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1. Introduction

The absolute moments of the Riemann zeta function on the critical line are a natural statistical
quantity to study in connection with value distribution questions. For example, they can be used to
understand the maximal size of the zeta function. These moments are also connected to the remain-
der term in the general divisor problem [T].

Hardy and Littlewood proved a leading-term asymptotic for the second moment on the critical
line [HL]. A few years later, in 1926, Ingham gave the full asymptotic expansion [I]. In the same article,
Ingham gave a leading term asymptotic for the fourth moment. The full asymptotic expansion for the
fourth moment was obtained by Heath-Brown in 1979 [HB]. In comparison, the higher moments
seemed far more difficult and mysterious. Keating and Snaith, in a breakthrough, conjectured the
leading-term asymptotic [KS].

Recently, however, based on number-theoretic considerations, Conrey, Farmer, Keating, Rubinstein,
and Snaith, conjectured [CFKRS1,CFKRS2] the following full asymptotic expansion for the 2k-th abso-
lute moment of the Riemann zeta function ¢(s) on the critical line:

T T
1 1 t
¥/|§(1/2+it)|2kdf’”T/PI<<10gE>dt, as T — oo, (M
0

0

where Py(x) is a polynomial of degree k?:

Pr(x) =: co()X + c1(0x" ™1 + - + (k) )

given implicitly by the 2k-fold residue

Py CDE_1 f_._?gG(zl,...,zzkw(z],...,zz,a
k2 Qmi)k ]‘[izilzl?k

x vk
x 2 Li=1Zi~Zk+i dzy ... dzyy, (3)

where the path of integration is around small circles enclosing z; = 0, and

Az,...z)= [ @G-z (4)

1<i<j<2k
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is the Vandermonde determinant, and

k
Gzi,....z) =A1, ...,z [ | ¢ +2i — 24 j) (5)
i,j=1

is a product of zetas and the “arithmetic factor” (Euler product)

A(z1, ..., 2%)
k - Lok p2mio \ ~1 e—2mio \ ~1
= 1—p [ T&T A 1-— 1-— do 6
[T0-p7) [TI(-20) (1) ©
p i j=1 0 i=1 p p
sy Hhet (0 = p e ,
= 1_[ Z 1 pre—Zink . (7)
P j=1i#j

As pointed out by [CFKRS1], the rhs of (3) has an almost identical form to an exact expression for the
moment polynomial of random unitary matrices, the difference being that G(z1, ..., zy) is replaced
by the function ]‘[f‘ j=1(1— eZi+k=%)~1 in the unitary case, so there is no arithmetic factor.

The CFKRS conjecture (3) agrees with the theorems of Hardy and Littlewood, Ingham, and Heath-
Brown, for k =1 and k = 2. It has been supported numerically; see [CFKRS1,CFKRS2,HO,RY]. The
conjecture provides a method for computing the lower order coefficients of the moment polynomial
Pi(x). It gives, in particular, a stronger asymptotic than that of Keating and Snaith who, by carry-
ing out an analogous computation for random unitary matrices, first predicted the leading coefficient
(see [KS]):

Qi 8k
oty = U8 (8)
where
a = l_[(l—1/P)k2F(k’k§1?l/p)’ ©)
p
and
k=1
~=k2’1_[ - (10)
Se= L Gor
]:0
1.1. Results

Our main theorem develops a uniform asymptotic for ¢, (k) in the region 0 <r < k?, for any fixed
B < 1. We expect the asymptotics can be corrected so as to remain valid well beyond the first k
coefficients (i.e. for 8 > 1), and that the methods in our paper, which are of combinatorial nature,
will be helpful in deriving uniform asymptotics for the moments of other L-functions.

To state our main theorem, let us first define

B __Zklogp F(k+1,k+1;2;1/p) logp
4~ p-1 F(k,k:1:1/p) p

(11)
P
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where F(a, b; c; t) is the Gauss hypergeometric function

o0

) Z1*(a+n)1*(b+n)g
()T (b) T'(c+n) n

F(a,b;c;t) := (12)

n=0
In the notation of [CFKRS2], B is the same as By (1;), which is given in Egs. (2.24) and (2.43) there.

The factor By is arithmetic in nature. It is the coefficient of the linear term in the following Taylor
expansion of the arithmetic factor:

k
log A1, ..., zot) =logay + Bk ) zi — Ziyi + -+ (13)
i=1
where it is known (see 2.7 of [CFKRS1]) that
ay = Ag(0,...,0). (14)
Theorem 6.2 will later furnish the following asymptotic for By:

By ~2klogk, ask— oo. (15)
Main theorem. Fix 8 < 1, let 0 <r < k?, and let
Ty := 2By + 2yk, (16)
where y = 0.5772... is the Euler constant. Notice by (15) we have

T, ~ 4klogk, ask— oo. (17)

Then as k — oo, and uniformly in 0 <r < kP,

k2 ag :
Cr(k):t,:(‘r)a;{;g!k [14—0(;—2)} (18)

2
=1 (kr )co(k)[l + 0 (K*#=1]. (19)
Alternatively,
r1,2r
cr(k) = T"r‘ co)[1+ 0 (K*PD)], (20)

as k — oco. Asymptotic constants depend only on B.
Remarks. 1) The asymptotic formulas (18) and (19) of our theorem are actually equalities for r =0,

and r =1. The r =0 case is trivial, and the r =1 case follows from either (2.71) of [CFKRS2] or (49)
below. 2) For comparison, the corresponding asymptotic in the unitary case, provided in [HR], is:

2 2
Gy =k <k )Eo(k)[l +0 (%)] (21)
r k

where ¢, (k) is the coefficient of X~ in the 2k-th moment polynomial of random unitary matrices.



824 G.A. Hiary, M.O. Rubinstein / Journal of Number Theory 132 (2012) 820-868

Although the CFKRS conjecture seems hopelessly difficult to prove, the precise nature of the
asymptotic formula allows one to gain insight into the behavior of the zeta function. For example,
by deriving an asymptotic for c,(k) that is applicable as r and k both tend to infinity, one can under-
stand the true size of ¢(1/2 4+ it). The results we present here are a step in this direction.

One difficulty in extracting uniform asymptotics for the coefficients of P(x) from a residue like
(3) is that the coefficients are given only implicitly. By comparison, both the coefficients and the
roots of the moment polynomials for random unitary matrices, which correspond to the zeta function
moment polynomials according to the random matrix philosophy, are known explicitly, via random
matrix theory calculations. In fact, the proof of Theorem 1 of [HR], which provides complete uniform
asymptotics for the coefficients in the unitary case, makes essential use of the information about the
roots via a saddle-point technique. In the case of the zeta function, however, we do not have ‘simple’
closed form expressions for the moment polynomials.

We remark that if one directly applies the methods of this paper to the residue expression for
unitary moment polynomials, given in [CFKRS1, Eq. (1.5.9)], then one encounters similar difficulties as
in the zeta function (e.g. a similar difficulty in deriving asymptotics beyond the first k coefficients).
The main added simplicity in the unitary case is that it does not involve an arithmetic factor.

Before delving into the careful details of the next sections, let us describe the basic idea of the
proof. To this end, define

k
R@z1,... 220 = G(z1,.... za) || @ — 2y ), (22)
i,j=1
where, recall, G(z1,...,2z) = A(z1, ..., Z2k) ]_[:{j:] ¢(1 4+ zj — zi4j). The extra product on the rhs
in (22) is introduced in order to cancel the poles in the product of zetas in the definition of
G(z1,...,22,). This renders the function R(zy,..., zy) analytic and non-zero in a neighborhood of

the origin, where it is equal to ai. Therefore, we may write

(-Dk 1 Az, ..., ZZk)e% Yz
Pr(x) = P -

k2 l_[?’j=] (@i — 2k ) [T7% 22
x PVOBR@1220 7, i (23)
and consider the Taylor expansion of logR(z1, ..., zz):
T o
logR(z1, ..., z2) = logay + > Zzi — Zgyi+ e, (24)

i=1

where, recall, ty = 2By + 2yk ~ 4klogk, as k — oo. Also, dropping the factor exp(log R(z1, ..., zak)),
define

—1)k 1 A%(zy,..., ¥ 2k
pr(x,0) := (k'z) — ?gf 5(21 Zyk)e e dzy---dzy (25)
SR [1i jo1Gi = 2 D [ Ti21 2

(a more general function py(x,«) will be introduced in the next section). Our basic claim is that the
approximation

Py (x) ~ agpi(x + 7%, 0), (26)

obtained from Py(x) by truncating the Taylor expansion of logR(z1,...,zy) at the linear term, is
good enough to deduce asymptotics for the coefficients {c;(k), 0 <r <kP}, for any fixed g < 1, in the
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sense the leading term asymptotic of the coefficient of xkz*r, 0 <r <kP, on either side of (26) is the
same.

Notice the formula defining py(x,0) does not involve the complicated arithmetic factor
A(z1,...,zy,) present in the residue expression for Py(x). Moreover, by the results of Conrey, Farmer,
Keating, Rubinstein, and Snaith, the function py(x 4+ 7%, 0) can be evaluated explicitly as a polynomial
in x of degree k2. For, by property (45) later, and the formulas in Section 2.7 of [CFKRS1], we have

&l 2
PR+, 0) = 15 (x+ 70" (27)
The idea that the linear term in the Taylor expansion of log R(z1, ..., zo¢) ought to dominate over

0 < r < kP was inspired, in part, by the analogous asymptotic (21), derived in [HR], for the moments
of the characteristic polynomial of random unitary matrices.

As mentioned earlier, the main theorem of this paper shows that the coefficients of the polyno-
mial agpr(x + %, 0) = %‘Tg,"(x + rk)"2 provide the leading asymptotics, as k — oo, for essentially the
first k coefficients of Pj(x). The proof of this theorem will naturally split into two main parts. In the
first part, which is presented in Section 3, Section 4, and Section 5, we obtain estimates on certain
functions in k, later denoted by py. In the second part, which is presented in Section 6, we obtain
bounds on the Taylor coefficients of the logarithm of the arithmetic factor. The latter bounds (and in
some cases asymptotics) are fairly involved but generally straightforward, while the former bounds
are more subtle, requiring somewhat more thought. Both bounds are obtained via essentially combi-
natorial arguments.

