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Kergin approximation in Banach spaces
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Abstract

We explore the convergence of Kergin interpolation polynomials of holomorphic functions in Banach
spaces, which need not be of bounded type. We also investigate a case where the Kergin series diverges.
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Kergin interpolation is a generalization of both the Lagrange interpolation in the one-
dimensional case, and the Taylor polynomial in the case where all interpolation points coincide.
In several variables, interpolation polynomials are not unique. However, Kergin [1] proved that
interpolation polynomials enjoying natural properties exist and are unique:

Theorem 1 (Kergin). Let N , K ∈ N, N > 0, and x0, . . . , xK ∈ RN , not necessarily distinct.
There is a unique χ : C K (RN )→ P K (RN ) satisfying:

(1) χ is linear.
(2) For every f ∈ C K (RN ), every q ∈ Qk in RN , where k ∈ {0, . . . , K }, and every J ⊂
{0, . . . , K } with #(J ) = k+1, there exists x ∈ conv(x j ) j∈J such that q(D)(χ( f )− f )(x) =
0.

Here, C K (RN ) is the set of functions with K continuous derivatives, Qk is the set of
homogeneous polynomials of degree k, and P K (RN ) is the set of polynomials of degree
at most K . It fell to Micchelli [2] and Milman [3] to discover a formula for these Kergin
polynomials. This formula also extends to the infinite-dimensional Banach space case, see [4,
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5]. In this case, the potential unboundedness of continuous functions, even on bounded sets
bounded away from the boundary of the domain, presents new difficulties in proving convergence
results. Filipsson [4] proved a convergence result for holomorphic functions bounded on a ball.
Petersson also proved convergence results for entire functions on nuclear spaces, see [5], and
Hilbert–Schmidt spaces, see [6].

We give the formula for the Kergin polynomial below. Let X, Y be complex Banach spaces,
U ⊂ X open and f : U → Y . Define d0 f = f and

dk+1 f : U × X k+1
→ Y,

dk+1 f (x; ξ1, . . . , ξk+1) = lim
t→0

1
t
(dk f (x + tξk+1; ξ1, . . . , ξk)− dk f (x; ξ1, . . . , ξk)),

if this limit exists. This is just the (k+1)th iteration of the directional derivative of f , see, e.g., [7].
Let p0, . . . , pn,∈ X . Suppose that dn f exists and is continuous. The Kergin polynomial of f of
degree n is the sum

f (p0)+

n∑
k=1

∫
Sk

dk f (s0 p0 + · · · + sk pk; x − p0, . . . , x − pk−1)ds1 · · · dsk, (1)

where

Sk =

{
(s1, . . . , sk) ∈ Rk

: s j ≥ 0,
k∑

j=1

s j ≤ 1

}
is the standard k-simplex, and

s0 = 1− s1 − · · · − sk . (2)

This is a Bochner, or vector-valued, integral, see, e.g., [8]. In the case where Y = C, this is just
the usual Lebesgue (or Riemann) integration.

L. Filipsson observed that Micchelli’s error formula for the difference between f and its
degree (k − 1) Kergin polynomial carries over to Banach spaces:∫

Sk

dk f (s0 p0 + · · · + sk−1 pk−1 + sk x; x − p0, . . . , x − pk−1)ds1 · · · dsk, (3)

where s0 is as in (2). Given an infinite sequence p0, p1, p2, . . ., we define the infinite Kergin
series by replacing n in (1) by ∞. Under some circumstances, this series will approximate the
given function. That is the primary subject of this paper. First, we need the following proposition.

Proposition 2. Let X be a complex Banach space and let K ⊂ X be compact. Then
(1) the convex hull of K is compact, and
(2) the balanced hull of K is compact.

This can be found, for example, in [9], Chapter I, page 6.
Now we can move on to approximation.

