensional optimization improved the design by 10%.
The picture displays the 1nal shape and the change at some cross section from the original hand optimized original design.

4.2. Navier–Stokes equations

4.2.1. The minimum drag problem

E(�)≡min
�∈C

∫
�

1
2
‖∇u‖2dx: u|9� = g

u∇u + ∇p− )Lu = 0; ∇ · u = 0;

Sensitivity analysis by local variations gives

9�′ = {x + �n(x)∈ 9�} ⇒ �E =
∫
9�

�� ds + o(|�|):

�E =
∫
�
∇u · ∇� u +

1
2

∫
9�

�|∇u|2 =
1
2

∫
9�

�9nu · (9nu + 29nw) + o(|�|)

−u∇w + w∇uT + ∇q − ]Lw = u∇ u; ∇ · w = 0; w|9% = 0:

More can be found in Refs. [11,12]. See also Fig. 5.
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4.3. Gradient methods

So one starts with a smooth shape, moves each point in its normal direction by

� = 9nu · (9nu + 29nw):

But will the new shape have the same regularity? In general the answer is no, and this loss of
regularity is numerically dangerous and prone to generation of oscillations. The cure is to use a
smother which mathematically amounts to change the norm of the gradient method. For instance if
the shape is moved by + solution of

−d2+
ds2 = −�

implies then

j(S(+)) − j(S) =
1
2

∫
9�

+9u · (9nu + 29nw)

=−1
2

∫
9�

+� = −
∫
9�

∣∣∣∣d�
ds

∣∣∣∣
2

:

4.4. Discretization

Consider again the academic problem (1). It can be discretized by

min
qh

{
jh(qh) =

∫
D
| −  d|2 :

∫
�
∇ h∇wh +

1
"

∫
%

( h −  d)wh = 0 ∀wh ∈Vh

}
;

where Vh is the 1nite element space of piecewise linear continuous functions.
Calculus of variation is possible but the degree of freedoms are now the node motion qh ∈Vh, a

piecewise linear continuous function built from its values at the vertices, namely the motions of the
same (see Fig. 6). Let∫

�
∇ph∇wh +

1
"

∫
%
phwh = 2

∫
D

( h −  d)wh ∀wh ∈Vh:

Finally

�Jh =
∫
�
∇ h(∇�qh + ∇�qh −∇ · �qh)T∇ph ≈

∫
%
∇ h∇ph�qh · n:

Recognize here the linearization of ∇Qh ∇QT
h det ∇Qh at x + qh(x), therefore

Corollary 1. The change of cost function due to inner nodes is O(h2)

4.5. Guidelines

To our experience success in solving an OSD problem depends on the following.
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q j

Fig. 6. After discretization, not only the boundary vertices but also the inner vertices are the degrees of freedom of the
optimization problem.

• Whenever possible second-order optimization methods (BFGS for instance) should be used because
the problems are stiH.

• Compute derivatives with respect to boundary nodes only and apply the theory of approximate
gradients to combine mesh re1nement with optimization (see Ref. [7] for example).

• Use a smoother, i.e. do not work with the L2(%) norm of the node displacements. Use it also to
move the inner vertices.

• Experience also shows that

�Sj(�) = �S

∫
S
F( ) · n ≈

∫
S
F( ) · �n + · · · :

Namely the most important variation is due to the change of the normal in the case of surface
integrals.

5. Implementation issues and results

5.1. Link with CAD

In industries, shapes are stored in Computed Aided Design data bases as a set of Bezier patches
or others with in1nite details such as screws and bolts which are not relevant to a 1nite element
calculation in aerodynamics for instance. Furthermore the CAD system is proprietary.

Therefore it is convenient to abstract the optimization from the CAD system and ask the engineer
for any triangulation of the surface and use it as our initial design. The strategy is then what we
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Fig. 7. Optimization of a wing pro1le.
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call a CAD-free optimization platform:

(1) Generate any surface mesh from the CAD data.
(2) Apply a C1+ edges recognition software for surface mesh re1nement.
(3) Apply a three-dimensional volumic automatic mesh generator from the surface mesh.
(4) Do the optimization with mesh re1nement using the same module as in step 2 but coupled with

the PDE solver.
(5) Feed back the result into the CAD system.

5.2. Optimization of a wing pro@le

See Fig. 7.
Drag is mostly pressure drag due to the shock (pressure drag). The lift and area are imposed by

a penalty method with parameters "; +.

J (u; p; 0) = F · u∞ +
1
"
|F × u∞ − Cl|2 +

1
+

(∫
S

dx − a
)2

with F =
∫
S(pn + (2∇u + ∇uT)) and a Navier–Stokes + k − " + wall laws 0ow solver.

6. Prospective

Recently the optimization of a complete aircraft (a business jet) was done with this method (even
on a workstation when incomplete gradients are used) and a 10% improvement obtained after a few
iterations.

However OSD is still a diDcult and computer intensive task. There is a good prospect for global
nondiHerentiable optimization because there are often many local minima and because the 0ow solver
is often available in binary format only (such would be the case if a commercial software was used).
However, genetic algorithms are still slow and diDcult to couple with gradient methods.

Incomplete gradients is also a good 1eld of research and awaits mathematical proofs.
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