1.2. Numerical verifications and an application to the maximal size of |¢(1/2 + it)|

Table 1 provides numerical confirmation of our main theorem, listing values of the ratio

cr(k)

_ 28
colo () )
for k =10, 20,30,40,50 and 0 < r < 7. Our theorem provides an estimate for this ratio of 1 +
0((r/k)?), and our table is consistent with such a remainder term, agreeing, for example, to 3-4
decimal places for r =2 and k =50, and 2-3 decimal places for r =8 and k = 50.

Next, let 8 < 1, and, as usual, k € Z>o. While the asymptotic formula for c,(k) given in our main
theorem holds, as k — oo, for r < kP, it appears, numerically, that our asymptotic formula is, uni-
formly, an upper bound for |c; (k)| for all 0 <r < k2.

We therefore conjecture, for all non-negative integers k, and all 0 <r < k2, that:

K2\
|er (k)] < co(k)( . )‘Ck. (29)

We have verified this conjecture numerically for all k <13, 0 <r < k%, and all k <64, 0<r<8.
The coefficients of the moment polynomials were computed in the former case in [RY] and in the
latter case using the program developed for the computations in [CFKRS1] and [CFKRS2]. See Fig. 1
for evidence supporting this conjecture, which depicts the ratio c,(k)/ (co(k)(":)rkr) for k =10 and
0<r<k2.

Assuming the bound (29), we have, by the binomial theorem and term-wise comparison, the fol-
lowing upper bound for Py(x), for all k € Z>g and x € R:

|Pe()] < cotk)(Ix] + 7). (30)
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Table 1

A comparison of our asymptotic formula for ¢,(k), for k =10, 20, 30, 40, 50
and r < 7. The 1's are explained by the remark following the main theorem
that the asymptotic formula is actually an identity for r =0 and r = 1. We
expect there to be lower terms in our asymptotic expansion, and will return
to the problem of determining them in a future paper.

k r e &k /(co ) ()
10 0 3.548884925e-148 1

10 1 2.357691331e-144 1

10 2 7.702336630e-141 0.9934255388
10 3 1.649486344e-137 0.9803060865
10 4 2.604519447e-134 0.9608017974
10 5 3.233666778e-131 0.9352015310
10 6 3.287651416e-128 0.9039165203
10 7 2.814729470e-125 0.8674698258
20 0 9.404052083e-789 1

20 1 7.007560591e-784 1

20 2 2.600909647e-779 0.9986738069
20 3 6.410977573e-775 0.9960221340
20 4 1.180624032e-770 0.9920509816
20 5 1.732651855e-766 0.9867716274
20 6 2.110801042e-762 0.9802005819
20 7 2.195579847e-758 0.9723595087
30 0 2.174528185e-2019 1

30 1 6.409313254e-2014 1

30 2 9.429995281e-2009 0.9994621075
30 3 9.234275546e-2004 0.9983864033
30 4 6.770756592e-1999 0.9967738368
30 5 3.964993050e-1994 0.9946262257
30 6 1.931729883e-1989 0.9919462534
30 7 8.053463103e-1985 0.9887374636
40 0 1.878520688e-3887 1

40 1 1.450126078e-3881 1

40 2 5.592030026e-3876 0.9997132915
40 3 1.436301603e-3870 0.9991398909
40 4 2.764308226e-3865 0.9982800615
40 5 4.252265871e-3860 0.9971343131
40 6 5.445979160e-3855 0.9957034019
40 7 5.972928889e-3850 0.9939883295
50 0 3.461963190e-6425 1

50 1 5.605367518e-6419 1

50 2 4.535291006e-6413 0.9998231027
50 3 2.444917857e-6407 0.9994693125
50 4 9.879474579e-6402 0.9989387280
50 5 3.191850197e-6396 0.9982315414
50 6 8.588531004e-6391 0.9973480389
50 7 1.979690769e-6385 0.9962886003

Let [¢(1/2 +ito)| = m7 := maX¢e[o, 1] ¢ (1/2 + it)|. Lemma 3.3 of [FGH] provides:

T 1/2k

1
mr < 2(CT log T)1/% 7[!5(1/2+it)|2"dt (31)
0

for some absolute constant C > 0. Farmer, Gonek and Hughes use this inequality, combined with the
Keating and Snaith leading term conjecture for the moments of zeta to estimate mr. However, the
leading term does a poor job at bounding the true size of the moments if we allow k to grow with T.

However, using our conjectured bound (30) for Py(x), we have, in whatever range of k that (1)
remains valid asymptotically, that
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Fig. 1. We compare the ratio of ¢;(10), 0 <r < 100, to our asymptotic formula. Here, k = 10 is relatively small, and we only
get reasonable agreement for the first few r. However, the graph indicates that the asymptotic formula is, uniformly, an upper
bound for |cr(k)|.

T

1/2k
172k 1 k2
mr < 2(co(k)C2T logT) - (|log(t/2m)| + )" dt (32)
0
for some absolute constant C, > 0. Following the argument in [FGH], we will, at the end, apply the
above with k proportionate to (log(T)/loglog(T))!/2.
The portion of the integral, t € (0, 27r) where log(t/27) is negative contributes O((kz)kz), on using:
02”|log(t/27r)|’<2 dt = 2mk?!, the binomial expansion, Stirling’s formula for k2!, and also Z’éz T/l <
exp(ty) combined with (17). (We could also slightly modify the argument in [FGH] and ignore this
interval outright.)

Next, by (17), we have 7, = O(klogk). Thus, if k < C3log(T)/loglog(T), for some absolute con-
stant C3, the contribution to the integral for t € [27,T] is O(T(C4 log(T))kz), for some absolute
constant Cg.

Therefore, if k = 0 (log(T)/2), we can ignore the portion of the integral from 0 to 27, and get:

mr < 2(cok)CsT log T)"/*(C4log T)H/> (33)

for some absolute constant Cs, i.e.

logco(k)  log(T) + loglog(T)  k
0800, logM) +10glogM) , Kyoo10gT + 0 k). (34)
2k 2k 2

logmr <
Combining Conrey and Gonek’s estimate [CG]:

loga ~ —k? log(2e” logk) +o(k?) fork — oo, (35)
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are taken from [RY].

k ST 1c/2 + it dt T Py(log(t/2m)) dt co()T log(T)¥* cok) fyf (llog(t/2m)| + T)¥* dt
1 1.6737236904e+09 1.6737234985e+09 1.8420680869e+09 1.6737235247e+09
2 6.3738834341e+11 6.3738992350e+11 5.8330132790e+11 6.7489927655e+11
3 8.0458531434e+14 8.0458140334e+14 1.3940397179+14 1.2999952534e+15
4 1.7376480696e+18 1.7374512576e+18 4.3322247610e+15 8.5349032584e+18
5 5.0837678819e+21 5.0816645028e+21 6.0772270922e+15 1.8070544717e+23
6 1.8153019937e+25 1.8136396872e+25 1.8242195930e-+14 1.2033327456e+28
7 7.4805129691e+28 7.4688841259¢+28 6.5819531631e+10 2.4552753344e+33
8 3.4385117285e+32 3.4309032713e+32 1.7844629682e-+05 1.4940783176e+39
9 1.7238857795e+36 1.7191846566e-+36 2.4462083265e-03 2.6420504382e-+45

10 9.2785048601e+39 9.2517330046e+39 1.2040915381e-13 1.3256809885e-+52

11 5.2991086420e+43 5.28630715e+43 1.5747149879¢-26 1.8471999998e-+59

12 3.1825481927e+47 3.17945e+47 41820123844e-42 7.0111752824e+66

13 1.9956246380e+51 2.00e+51 1.7694787451e-60 7.1249837060e+74

with the asymptotics of the Barnes G-function, see (3.17) and (3.18) of [FGH], gives:

logco(k)  klogk

T 5 + O (kloglogk). (36)
Hence,
log(T) + loglog(T k klogk
logmr <« 0g( )+212)g 0g(T) + % loglog T — cogk + O (kloglogk), (37)

i.e. bound (3.20) of [FGH] continues to hold even when we use our upper bound for the moment
polynomials, rather than the much smaller and less precise (as k grows) leading term.

Taking, as in [FGH], k ~ c(log(T)/loglog(T))'/2, and choosing the optimal ¢ = 21/2, thus gives the
identical upper bound (3.9) of [FGH]:

1/2
(logT) logloglogT)) (38)

1/2
1
mr < exp((z log T loglog T) + O( (oglog )12

Table 2 compares values of fOT |£(1/241it)|2* dt, for T = 100000000.643, k < 13, to: the Keating and
Snaith leading term Co(k)Tlog(T)k2 prediction, the full asymptotics fOT Py(log(t/2m))dt, and, finally,

using our upper bound for Py (x), i.e. to co(k) fOT(llog(t/Zn)| + rk)"2 dt.

The values for the third column in Table 2 come from [RY], and the lower accuracy for k =
11,12, 13 reflects the precision to which we computed, in [RY], the coefficients of the moment poly-
nomials. The numerical integration of the moments of zeta was carried out in [RY] using tanh-sinh
quadrature, integrating the humps between successive zeros of zeta on the critical line, hence we
stopped at 100000000.643 rather than 108.

The values in the 4-th and 5-th columns are given with more precision as they only rely on cq(k)
and cq(k) which have been computed to higher accuracy. The table shows, first, that the full moment
conjecture successfully captures, here, the moments well beyond k = 4 ~ (21log(T)/loglog(T))!/2. It
also shows that the leading term alone quickly (for example, at k = 4) fails to capture the true size
of the moments, whereas, our upper bound for the moment polynomials seems to give an upper
bound for the moments of zeta valid for a large range of k, hence justifying its use in bounding the
maximum size of zeta, mr.
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2. Proof of the main theorem

In the remainder of the paper, asymptotic constants are always absolute, and are taken as k — oo,
unless otherwise is stated.