Theorem 3. Let X and Y be complex Banach spaces, U ⊂ X open, V ⊂ U. Suppose that the
sequence {p j } is contained in a compact convex set L ⊂ U. Let W be the convex hull of L ∪ V
and let W ′ be the balanced convex hull of L + V . Suppose that for some ρ > e, W + ρW ′ ⊂ U
and f : U → Y is holomorphic. Then the Kergin series for f converges to f uniformly on
compact subsets of V.
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Proof. First, we observe that if T k
= (R/Z)k is the k-dimensional torus with the Haar

probability measure dt , then

dk f (a; v0, . . . , vk−1) =

∫
T k

f (a + v0e2π it0 + · · · + vk−1e2π itk−1)dt, (4)

provided each v j is small enough so that the right-hand side of (4) is defined. Let s =
(s1, . . . , sk), a(s, x) = s0 p0 + s1 p1 + · · · + sk x, with s0 again as in (2). Plugging this into
the error formula (3) yields(

k

ρ

)k ∫
Sk

∫
T k

f

(
a(s, x)+ (x − p0)

ρe2π it0

k
+ · · · + (x − pk−1)

ρe2π itk−1

k

)
dtds.

We have used homogeneity to factor out
(

k
ρ

)k
. Define

c(s, t) = (x − p0)
ρe2π it0

k
+ · · · + (x − pk−1)

ρe2π itk−1

k
.

Set b(s, t) = a(s, x)+ c(s, t). If the interpolation points p j are in L and x ∈ V , we can see that
a(s, x) ∈ W and c(s, t) ∈ ρW ′. Thus, by hypothesis, we have that b(s, t) takes values in U .

Now we restrict our attention to the case where x is in a compact subset K of V . Applying
Proposition 2, plus the fact that the sum of two compact sets is compact, we see that the image
of b(s, t) is contained in a compact subset of U . Furthermore, this set is independent of k, and
depends only on K and L . Let M be the maximum of f on this subset. This leads to the inequality∥∥∥∥∥

(
k

ρ

)k ∫
Sk

∫
T k

f (b(s, t))dtds

∥∥∥∥∥ ≤
(

k

ρ

)k

Mvol(Sk).

Recall that vol(Sk) = 1/k!, which, by Stirling’s formula, is asymptotically equal to( e

k

)k 1
√

2πk
.

Substituting these all into the above estimate on the error of the (k − 1)th degree Kergin
polynomial yields(

e

ρ

)k M
√

2πk
.

Since ρ > e, the error goes to zero. �

This allows f to be unbounded if V contains an open set, as in the following example.

Example 1. Let B(r) = {x ∈ X : ‖x‖ < r}. Let f : B(1) → Y be holomorphic, and choose
r, r ′ > 0 such that

1−max(r, r ′)
r + r ′

> e. (5)

Suppose that the closure of the set of all interpolation points pk is a compact subset of B(r ′).
Then the corresponding Kergin series for f converges to f uniformly on compact subsets of
B(r).
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Proof. Let U = B(1), V = B(r), and

e < ρ <
1−max(r, r ′)

r + r ′
.

Let L be the convex hull of the closure of the interpolation points. By Theorem 3, it suffices to
check that W + ρW ′ ⊂ U , where W and W ′ are as in the theorem. Since W is the convex hull
of L ∪ V , we have W ⊂ B(max(r, r ′)). Furthermore, by the triangle inequality, we have that
W ′ ⊂ B(r + r ′). Thus, if x ∈ W + ρW ′, then

‖x‖ < max(r, r ′)+ ρ(r + r ′) ≤ max(r, r ′)+
1−max(r, r ′)

r + r ′
(r + r ′) = 1.

In other words, W + ρW ′ ⊂ U , as required. �

Note that (5) is satisfied if, for example,

r = r ′ =
1

e + 1
.

Observe that here, f may be unbounded even on a small ball, whereas in [4], f must be bounded.
The price for such a convergence result is the stronger restriction on the interpolation points
than the one found in [4]. Furthermore, Filipsson’s convergence is uniform on balls, whereas
Theorem 3 only shows convergence on compact sets. Now we give an example where the
interpolation points are not in a compact set, and the Kergin series of an entire function diverges
at the origin.

Example 2. Let f : l1
→ C be defined by

f (x) =
∞∑

n=1

(
n!

n∏
k=1

xk

)
.