Proof of the main theorem. Let o := (¢, ..., o) be a 2k-tuple in Z;"O, and let |o|:= o1 4+ -+ + o
denote its weight. Write
k
log A(z1, . .., z3) =: logay + By Zz; — Zkyi + Z agzy" - 25, (39)
i=1 loe|>1

the second sum being over tuples with weight greater than 1. Also, write

k k
log( H zZi —ze (1 + 2 — Zk+j)> =: J/kzli — Zyi t Z by z{! ---zg,f". (40)

i,j=1 i=1 la|>1

The linear term in the Taylor expansion (40) is yk, which is an easy consequence of the expansion
z2t(1+2)=1+yz+---. Lastly, define

x yk
=Dk 1 A2(zq, ..., Zyp)e2 Dim1 G Tk o
Pelx, @) = k12 (27Ti)2k % o f k 2k _2k le . ’Zzlzk dzy---dzy, (41)

ij=1@i — 2 ) [ iz 7
and let ¢, be the Taylor coefficients determined by
o
X1 Catba)Z 22 _ g | D caZy! gk, (42)

la|>1

So, on recalling 7, = 2By + 2yk, the c,’s satisfy:

k
Tk g
A(z1,...,Z2%) l_[ (zi — k- S (1 + 2 — Zpyj) = are? D i1 Zi— 2kt (1 + Z Caz?l . "Zglfk), (43)

i,j=1 Joe|>1
where, as before, 1, ~ 4klogk as k — oo. Therefore, we have
P(x) = aup(X+ T, 0) + @ Y CaPr(X+ T @), (44)
loe|>1
where the second argument in py(x + t, 0) stands for the zero 2k-tuple.
Notice the sum in (44) is actually finite, because if |a| > k? (or if oj > 2k for some j), then

pr(x, ) =0, because by degree considerations the integrand in the residue (41) defining pj(x, o) will
have no poles. Also, by the change of variables, zj < xz;, we have

px ) =x"1p, o), (45)
which, along with the formulas in Section 2.7 of [CFKRS1], yields

p(x.0) =X pi(1,0) = ¥ k%", (46)
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(We used formulas (45) and (46) to evaluate py(x + 7%, 0) in (27) earlier.) In light of property (45), it
is convenient to set

pr(@) := pk(1, ). (47)
Combining (44), the observation made thereafter, and (45), we arrive at

k2
Pr(®) = ae(x + 70X pr(0) + @ Y+ 10 " Y capr@). (48)

n=2 lo|=n

In particular, observing axpy(0) = co(k), and equating the coefficient of X7 on both sides of (48),
we obtain

k2
cr<k>—r,<< )ck(0>+ak2r, (r n")anpk(on

loe]=n

e —m! 1 p(@)
=fk< )CI<(0)|:1+Z T p’k(o)]. (49)

loe|=n

The above is an identity, valid for any 0 < r < k2. Also, notice the double sum in (49) is empty if
r=0,1, so ¢/ (k) = rkr(k:)co(k) forr=0,1.

Our plan is to show, for 0 <r <k, ¢, (k) ~ rk( )co(k) To do so, we will show that the term 1
preceding the double sum in (49) dommates This will follow from the following three bounds, as we
soon explain:

e First bound: By Theorem 5.2, as k — oo and uniformly in || < k/2, we have

pr(a)
pk(0)

lee

< (r1klog(lo| +10)) ™, (50)

where A1 is some absolute constant. This is proved in Section 5 as a by-product of the “sym-
metrization algorithm” (see Section 3), and the algorithm to compute a certain “symmetrized
version” of py(a), which we denote by N,?(a) (see Section 4.1). The notation N,?(o:) is chosen
to distinguish it from the related function Ny(«), defined in [CFKRS2]. The said algorithms are
essentially combinatorial recursions. In the case of Ng(a), the recursion stops much earlier than
what is obvious, due to a certain anti-symmetry relation, which is the reason algorithm is able
to produce a non-trivial bound on N,?(a), essentially by counting the number of terms involved
in it. We remark the bound (50) is sharp in the power of k, as the second example in Section 4.2
illustrates.

e Second bound: By Theorem 6.1, the coefficients a, in the Taylor expansion of log A(z1, ..., zo),
which were defined in (39), satisfy:

do < iy (log k) [m(on) @2 —minim(@).2} gy 12 -m(@)], (51)

where m(«) denotes the number of non-zero entries in «, and A, is some absolute constant. This
is proved in Section 6 by an elementary, though lengthy, counting of the terms that contribute. It
will transpire that, for 0 <r < k?, most of the contribution to ¢, (k) comes from “the combinatorial
sum for the small primes”, see Section 6.1.1.
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e Third bound: By Lemma 7.1, the Taylor coefficients b, of the product of zetas, which were defined
in (40), satisfy:

by < Mm@, (52)
This is proved in Section 7 by means of Cauchy’s estimate.

We now appeal to the auxiliary lemma stated later in this section. Specifically, by (51) and (52),
the coefficients a, + b, still satisfy the conditions of that lemma. So on applying the lemma we
obtain the following bound on the Taylor coefficients c,, which were defined in (42): As k — oo, and
uniformly in n <k/e,

Z |ce| < (Aaklogk)". (53)

loe|=n

Notice the number of summands on the lhs above is not far off from the upper bound, so, on average,
the |cy|’s are not large when || < k/e.
Substituting (50) and (53) directly into identity (49), and recalling r < k?, yields

r

ri(k: —n)! 1
2 r—mik2! 2

r

pi(@) i, )
)| € 2 gy (1k10gh)" (haklog(n +10))

n=2 |la|=n n=2
r
(Arlogn)™

_, 54
< (54)

n=2

for some absolute constant A. Here, we used the following elementary bound
rd? —n)! "

( ) (55)

(r—n)lk2! k2’

which follows from (r — j)/(k* — j) = (r/k*)(1 — j/r) /(1 — j/k?) < r/k* with j < (n—1) <r, and r < k?
(in fact, r < k in this proof).

Finally, summing the series in (54), and using the assumed bound on r, shows that the lhs of (54)
is bounded by Oﬁ((r/k)z), completing the proof. O

Auxiliary lemma. Let f be a multi-variate series in 2k variables

o0

fea.xp) = Y aax( X (56)

n=2 0‘6222’(0
lo|=n
Assume the coefficients a, satisfy bounds (51). Then the coefficients c in the Taylor expansion
o
(03
efGrxa) —. 1 4 Z Z CO[X(])” "'le?k (57)

n=2|a|=n

satisfy
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Z Ica| < (Aslogk)"k", forn <k/e, (58)

|la|=n
for some absolute constant As.

Remarks. i) This lemma applies as well if we replace a, by a, + by, with by satisfying (52), because
ay + by together satisfy a bound of the same form as (51), but with A, replaced by the maximum of
A2 and As. ii) We are using this lemma in (53).

Proof of the auxiliary lemma. Define

Cy:=Y leal,  A@:= Y lagl. (59)

loe|=n lor|=q

We plan to obtain a bound on C(n) in terms of an expression involving A(q), then we will bound
A(q) with the aid of estimate (51) for the a,’s, which is assumed in the statement of the lemma.

To this end, exponentiate (56), turning the outer sum into a product, and writing, for the inner
sum,

=

d
(X ) (60

lee|=n

exp( X k) =3

la|=n d=0
we get, on multiplying out the product, that
00 0o 00 1 dn
o ook o ok
Y Y ant ol = [T Y () o1
n=2|a|=n n=2d,=0 " “la|=n
By choosing which of the sums in the above infinite product contribute (i.e., which of the sums has a

term chosen from it different from 1), we obtain

1
) < ) A A A (62)

qid1+--+qrdr=n,r>1
qr>-->q2>q122,d; >1

We now derive a bound on the A(q;)’s. Given an integer 2 < q < n, write

q q
A@=)"Y laal= > laal+>, > laal (63)

j=1 lal=q lo|=q j=2 lal=q
m(e)=j m(a)=1 m(a)=j

where, recall, m(a) is equal to the number of non-zero «;’s. Substituting the bounds (51) for the
lag|'s, we get

q q aq! q
A@< Y 029 oghk+> " > ()j%ogh)?+Y " Y (2@ 6y

; ; ki—2
loe]=q j=2 lal=q j=2 lal=q
m(x)=1 m(e)=j m(e)=j

But



G.A. Hiary, M.O. Rubinstein / Journal of Number Theory 132 (2012) 820-868 833

2k\ [q—1
> 1=<.)(. ) (65)
= UVAS A
m(a)=j

as there are (2]l<) ways to select j of the z;’s and (‘j’:}) ways to sum to q using precisely j positive
(ordered) integers. The latter fact can be seen by arranging q ‘dots’ in a row and breaking them into
j summands by selecting j — 1 out of g — 1 barriers between the dots.

Therefore, for q < k/2 (for later purposes, we actually assume g <n < k/e in this proof), we have
generously,

q q S
2k -1 2k)! jiq’
Z( )(" 1)1%2().% <K(100)". (66)
oSNNI = W
The first inequality follows by expanding the binomial coefficients as ratios of factorials, and noting
that: i) (2k)!/(2k — j)! < (2k)4. ii) j(g— 1)!/(q — j)! < jg'~! < ¢’. The second inequality in (66) fol-
lows by noticing that the terms of the sum are, in our range, increasing (consider the ratio of two

successive terms), hence an upper bound for sum is g times the last term, which can be estimated by
Stirling’s formula. Similarly,

q
> (%) (q. - 1) k>~T < 29k? Z q— <k2q7(100)7. (67)
im N/ = U

Using (66) to bound the second sum in (64), using (67) to bound the third sum, and noting that
the number of terms in the first sum there is

1=2k, (68)
)

l|=q
m(e)=1

which follows since there are 2k choices for the zj's, together yields
A(q) < k*(22qlogk)? + k9(1001; logk)? + k* (100224 logk)? (69)

q
<« k9(1001; logk)? [1 +k? (%) ] (70)

Substituting the above into (62), we obtain for some absolute constant Ag,

1 r N\ diqdi
C(n) < kn()\s logk)" Z m 1_[|:1 +k2(%> ] . (71)
. LR r- i=]

qid1+--+qrdr=n,r>1
qr>->q2>q122,d; >1

Since the function (x/k)* is monotonically decreasing for x € [1, k/e), it follows

K? (‘;{’) <4, if2<q; <k/e. (72)

Thus,
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r

N\ giqdi
]—[[sz(%)] <5 if2<q; <k/e. (73)

i=1

Here we have used ) d; < n. Also,

l n
2 dildyldyl - (74)

q1d1+--+qrdr=n,r>1
gr>->q2>q121,d;i 21

because the lhs is the coefficient of X" in [p_; > 0o x™/d! (we truncate the product at m=n
since each g; < n). But that coefficient is less than the sum total of all the coefficients, i.e.

< 2, 1/d! < em.
Substitute (73) and (74) into (71), we have, for n < k/e,

1
npn
Cn) <« (51loghk)"k Z m (75)
qid1+-+qrdr=n
qi=2,di=21r>1
&« (1516 logk)"k", (76)

as claimed. O

3. An algorithm to reduce to the first half

We show that the residue expression for py(«), given by (41) and (45), can be reduced to variables
in the first half only; i.e., involving z1, ..., z; only. To do so, we will need the following two lemmas.

Lemma 3.1. Suppose H(z1, ..., zan) isregularin D :={|(z1, ..., zon)| < 8}. For (a1, ..., &2n) € D, such that
the «’s are distinct, define

H(ao @y, ..., 0o 2n))
[T} =1 @) — Aomr))’

K@i, ....ozm) =Y

o€So

(77)

where Syy is the permutation group of 2n elements. Then, it holds

Ko, ...,a0n) =

(=" %?g H(z1,...,200)A%(z1, ..., Zon) Q2 dzy.  (78)

(i) T} =1 Gi — znt ) l_[,-z,'}:1 (zi — o))

where the integration contour consists of circles contained in D around the «;’s. In particular, if the integration
contour is chosen so each circle encloses 0 as well, then the limit

. -=n" H(z1,...,22 )A2(21,...,22)
Jimy K= G T
1<i<2n i.j=1Zi = Zn+j) [ liz1 %

exists, and is finite.

Proof. This lemma is a slight variant of Lemmas 2.5.1 and 2.5.3 in [CFKRS1]. O
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Lemma 3.2. Let H(zq, ..., zpn) and f(z1, ..., zon) be two regular functions in D. Suppose also f is symmetric
with respect to all its arguments (so f is invariant under the action of Sap). Define

I(f) =

—1)" 2
( 1) %H.%\H(Z]7"'722n)f(zlv"-722ﬂ)A (219"'52211)(12]...(122’(’ (80)

@miy? [T jo1 @ = 20 DT 2
where the integration contour consists of circles in D around 0. Then

I(f)=f(0,...,0)I(). (81)
Proof. Define

H(ooq), - - o) f (s, - - Ola(zm)

Ks(ar,...,am) = (82)
Jén [T j=1 @0 ) = o))
Then,
I(f)= lim Kglay, ..., 02,) (83)
a;j—0
1<i<2n
= lim f(oq,...,00p) lim Kq(oq,...,q2) (84)
0[,'—)0 Oli—>0
1<i<2n 1<i<2n
=f@0,...,0I(1). O (85)

3.1. The first step: from py () to pr(X; 0)

Recall, for a tuple o = (vq, ..., Q) € ZZ;O we defined

1 k

(-Dk 1 A%(z1, ..., zy)e? izt 5 Ak

pr(a) := k12 2k %% Ztl){1 "'Zgl?k dzy ---dzy.  (86)
k12 (2mi) 1_[1 =1 —Zk+])l_[1 127"

In this subsection we show that py (o) can always be written as a relatively short (for purposes of our

analysis) linear combination of functions of the form py(Bi,..., Bk 0, ...,0), where B; € Zx¢ for all
1 <i < k. So consider a 2k-tuple o = (o1, ..., Qk4q4,0,...,0) where 1 <d <k, and such that oy4; >0
for 1 <i<d. Since the integral (86) is then symmetric in zy,q, ..., Zy, it follows

k 2 LSk iz
pr(a) = —(_1)< —1, c.. A%(zy,..., Zy)e? Lizt 2% zal zak+d 1
(27-”)21( 1 k+d—1

2
k! 1_[1] 1(zi _Zk+1)1_[z 1 1
1 2k
X m ( Z Z(J)-lk+d> dZ] cee dzzk, (87)
j=k+d

and by Lemma 3.2,
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P 2 L5k i zen

pr(@) = ——— (=" ff 7§ A%(z1, ..., zy)e? Li=t i 2. Zaktjd !

= ik 2k 2k ‘1 k+d—1
k! (2711) ]_[,] 1G@i =z p [ 1i21 7

1 akd Ok+d
Xm(z s 5 ey (88)

j=k+d j=1

This can be seen from Lemma 3.2 by pulling out the second sum in brackets in front of the integral,
evaluated at all z; =0, to give 0. For 1 < j <2k, let us thus define

j—1 zeros

. ——
n?:=(0,...,0,0:4,0,...,0), (89)
Q) = g — pletd () (90)

where the addition and subtraction in the definition of ¥ is done component-wise. Then we have

k-+d—1

-1 )
pi (o )_T—i—l Z pk(‘x(]))- (91)

Jj=1
In particular, we have expressed py(«) as the sum of k +d — 1 functions of the form py(8), where
each tuple B has its last possibly non-zero entry in position k +d — 1 (instead of position k + d, as

was the case for « itself), and each B satisfies |8| = |«|. By iterating this procedure several times, we
obtain the following lemma.

Lemma 3.3. Let o = (1, ..., Q) € Zz>k0, and let d be the number of non-zero entries in the second half
of a (i.e. among the entries otg41, ..., o). Further, given A = (A1, ..., ) € Z>0, define pyx(A;0) :=
Pr(A1, ..., Ak, 0, ...,0). Then the function py(«) can be written in the form

(=11
prle) = ————— " pr(; 0), (92)
T (k—d+j) AEZSC,

where S, is a certain set of tuples A € Z>0, with |A| = |a|, of cardinality |Sy| = ]_[j?:1 k+d— ).

3.2. An example

Given a tuple of the form

2k
(@1,...,01,0,...,0,041, .., Ui, 0, ..., 0) € ZS, (93)

where the «;'s are possibly non-zero, let us write it, for notational convenience, in the form
(01, ..., 00 Oy1,---,0+q). Now suppose we wish to symmetrize p(2,2,1;2,1). By independent
means, using the determinantal identities in [CFKRS2] for specific values of k and polynomial inter-
polation, one can compute

Pk(2,2,1;2,1) = 6(k + 2) (k* — 10) (k + 1)*py(0). (94)

On the other hand, the first iteration of the symmetrization algorithm applied to py(2,2,1;2,1) pro-
duces
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1
pPk(2,2,1;2,1) = K—1 |:—Pk(3, 2,1;2) — pr(2,3,1;2) — px(2,2,2; 2)

r 1 zeros

—Zpk (2.2,1, 0.0 ,0,1;2) — p,<(2,2,1;3)}. (95)
Therefore, by routine symmetry considerations,

1
Pr2.2.1:2.1) = = [2pk(3.2.1:2) + pu(2,2,2:2)
+<k—3)pk<z,2,1,1;2)+pk(2,2,1;3)]. (96)

We verify the two sides of the above equality are equal. By independent means,

Pk(3,2,1;2) = 2(k + 2)(k + 1) (k* — 58k? + 417) p(0), (97)
Pk(2,2,2;2) = —72(k + 2)(k + 1) (k* — 11) p(0), (98)
Pr(2,2,1;3) =6(k — 3)(k — 4)(k + 4) (k + 3) (k + 2) (k + 1) px(0), (99)
Pk(2,2,1,1;2) = —8(k + 3)(k + 2)(k + 1) (2k* — 47) px (0). (100)

Using some algebraic manipulations, we thus obtain
2pk(3.2.1:2) + pr(2.2.2:2) + pi(2.2.1; 3)
+k—-3)pr(2,2,1,1;2) = —6(k —1)(k+ 2)(k2 — lO)(k + 1)2pk(0). (101)
Upon dividing the above by 1 —k, we arrive at py(2,2,1; 2, 1), as claimed.
3.3. The second step: from py(X; 0) to N,?(A)

According to Lemma 3.3, the function py (o), where a € Z2* | can be written in terms of functions

of the form

! ' Az Z21,...,2 3%2521 Zi—Zyi
pk(x; 0) := (k’z) 5 o2k f f (z1 2%) TR zi‘l .. M< dzy - --dzy, (102)
= m) ,] 1@ — 2 TTizq 2

>0

where A = (Aq,..., ) € Z>0, and pr(x; 0) = pr(A1,..., A, 0,...,0). We now show that the variables
Zk+1, - - -, Z2k, Can be completely eliminated from the above expression for py(A; 0). That is, the inte-
gral (102) can be made to involve variables in the first half only (so the “cross-terms” are eliminated).

Lemma34.let .= (Ay,...,AL) € Z>0, k > 2, and define

N)(A) ==

NG 2 Yz
D% 1 %...?{A(z““"z")e A fYdzy e dz. (103)

k! Q2mi) [T, zi2’<

Then pi(x; 0) = NP ().



838 G.A. Hiary, M.O. Rubinstein / Journal of Number Theory 132 (2012) 820-868

Proof. Applying Lemma 3.2 to (102) with f(zq1,...,2%) = exp(% Z%k zi), so that f(0,...,0)=1,

-k 1 Az, zg)eXind
pk()»;O):—W T Zi' -z dzy - dzy. (104)

2 1
k! 1_[1] 1@ — 2k ) TTiZ4 sz
Also,
Az, .. 20 = N2, 2O N (s 220 [ ] @ — 2 ) (105)
i,j=1
Therefore,
(— 1 Az,... z0eXim 4
pk()" ) 2 2k Z] .sz
k! (2m) l—L 1sz
A2(2k+1,~--,22k)1_[' i1(Zi — Zky j)
xff : z’kf dZjiq - --dzopdzy - -dz;.  (106)
i=1Zjeti
The polynomial A%(zi,1,...,2y) is homogeneous of degree 2(") = k% — k. Also, the polyno-

mial ]—Iiﬁjzl(z,- — Zk4j) is homogeneous of degree k2. Note that the coefficient of Zk+1 ng in

A (Zg1, ..., 20 is (—1)(§)k!, and the coefficient of z,§+1 ~~sz in ]_[,-‘j:] (zi — Zk+j) is (—1)" = (=D
So, computing the residue at zy 1 =--- =z, =0 gives

Azgys---dzge = (—1)Ok.  (107)

(-1 ?gmygAz(zk+1,...,zZ,<>1‘[ifj 12 = Zer)

Qmik {< 12]%’;1
The lemma follows. O
4. An algorithm to compute N,? @)
Given a multivariate formal power series Q (z1, ..., zx), define

A, ... Ado _Coefﬁc1entof1_[z T in Q(z1, ..., Zk)- (108)
j=1
Let

F(z1....20) = A2(z1, . .., Z)e iz & (109)

Then,

F(z1,...,2
?g ?g (21 k)z?]~ Z%dzy - dze = A, (110)
G T
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Also, by Lemma 3.4, and the definition (110),

0 (_1)(5)
kA1, ..., A, 0,...,0) =N (1) = T[M,---,M]F- (111)
The purpose of this section is to derive an algorithm to compute the coefficients [A1, ..., AklF.