The function f is entire, i.e., it is holomorphic on all of l1. Let {ek} be the standard basis for l1

(0’s everywhere except for a 1 in the kth position). Using this basis as interpolation points yields
a Kergin series that diverges at the origin.

Proof. First, we show that f is entire. Let x0
= (x0

n) ∈ l1. Choose n0 so large that∑
n>n0

|x0
n | < δ < e

and let

M >

n0∏
n=1

|x0
n |.

We will show that the sum∑
n>n0

n!
n∏

k=1

|xk |

converges uniformly near x0, in fact on the set{
x :

n0∏
n=1

|xn| < M,
∑
n>n0

|xn| < δ

}
.
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The modulus of the (n0 + n)th term in the sum defining f is

(n0 + n)!
n0+n∏
k=1

|xk | ≤ (n0 + n)!M
n∏

k=1

|xn0+k |

≤ (n0 + n)!M

(
1
n

n∑
k=1

|xn0+k |

)n

(6)

≤ (n0 + n)!M

(
δ

n

)n

. (7)

In (6), we used the fact that the geometric mean is no bigger than the arithmetic mean. Stirling’s
formula implies that (7) is asymptotically equal to(

n0 + n

e

)n0+n √
2π(n0 + n)M

(
δ

n

)n

=

(
n0 + n

n

)n0+n √
2π(n0 + n)M

δnnn0

en+n0
= O

(
nn0+1/2

(
δ

e

)n)
,

because(
n0 + n

n

)n0+n

=

(
1+

n0

n

)n0+n
→ en0

as n→∞.
Hence the series of f converges uniformly near x0 and so f is entire.
Now we show that the Kergin series diverges at the origin. Define fn = x1x2 · · · xn . We check

by induction that

dk fn(y; e1, e2, . . . , ek) =

yk+1 · · · yn if k < n,
1 if k = n,
0 if k > n.

In particular, the left-hand side is non-negative when all y j ≥ 0. Hence for such y

(−1)kdk f (y;−e1,−e2, . . . ,−ek) =

∞∑
n=1

n!dk fn(y; e1, . . . , ek) ≥ k!.

Setting y = s0e1+· · ·+ skek+1 and integrating over Sk yields the absolute value of the (k+ 1)th
term in the Kergin series at the origin, which must be at least 1. Summing up, we have a divergent
series. �

Theorem 3 requires that the interpolation sequence be contained in a compact subset of U . Here,
we set U = l1, V = {0}. The only criterion in the theorem not satisfied is that L must be compact.

Acknowledgment

The author would like to thank László Lempert for bringing Kergin interpolation to the
author’s attention, as well as for his many useful suggestions.

References

[1] P. Kergin, A natural interpolation of Ck functions, J. Approx. Theory 29 (1980) 278–293.
[2] C.A. Micchelli, A constructive approach to Kergin interpolation inRk , Rocky Mountain J. Math. 10 (1980) 485–497.



186 S. Simon / Journal of Approximation Theory 154 (2008) 181–186

[3] C.A. Micchelli, P. Milman, A formula for Kergin interpolation in Rn , J. Approx. Theory 29 (1980) 294–296.
[4] L. Filipsson, Kergin interpolation in Banach spaces, J. Approx. Theory 127 (2004) 108–123.
[5] H. Petersson, Kergin interpolation in Banach spaces, Studia Math. 153 (2002) 101–114.
[6] H. Petersson, Interpolation spaces for PDE-preserving projectors on Hilbert–Schmidt entire functions, Rocky

Mountain J. Math. 34 (3) (2004) 1059–1075.
[7] L. Lempert, The Dolbeault complex in infinite dimensions, I, J. Amer. Math. Soc. 11 (3) (1998) 485–520.
[8] J. Mujica, Complex Analysis in Banach Spaces, North Holland, Amsterdam, 1986.
[9] N. Bourbaki, Topological vector spaces, in: Elements of Mathematics (H. G. Eggleston, S. Madan, Trans.) (Berlin),

Springer-Verlag, Berlin, 1987 (Chapters 1–5). Translated from the French.


	Kergin approximation in Banach spaces
	Acknowledgment
	References