As an easy by-product of the algorithm, sharp enough upper bounds on the magnitude of these
coefficients are obtained. The algorithm comes in the form of a recursion that dissipates the entries
of a given tuple A, while also decreasing its weight.

Notice since F is symmetric with respect to the all of the z;'s, then [A1, ..., A]F and N,?()\) are
symmetric with respect to all of the A;'s.

To help get used to the notation, note for instance, for k > 2,

k k
-1 (2) -1 (2)
( k3 [0,...,0] = ( k? x Coefficient ofzf"_1 -~-zi"_1 inF(z1,...,2)
— N2(0) = py(0) = 2% (112)
- k - pk - k2' M
The last step is Eq. (46).
We will need several lemmas, and we will make use of the function
F(z1,...,21)
Gi(z1,....,z4) i= ———. (113)
21— Zj
Notice z1 — z; divides the Vandermonde determinant in F, so Gj(z1,...,2) is a polynomial. In the
lemmas to follow, we consider tuples (A1,...,Ax) € Zk>0' Although the restriction A > 0 is what is
relevant to our problem, it is often not necessary.
Lemma4.1. Let (A1,..., ) € Z’;O. Then,
k
1,22, AdE = @k = A0 — 1A, Ade =2 [, 22,00 e (114)
j=2
Proof. By logarithmic differentiation, we have
9 k
.—F(Z],...,Zk) 1
T o 42)) . (115)
F(z1,...,2) j=221—zj
So
9 K Fzr,....z20)
—F@.....2)=F(z1,....5) +2 ) _ —— 2=
82] - Z1 — Zj
j=2
k
=F(z1.....20 +2)_Gj(z1,.... 7). (116)
j=2
k 2k—xj—1

Equating the coefficient of I—[j:] zZ; on both sides above, we have
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k
(A1, ~--,)\k]%F =[M, .. MdF +ZZ;[M,---J»1<]GJ-- (117)
j:

By differentiating the power series of F with respect to z1, the lhs also equals
1ol op = @k =20k =1, 22, .., AklF. (118)
21

By substituting (118) into (117), the lemma follows. O
It is actually more convenient to rewrite the recursion (114) in the form
k
41 a2, e = @k — 1 — DA Aae dr =2 [+ 1Az &g (119)
j=2
Also, for better readability, let us drop entries A; unaltered from their “original values” in a reference

tuple . = (A1, ..., A), except for the first entry A;, which will always be displayed. For example, if
A= (A1,..., ) is the reference tuple, then the expressions

[A1,Aj+1] and [A1+3, A +09], (120)
will now stand for
(A1, A j—, A+ 1, A4, .., 4] and [Aq 43,22, ..., Ak—1, A + 91 (121)

So now the recursion (119) can be expressed more simply as

k
[+ 10F = @k — A1 — DIAile —2 ) _[h1 + 1g;- (122)
j=2
Lemma4.2. Let (A1,..., ) € Z’;O be the reference tuple. Then
[A1+ 1, = [M]F + [M, 4+ 1]g;- (123)
In particular, for any integer A > —1, and 2 < j < k, we have
A
[h+ 106, =Y [A1 =LA+l + [ — A A+ A+ 1, (124)
1=0

Proof. The relation (123) is symmetric in the zj’s, j > 2. So we may as well take j = 2. Write

2kr1—2_2k—rp—1_2k—r3—1  _2k—dg—1
Ga(z1,....z»)=c1zy 1 zy Tz BT gk

—r=1_2k—x3—2 2k—23—1 2k—n—1
2k -1 2k A2 223k 3 "'Zk< k

+ 22} z, + - (125)

Thus, ¢1 =[A1 +1]g,, and ¢z = [A1, A2 + 1]g,. Notice
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2k—r1—1_2k—Ap—1

B —rg—1
(21 — 22)Ga(z1, ..., zk) = (c1 — €2)Z; z;

-z + - (126)
Since, by definition, F(z1,...,zx) = (z1 — 22)G2(z1, . .., zk), it follows from (126) that
(Ml =c1 — 2 =[A + 16, — [A1, A2 + 1]G,. (127)

Equivalently, [A1 + 116, = [A1]F + [A1, A2 + 1]G,. The last part of the lemma follows by applying the
recursion (123) a total of A+ 1 times. O

Lemma4.3. Let (A1, ..., k) € Zk;o be the reference tuple. Assume A1 > Aj for j <k, and define

Aji= LM ;MJ. (128)

Then,

1 . .
—5[A1 — A, A+ Ailp, ifA1 — Ajiseven,
[/\1—Aj,/\j+A,-+1]cj={ 2 P !

0, if A1 — Ajisodd.
Proof. Since F(z1, ..., z,) is symmetric with respect to all of the z;s, it follows that G;(z1,...,z) =
F(z1,...,2k)/(z1 — zj) is anti-symmetric with respect to z; and z;; i.e.:
Gj(z1,...,2j,...)=—Gj(zj,...,z1,...). (129)

In particular, if we view G; as a polynomial in z; and z;, and write

Gj(z1.....z)=" Y cmaZ]'Z), (130)

m,neZ>0

so the coefficients ¢y, are now polynomials in {z;: i # 1, j}, then by the anti-symmetry of G;,
in (129), we have ¢y n = —Cpm, and so

Cmm =0, Cm+1,m = —Cm,m+1- (131)
Next, note

—1, ifx —Ajiseven,

M—A)—Gj+Aj+1)=
(M D=+ A+ {0, if Ay — Ajis odd.

If A1 —2j is odd, so A1 — Aj =21+ Aj+ 1, it follows from the first relation in (131), with m =
2k — (h — Aj) —1=2k— (Aj + Aj+1) — 1, that

[}\.l_Aj,)\.j+Aj+1]Gj:0. (132)

On the other hand, if A1 — A; is even, so A1 — Aj =21+ A}, then the identity

(M —Aj+ 1,4+ Ajle; =4 — AjAj+ Ajlr + A — Aj. A+ Aj+ gy, (133)
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readily deducible from the recursion [A1 + lg; =Ml + [A. A4j + 1g; of Lemma 4.2, together with
the second relation in (131) applied with m+1=2k— (A —Aj) —Tandm=2k— (A ;+Aj+1) -1,
imply

1
[)q—Aj,)nj-f-Aj-}-l](;j:—E[)q—Aj,)»j-f-Aj]F, (134)
as required. O

4.1. An algorithm to compute NJ (%)

We show how to compute [A1, ..., Ak]F via a recursion. Since by relation (111) we have N,?(A) =
(- )(Iﬁ)
k!

—[*1, ..., A]F, then the said recursion can be directly used to compute N,?()L) as well. We will
employ this recursion in Section 5 to bound N,?()\).

Lemmad4.d. et (A1 +1,A2,..., k) € Z’;O.Assume A+ 12 Aj for j <k. Define

A — A — 1 ifag —ajiseven,
AJ:Z{ JJ, §ji=1 2" ¢ U (135)
2 0, if a1 — Aj is odd.

Then, with .. = (A1, ..., Ag) as the reference tuple, we have
k Aj
A1+ 11F = 2k — 21 — DM — ZZ[SJ-W — AL A A+ Y M =LA +l]F:|. (136)
j=2 1=0

In other words, the coefficient corresponding to the tuple (A1 + 1, A2, ..., Ax), which has weight |\| + 1, can
be expressed as a linear combination involving tuples of weight |A| only.

Remark. If A =4 —1, so A; = —1, then the sum over k in (136) vanishes, since §; =0 in that case.

Proof of Lemma 4.4. By Lemma 4.1,

k
[+ 11F = 2k — A — DIAle —2 ) [h1 + 1g;. (137)
j=2
And by Lemma 4.2, applied with A = A, we have
Aj
[ +1g; =Y [ —LAj+1F+ [ — AjAj+ Aj+1]g;. (138)
=0

Therefore,

k Aj
[+ 10 = 2k — 21 — Dalr —ZZ[Z[M — L Aj+1F + [ —A,-,xj+A,-+1]cj}. (139)

j=2L =0

The result now follows from Lemma 4.3. O
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4.2. Examples

Say we wish to compute N,?(4, 2,1,0,...,0). For notational convenience, given a tuple (A1, ..., A,
0,...,0) € Z’;O, let us define

NY(ay ooy 2, 0,...,0) = N2 (A1, ..., ). (140)

Using this notation, the function to be computed is N,?(4,2, 1). Lemma 4.4 and (111) provides, on
collecting terms,
NJ(4,2,1) = 2k —4)N) (3,2, 1) — 2(k — N2 (3,2,1) — N)(2,2,2)
—2(k—3)N2(2,2,1,1)
=-2N2(3,2,1) = N2(2,2,2) — 2(k — 3)N2(2,2,1, 1). (141)
Note the lhs involves a tuple of weight 7, whereas the rhs involves tuples of weight 6 only, as should

be. By independent means, using determinantal identities in [CFKRS2] for specific values of k and
polynomial interpolation, we computed

N2(3,2,1) = —3k(k — 3)(k + 3)(k + 2)(k + 1)N(0), (142)
N(2,2,2) = 24k(k + 2)(k + )N (0), (143)
N2(2,2,1,1) = 12k(k + 3)(k + 2)(k + 1)N2(0), (144)
NJ(4,2,1) = —6k(k + 2)(k + 1)(3k* — 23) N} (0). (145)

Let us check that Lemma 4.4 does in fact yield the correct ng(4, 2,1). The rhs is
[6k(k =3)k+3)k+2)(k+1) —24k(k+2)(k+1)
—24k(k—3)(k+3)(k+2)(k+1)]N,(<)(0). (146)
The above can be simplified to
6k(k+2)(k+ D[(k—3)(k+3) —4 —4(k —3)(k + 3)]
= 6k(k +2)(k + 1)(—3k* +23), (147)

which agrees with (145).
As another example, let

n entries

1p:=(1,...,1,0,...,0). (148)

Then one computes, by directly using (136) and the symmetry of N,?(ln) with respect to the A;'s with
j>n,
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k

NP(1p) = @k = DNP(1p-1) = Y NP(1p-1)

j=n+1
=(k+n—1DN)(15_1). (149)
From which it follows
n—1
Ny (1) = N2 ©) [tk + ). (150)
j=0

One can obtain similar simple expressions for other special choices of A.
5. Applications of the algorithms
As a consequence of the recursions in Section 3 and Section 4.1, we show that py(«)/pk(0) grows

at most polynomially in k, and at most exponentially in ||, for |«| < k/2. We need the following
lemma.

Lemma5.1. Let 1 = (A1, ..., h) € Z& , such that || < k. Then,

NpG) _ 16Mdlog(2] + 10) K |

< (151)
N2(0) AMA2 - Amy

Proof. Consider a tuple (A1 + 1, A2,...,Ax), which has weight |A| + 1. By the symmetry of N,?(A)
with respect to all of the ;’s (see the remark at the beginning of Section 4.1), we may assume
A +12 4y > > A Without loss of generality, we may make a similar assumption on the ordering
of all the tuples that occur in the present proof.

Maintaining the convention whereby entries unchanged from their values in the reference tuple

A=(M,...,Ar) are dropped, we have by Lemma 4.4, after some simple manipulations, that
k Aj
INQOu 4+ 1D < @k = DN G| +2) D INJOa =1 A +D). (152)
j=21=0

where Aj = (A1 —Aj)/2]. Note the term 8;[A1 — Aj, Aj+ Aj]F that appears in the lemma is dropped
because in the event §; = —1/2 it simply reduces the | = A; term of the inner sum in the lemma by
a factor of 1/2, which is smaller than the stated bound.

The rhs in (152) involves tuples of weight |1| only, while the lhs involves a tuple of weight |A| 4+ 1.
This suggests inducting on |A|. So assume we have verified the following induction hypothesis for all
tuples A" of weight < |A|:

INF V)| - 161 (log(|A'| + 10)) ¥ k¥l

No(O) WAy - M

(153)

We now wish to show it holds for N,? (A1 + 1); that is, we wish to show it for tuples of weight |1|+ 1.

By identity (150), and the assumption |A| <k, the induction hypothesis holds for all k-tuples A" =
(1,...,1,0,...,0). So we may take tuples of this form as the base cases for the induction. Also, notice
if A1 =0, then given our assumption A1 + 1> Ay >--- > A, the tuple (A1 + 1, A2, ..., Ax) must be of
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the form (1,...,1,0,...,0), and this falls within the base cases of the induction. Therefore, we may
assume Aq > 0, so that m(Aq + 1, A, ..., Ax) =m(A1, ..., A). What we wish to show then is

INJ(A + D) 16"\”1(log(|k| + 4))HHT A+

= < (154)
N (0) A+ DAy Am)

Consider the first term on the rhs of (152), as well as the terms with [ =0 in the inner sum there.
By the induction hypothesis,

2k — 1)NO(x K INO(hq, 4 [ [Al+1plAl+1
I( ) k( I ZZ | k( 1 ])| < 16" (log(|A] 4+ 10)) k ’ (155)
N2(0) = MO (1 + Dz Amey

where we used that the above sum involves < 4k tuples of weight |A|, and (A1 +1)/A1 <2 < log(JA| +
10), which is valid since A1 > 0. Also by the induction hypothesis,

m(L) AJ m@.) Aj

NO
ML+ 16" (log (|| + 10)) M KlA! M+ DA
ZZZ NP (M : i+ D] < (log(]A] +10)) 2 M (156)
j=2 I=1 N (0) i+ Dha-dmey o (=D +D)
Therefore, since A1 —1> (A1 +1)/2 for 1 <I< Aj and j <m(}), we have
m@) A m@.) Aj
(M + DAj
) [A| +10 (157)
]ZZ;(M—I)()\]—FI) ZZ ( )

where we used Zl ’1 1/(xj+1 <log(JA| +10), and Zm(l) Aj < |A|. Combined with |A| <k, we obtain

S N =1y D1, 167 dog(l +10) 71K (158)
S5 N9(0) b (Ga+Drzdmay

Last, since by definition A; =0 for j > m(A), and since N(Aq — I, A; 4 1) is symmetric with respect
to the A;’s, we have

0n, —
2 Z ZlNkO\] I)»]+l)| (k— ()\)) Z INg (A1 =1 D]

0
j=m)+1 I=1 k(o) 1<I<Aq /2 Nk(o)

16" (log (1| + 10)) K1+ 3 a1

A+ DAra--dmy rion2 (A =Dl

| A+ 2141
<816 (log(|A| 4 10)**k 7 (159)
A+ DAz Am)

where we used (A1 +1)/(A —1) <4 for [ < Aq1/2, and Zl@éhﬂ 1/l <log(|A| + 10). Assembling the
bounds (155), (158), and (159), the claim follows. O
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Theorem 5.2. Let & = (o1, ..., Q) € ZZ>"0. Then, there exists an absolute constant n such that as k — oo,
and uniformly in || < k/2,

Pi(a)

| lat|
) < n'*!(klog(Ja| + 10)) ™. (160)

Note, from the residue (41) defining py(c), if aj > 2k forany 1 < j <k, then pi(a) =

Proof. By Lemma 3.3,

1
@) < ——— NG|, (161)
|pr(a)| mzl(k_dﬂ)kez&r e8]

where d is the number of non-zero entries in the second half of « (i.e. among a1, ..., o), and Sy

is a set of tuples A € Z’;O satisfying |A| = ||, of size |Sy| = ]_[;1-:1 (k4+d — j). Since |A| = x| < k/2, we

can apply Lemma 5.1 to the N,‘g (A)’s, which yields
[Sal

e te—d+ )

< (48) (klog(la| + 10)) ' py (0), (162)

(@) < 161! (klog(k + 10))“' N9 (0)

where we used N,?(O) = pk(0) and the estimate

d d-1
M=k +d - l—[1+1/k 3l (163)
Moy k—d+j) jo1—i/k
which holds since d < |«| <k/2 and so (1+ j/k)/(1—j/k) <3 for j<d. O

Another, more precise, consequence is that pg(i;0)/pr(0) is a polynomial in k of degree at
most |A|. This is not specifically used in the proof of the main theorem in this paper, but it is an
important fact that the ideas developed so far can prove fairly straightforwardly.

Theorem 5.3. Fix a positive integer m. Fix A = (A1, ..., Am,0,...,0) € Z’;O. Then, pi(x; 0)/pk(0) is a poly-
nomial in k of degree < |A|.

Proof. We induct on |A|. The base case is trivial. Assume that we have verified the theorem for all
tuples of weight < |A| and consider the case of |A| + 1. By symmetry, we may assume that

MA1Zh 2 2An. (164)

And by the recursion in Lemma 4.4, applied with (Aq,...,An,0,...,0) as the reference tuple, we have

P+ 1) = (2k — 11 — )pr(r1)

k Aj
— 2Z[<sjpk(xl —Aj A+ AN+ pkOa =14 +1)}. (165)
j=2 =0
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First, observe, by the induction hypothesis, p(11)/pk(0) is a polynomial in k of degree at most |A|.
Therefore, (2k — A1 — 1)pr(A1)/pk(0) is a polynomial in k of degree at most |A| + 1.

Second, since Am)+1 =---=Aix =0, we can collect the terms j=m(x)+1,...,k together in the
above sum over j, and using Apy)4+1 = -+ = Ay, we obtain
k Aj m(e) Aj
DD pka—Laj+D =" pra—LArj+D+ Z Zpkm —LAj+1)
j=21=0 j=2 I=0 j=m(a)+1 1=0
m(a) Aj Am(a)+1
=Y Y pkGa—Laj+D+(k—m@) Y pa—LD. (166)
j=2 1=0 1=0

Again, by the induction hypothesis, px(A1 —I, Aj 4+1)/pr(0) is a polynomial in k of degree at most |A|,
for all 2 < j <m(a). Also, m(a) and A; are independent of k. Hence, the rhs above, divided by pi(0),
is a polynomial in k of degree at most |A| + 1.

Last, since §; is also independent of k, and since

m(a)
D 8iPkOa = A A+ A= D 8Pk = Aj A+ A))
A =

+ (k — m(@))dm@)+1Pk M1 — Am@)+1: Am+1),  (167)

it follows by another application of the induction hypothesis that the rhs above is a polynomial in k
of degree at most |A|, completing the proof. O

6. The arithmetic factor

The function A(zy, ..., zy) is analytic and does not vanish in a neighborhood of the origin (where
it is equal to ai). So, one may consider the Taylor expansion,

k
logA(zl,...,zz,()zzlogak—i—BkZzi—zk+i+ Z a2y 5. (168)
i=1 ané"O

a1

The goal of this section is to produce upper bounds on the coefficients a, (in fact, we give an
asymptotic when m(a) =1).

Before doing so, let us introduce some notation. Let A := (A1,...,Ax) and p := (01, ..., ox) denote
tuples in Zk>0' Further, for primes p, define

k

k o Zk+j_zx
Snpi= Z pZi:l PiZic+i=hizi Ap = 1_[ ( (169)
[Al=lpl=n i,j=1 =0
where dependencies of S, , and A, on (z1, ..., zy) are suppressed to avoid notational clutter.

With the above notation, the arithmetic factor can be expressed as

Az1.....z20) =] | Ap- (170)
p
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For any absolute constant ¢ > 1 say, one may write

“Small primes”  “Large primes”
logA(zy,...,201) = Z logAp + Z logAp. (171)
p<ck? p>ck?

We will bound the contributions of “the small primes” and “the large primes” to a coefficient a,
separately. To this end, split “the small primes” sum into

Convergence factor sum Combinatorial sum
k 7
p k+j—4i
3D log(l - 7) )3 log(l—i-z ) (172)
p<ck? i,j=1 p<ck?

(Here, we used the fact So , = 1.) Similarly, split “the large primes” sum into

Convergence factor sum Combinatorial sum
S pik+i 7 S S
Z|: 1P+Zlog<l—7):|+2|:log<l+z np) 1pi|. (173)
p>ck? p i,j=1 p>ck?

So, the sum (over primes) has been separated into four pieces. In the next few subsections, the
contribution to a, of each of piece is bounded, or, in some cases, an asymptotic is provided. In the
last subsection, the various bounds are collected, then presented as a theorem.

Before we proceed, let us make two remarks. First, the symmetry

logA(z1, ..., 22k) = log A(—Zks1, - -, —Z2ks —Z15 - -+ —Zk) (174)

implies

A(ay,...,q, O 150000k) = ( 1)‘ la(Olk_H ,,,,, Ok, 01 5nees Olg) (175)

Second, the symmetry

log A(z1, ..., 251) =108 A(Z5 (1), - - s Zo(l)» Zktt (1) - - - » Zht T (k) (176)
where o and 7 are any members of the permutation group of {1,...,k}, implies
At ens02) = At (1)U () b (1) oo BT ) (177)

In particular, to understand the Taylor coefficients of log A(z1, ..., zk), it is enough to understand
a, for tuples o of the form

oa=(1,...,00,0,...,0,Qks1,...,0%+d,0,...,0), 0<d<I<k, o;>0. (178)

We will use the convention where if d =0, then oy 1 = =ay =0.
Throughout this section, it is assumed k and ¢ (in (171)) are large enough. For the sake of defi-
niteness, let us require
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k>1000, and 10 <c < 1000, (179)
which will suffice.
6.1. Contribution of “the small primes”: via Cauchy’s estimate

6.1.1. The combinatorial sum
We wish to estimate the Taylor coefficients (about zero) of

> 1og<1+25”;f’) = > Cp (180)
n=1

p<ck? p p<ck?

Fix a prime p. We consider the coefficient of z‘l)‘1 . ~zg‘,§" in the Taylor expansion of a local factor Cp,

and denote it by ay . Since p is fixed, we may drop the dependency on it in Sy p. So, let us write

o0
Cp=10g<1+2%>. (181)

n=1

We consider two possibilities: m(w) =1 or m(c) > 1. Let us first handle the case m(x) > 1.
As explained earlier, it may be assumed « is of the form

a=(1,...,00,0,...,0,041, ..., X4d,0,...,0), 0<d<I<k, o >0. (182)

By symmetry, it may be further assumed o1 > --- > o and o1 = - -+ = Q-

There are two possibilities, either o =0 or not. Assume o # 0. A quick review of the argument
to follow should show that the case oy = 0 is completely analogous (one will need to differentiate
with respect to z, 1 instead of z,, noting the fact that since m(a) > 1 then if oy =0, then a4 #0).
Given the assumption o # 0, define

82
Ci=—C (183)
P 0219022 P 2i=0,2j4 j=0 ’
I<igk,d<j<k
Then
] ‘l ‘l (0% o, o "
Qo p= x Coefficient of 2417 25271223 ... ¥k L 2% i € (184)
GP = o 1 2 3 1 “k+1 k+d p
Define
o oo
Sn 1 0
Q=1+ Z p_” 2i=0,2 j=0 ’ Q= Z E 0Z1 Sn 2i=0,zy4 ;=0 ’ (185)
n=1 I<igk,d<j<k n=1 I<igk,d<j<k
Q=Y L2 Q=3 L (186)
2= P 9z, n 2=0,24j=0 ) 12 .= D" 921023 n 2;=0,244.j=0 .
n=1 I<igk,d<j<k n=1 I<igk,d<j<k
By a straightforward calculation,
» Q2 Q1Q2
C,=—=— . (187)

p Q QZ
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Letting

@:=limi= 2 al= 2z = gl = —
= 1 _]061""’ [_1061’ k+1 _1061""’ k-+d —1061 s

(188)

with 8 > 0 chosen so that Q # 0 on or inside £2 (such a § exists), it follows from (184) and Cauchy’s

estimate that

5 \* ' 'maxg Q2] . maxg|Qq)?
laa,pl < | - 5 : +— 2 |
106] ming |Q | ming |Q |

Now, set

1
§=— .
1000 log(ck?)

We do not know this is a valid choice of § a priori, but we will know this a posteriori.

The Denominator. We first estimate ming |Q |. So, let

wei= (U1, -5 1), 7:=(71,...,T4), ,uezgo,rezd;o.

Then, define
) glul+ltig
Q™= z .
Azt . azMaz 9z | 402 =0
1 1 k+1 k+d 1<i<1<j<d
It follows
(1, 7)
Q=09+ > Q- 2.2z
Wi w1l ! 1! 1 I “k+1 k+d
where by definition,
0O i 1 (k4+n—1)\2
= o N .
n=1
Let
Q)| i T 7
D._Im;m ot A A Al

We shall show that there exists an absolute constant 7 € (0, 1) such that

D<mQ?”

for

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)
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(Z],...,Z[,Zk+1,...,2k+d)E.Q. (197)
From that it follows
[e¢) 2
1 (k+n-1
i >(1-— ®O=n- 1 — , 198
min|Q| > (1-nm)Q 1 —=mn) +n§1p” 0 (198)

because by setting all z; =0 in (169) we have

k+n—1\2
> 1:( . > (199)

IAl=lpl=n

The latter can be seen by arranging k +n — 1 ‘dots’ in a row and breaking them into k non-negative
summands by selecting k — 1 of the dots as barriers.
Now, bounding the rhs of (195) on £ gives

1 (w.7) | glul+Tl
D< Z (1081)h+¢ Z Wi !QM l|-54 oo 1
ht+g>1 m(uy=h T IR e

h<l,g<d m(t)=g

(200)

Here we have used h < || and g < |z| so that (108)"+& < (1061 IKI+IT],
Let us examine the inner sum above. For h and g any non-negative integers satisfying h + g > 1
h <1, g <d, we have

Ql z=0z4=0 = 1+Z Zz(k—f-n 1)<k+n;§;b_1>

h<i<l,g<j<d = a=0 b=0

x Z R R e e e (201)

A=(A1,..0hp), A >0
p=(p1,...,0g),pi =0
[Al=a,|p|=b

In the above, the binomial coefficient (k+”’§’a’1), for example, represents the number of ways to
write n — a as the sum of k — h non-negative summands. Notice if h =0 then the inner-most sum
vanishes unless a =0, and if h =k then ("+”_h_”_1) is 0 unless a =n, in which case it is 1; analo-

gously if g=0,k. e
So, for M:(;ﬂ,...,m,,O,...,O)eZ’ZO. and 7 = (71,...,74,0,...,0) eZ>O, such that |u| +
[Tl =1,
1 k+n—h—a—-1\(/k+n—g—-b—1
(.7
<3533 )
a=h b=g
x > (A1 logp)t --- Gy log P (p1log p)™ -+ (pg log p)™e.  (202)

A=(A1,0p), 421
P=(p1,..,0g). pi 21
[Al=a,|p|=b

The sums over a, b start at h, g respectively because the partial derivatives of (201) vanish if the
exponent in the innermost sum has fewer than h of z1, ..., z, or fewer than g of z;44, ..., zx4g. For
the same reason, we can start the sum over n at max(h, g), and choose h, and we can assume A; > 1
and p; > 1.
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Therefore, by symmetry of Q with respect to zy,...,z, and, separately, with respect to
Zk41s - -+ s Zk4d>

|Q (D) |gluliT]

m(uZ)=h [,Lill-”[Lih!‘Ej]!---Tjg!
m(t)=g
Z Zz(k—i—n— —a—l)(k—i—n—g—b—l)
n=h © a=hb=g n—a n—b
(821 log p)Hit - - (81y log p)!'in (8,01 log p) ™1 - - - (8 pg log p) "z
X Z Z Wirlee i 1T LT ! ’
A=A ehp) A 21 m()=h " theme e
p=(P1,--,0g),pi 21 m(T)=g
[A|=a,|p|=b
(203)
Summing over h+ g > 1, h <I, g <d, we obtain
1 N /d\ e 1
p< ¥ o () (e T
61\h+ n
h+g>1 (10°h™+&\h/\g nn P
h<l,g<d
k+n—h—a—1\( k+n—g—b—1\(a—1\/b—1\ sqip
. (204
D ol (R [ [ T

In the above sum, the binomial coefficients (}ll) and (g) represent the number of ways to select

the u;'s and 7;’s so that m(u) =h and m(7t) = g. Also, the factor p@th) arises from exp(log(p)(A1 +

<4+ Ap+ 01+ -+ pg)), writing this as a product of exp’s and using the Taylor series about 0 for
exp(x) to produce the terms in the innermost sum of (204). There are two special cases: When g =0,
the quantity (gj) is defined to be zero unless b = 0, where it is defined to be 1, and when g =k, the

quantity (k+";§;b_1) is 0, unless b =n, in which case it is 1. Similar considerations apply to special
values of h.

For n < 8k say, use the following estimates. First, notice that ("”‘i‘a_l)

is the number of ways
to write n — a as the sum of exactly k — h non-negative integers, and (g:}) is equal to the number of

ways to write a as the sum of exactly h positive integers. Therefore, (k+";:“’l)(,‘;j) is at most the

number of ways to write n as the sum of exactly k non-negative integers, where the first k — h parts
sum to n —a and the last h parts sum to a. So by summing over a, we see

n
Z(k—i—n—h—a—l)(a—l)g(k—i—n—l), (205)
= n—a h—1 n

where ("*Z’l) is the number of ways to write n as the sum of exactly k non-negative integers. In the
range 100h < n, we thus obtain

100h—1
Z k+n—h—a-1\/a-1 P < k+n-1 p1008h (206)
n—a h—-1 n

a=h
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In the range 100h < a < n, estimate (205) is no longer good enough for our purposes. Instead, we
note

(k+n;llga—l) _ l—I] 0(n ]) I—[l}zl (k _ ])
(37 [ k+n—j)

<A +k/m~A+n/k)™™, (207)

it follows

n n a—1\ ,8a
k+n—h—a-1\/a-1\ 4, k+n-1 (h_1)P
2: < E B
< n—a )(h—1>p \< n > z (208)

k nyh
a=100h amtoon 1+ +7)

Recalling § = and p < ck?, we have p® < 1.001. Writing a = 100h +m, one deduces

1
1000 log(ck?)

() 100 + ) )
100h—1y pqm-1 <(1+1/99)7. (209)
("hor) M=o 99 +j+1)

Also, for n < 8k, it holds 1+ k/n > 9/8. So it is seen that the sum (208) is bounded by

100h—1y .,1008h
k+n—1\(phoy )P k+n—1
<100 Sl <100 : 210
( n ) ()10 n o

where, in the last inequality, we used (100h 1) (100h)" /h! < 300", p199%h < (1.2)", and (9/8)100" >
1000". Putting together, we have

8k—1 n

Z ZZ(Hn a—1>(k+n—g—b—1>
n—b
a=hb=g
5 (Z—D(b 1>p5(a+b)<10000p1005(h+g)Q(0) (211)
- g—

For n > 8k, use the estimate
n
k+n—h—a—-1\/a—-1\ 5, [(k+n—1\ ;
< n 212
Z ( n—a ) (h — 1)p n P (212)
a=h
which, again, is deducible via a combinatorial interpretation of the sum. This estimate yields

Z ZZ(k—i—n —a—l)(k%—n;f;b—l)

n= Sk a=h b=g
a—1 b—l) Sath) - 25”(k+n—1>
X p < — . (213)
GG X 5 ()

Collecting the bounds so far, and using some straightforward manipulations, we have by (204) that D
is bounded by
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1 (1 ) (d) [ 5100(h+-8) 2 (0 k+n—1
61/
h+g>1 (10°h*+e\h/\g pn

n
n=8k
h<l,g<d

Z 10000p1008(h+g)lh+g 0 N p168k ok — 1>2 i pZBj 9 2j _ Q(O) (214)
h i (1061)h+g p8k \ 8k = pi \8 o2
h<l,g<d

Here we have used the assumption that d

<! in the inequality (,’1) (d) < I"t8. Also, note in the last
inequality we used the following observation: since Q ¥ contains the term - (2k 1

f ) and since
O e 7k \? 8% 1

o2 T a7k I+ — ) <=7 215
LI(Zkk—l)z p7k E( + k+l> 27k T ok (215)

(the above uses (14 7k/(k+1)) <8 and p > 2), it follows

2 k
p16% /g 1 . 168 Q0 < Q(O)'
p8k 8k 2

) (216)

=

=

In sum, we have shown

1 1
maxP<-09 = min|Q|>-0©. (217)
2 2 2 2

The Numerator. Having disposed of ming|Q |, we direct our attention to maxe|Q12| and maxg|Q1/?
We deal with maxg, |Q12] first. We will show there exists an absolute constant 7, such that

(log p)?
max Q2| < Ml ———Q©@ (218)
Q p
First, note over §2,
oo n
n=2 a=2 b=0
a+b

x pdT > M+ DG+ 1). (219)
A=(A14ees A, A 20
P=(P1,---:0d),Pi 20

[\l=a-2,|p|=b

(Note the sum over a starts at 2 instead of 0 because otherwise, either the derivative with respect to
z1 or zp will vanish.) Therefore, since (A1 +1)(A2 +1) <a

[Q12] k+n— -1\ (/k4+n—d—b—-1
P (e ()
(log p) o n—b
Xp6a+b2

) SRR? (220)
A=(r1,...0),4i =0

P=(P1,---,0d),Pi 20
[A|=a-2,|p|=b
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When n < 8k, it follows by considering the ranges b < 100d and 100d > b < n separately as before,
while noting that d <[ by hypothesis, that

n
k+n—d—b—1\ &

T 1
ST 2
b=0 P=(P1,--,Pd)
0i=0,|p|=b

N~ (kn—d=b—1\(d+b—1\ &
- n—b b )P
b=0

. _ n d+b—1y, % -
<<k+n 1>p10[id+<k+n 1) » (kb—)p<100<k+" 1>. (221)
n n k "

b d
p=to0d (1 T 7”1+ 1)

When n > 8k, we have

n
k+n—d—b—1\ & k4+n—1\ &
T < T, 222
)OI GRS TYAD DI T A 1 (222
b=0 P=(P1,--,Pd)
0i=0,|p|=b

In the above expressions, when d = 0, the quantity (d+b l) is interpreted as 0 unless b = 0. Similar

care should be taken in interpreting expressions when [ or d equals k. In any case, if we define

8k n
ktn—1 ktn—l—a—1\ s
vt ()R T e 2o e
D n a=2 n—a A=(A1,.sA))
A >0, [ —a—2

then, after a little bit of work combining (220), (221), and (222), we have generously

Q12|

Togp)? < < 100\ + 100(8k)

165k 2

9% —1 1

2p (‘81 > < 100N + -Q©. (224)
k p

So, we just need to bound V. To this end, note

n n
k+n—Il—-a—-1\ % , k+n—l—a—-1\/l+a—-3\ s ,
T 1= ra. 225

a=2 A=(A1,..e A1) a=
2 =0,|A|=a—2
Define
ck "‘
M:=|—|. (226)
[\/5
Further define
M-1 n
1 /k+n-1 k+n—Il—a—-1\/l+a-3 a
=Y (" - Tt (227)
p" = n—a a—2

n—2 P

o0 n

Zlﬂ(lﬁ—n—l) <I<+n—l—a—1><l+a—3>paTaa2. (228)
= n—a a—2

Q
N
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In particular,

NSE]-}-E}

We bound Y. Observe that
10"”<k+n—a—1—1)<l+a—3> ,
> a’p’
n—a a—2
a=2
100!
k+n—3\ , s k+n-3 3
< a‘pl < 1001)°.
§<n—2>p (5o

Also, for n < M,

k

WV

=

|

N

==
WV

-5

Therefore,

n I4+a-3

a=100!

<100(1<+n—3>.
n—2

a=100[

In summary,

k+n—1\2(*"3)  oon? UNE
< (10003 Z ( ) G ]) < (1+K)2Q gTQ(O)’

where 73 is some absolute constant. As for X5, note

n
Z(k—i—n—a—l—1><I+a—3>azpaTa < <k+n—3>n3psn.
n—a a—2 n—2

a=2
Therefore, using the change of variable n = M + j, we have

5 i npd (k+n—1\/k+n—-3
2 p" n n—2

n=M

/N

_ MM (kM= 1Y (kM -3 i(l—i—j/pr‘” a2 2
ST pM M M—2 pJ M

j=0
Since

>\ (14 j/M)3pdi 2k\% & i /pd?2  2\¥
Z( ]/) <1+—> <Z<l+i) (p—+—> < Na,
M , M JP ¢

J=0 j=0

sa
i (I<+n—a—l—1)(l+a—3)a2psTa<(1<+n—3) Z (e )a?p
n—a a—2 n—2 (1+n 5)4~ -2

(229)

(230)

(231)

(232)

(233)

(234)

(235)

(236)
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where 74 is some absolute constant, it follows

M3p™ (k4+M -1\ (k+M -3
3 < )
centi ()W)

M-2
Now, define

Y L 5k J
1= —F=|-
NG
Note Q@ contains the term %(“%:_1)2. Thus,
1 (k+M—1y (k-+M—3 _
W( M )(M—2)< Mz 1 1+ k 2(M—M1)
QO S\ k) pM-M M1 +1 '
Note,
M  4c
- < —,
k = p
and

1 . k 2(M7M1)< ]+] 2(M—My)
pM=Mi T My 41 “\Vp 5 '

Therefore, for some absolute constant 75, we have

2(M=My)
ns .3 smf 1 1) ©
Yo <—M’p <—+— Q™.
p VP 5

Since M — M1 > f — 1, we have
p“‘”(L + 1>2(M " < 26305 (0.91)% < 2(0.92)%
Jp 5
Hence,

2(M—My1) 3
1 1 A %
MgPSM(ﬁ + E) < (%) (0.92) v? < g,

for some absolute constant 7g. So, there exists an absolute constant 17 such that

< ﬂQ(O)_
p

Assembling previous bounds together, we thus obtain

m:gleul <P d ng) QO,

857

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)
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as claimed. The case maxg |Q1|? is similar. There, we obtain
lo
max| Q1 2« gpp) [Q@]. (247)

Summary. Combining (189), (217), (246), (247), and the fact | < m(«), we have therefore shown the
existence of an absolute constant ng such that

2
g p| < (ngm(a))‘“'(logk)‘“'*z(mng for m(a) > 1. (248)

Thus, when m(«) > 1, the contribution to a, of the combinatorial sum corresponding to “the small
primes” is

(log p)*

IO!\

< (nsm(e))'(logh)@1=2 Y (249)

p<ck?

< (nsm(er) logk)

Finally, the case m(x) =1 can be handled analogously. In that case, we obtain for some absolute
constant 7y,

form(a) =1. (250)

_, (logp)?
|ag.p| < (g logh)!¥1=2 =2
o,p ﬁ

Thus, when m(«) = 1, the contribution to a, of the combinatorial sum corresponding to “the small
primes” is

(log p)?
JP

< (nologh)*I=2 3 < (nglogk)®=1k. (251)

p<ck?

6.1.2. The convergence factor sum
In this subsection, we redefine, for convenience, C, and ay,, of the previous subsection.
We wish to bound the Taylor coefficients (about zero) of

Z i log(l —

p<ck?i,j=1

k+] Zj

) > G (252)

p<ck?

where, again, we redefined Cp to avoid notational clutter. Because only two z;’s appear in each term

of the inner sum on the lhs, the Taylor coefficients ay,, of a local factor C, are zero except for the

coefficients of monomials of the type z}!, with 1< i <2k (case m(a) =1), or z?z,‘gﬂ, with 1 <i,j<k

(case m(«) = 2). Here u, v € Z3o. By symmetry, it is enough to consider the monomials z{ and zﬁ’z,‘gﬂ.
We deal with the case m(cr) =1 first. So, let a,p, denote the coefficient of z{ in Cp, where

o=0,...,0), ueZxo. (253)
Consider the derivative
9 klo —
=Gyl =—2P P (254)
021 2;=0 p 1-p1

2<i<2k P
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Let §2 :={|z1]| = 8}, where § is sufficiently small (to be specified shortly). By Cauchy’s estimate,

8
|aa,p| < 8'7" maxC; <81‘”klogp P (255)
p
Choosing § = 1/(10log ck?), we obtain
50k Io
e p| < (50logk)!~1 28R (256)
P

This uses our assumption that k > 1000, 10 < ¢ < 1000, and, here, p < ck?, so that, with plenty of
room to spare, 10log(ck?) < 501og(k), and p?/(1 — p®~1) < 50.

Therefore, when m(«) =1, the contribution to a, of the convergence factor sum corresponding to
“the small primes” is

1
< (5010gk)@ 150k 3" 2P  (50l0gh) k. (257)
p<ck?

The case m(a) =2 can be handled similarly. Let ay , now denote the coefficient of zﬁ'zl‘gﬂ, where

o=(u0,...,0,v,0,...,0), u,veZxog. (258)
Consider the derivative
92 log p)2 Zk1—21 1 Zk1—21
- C, _(ogp)® p o [1+— p i 72} (259)
0210Zk41 zi=20<,zi,2,;-<=0 p 1_¢» k+pl 1 p1_» HI; 1

Let 2 :={|z1| =3, |zxk+-1| = 8}, with § chosen as before. By Cauchy’s estimate,

_50(log P)2
p

< (501logk)l! (260)

2
g p| < 8271 max c” < 5271 50(ogp)”
apl & axCp S P

Therefore, when m(«) = 2, the contribution to a, of the convergence factor sum corresponding to
“the small primes” is

log p)?
< (50loghy-250 3 UBPY  (5q10g el (261)
p<ck?
6.2. Contribution of “the large primes”: via Taylor expansions

6.2.1. The combinatorial sum
Next we bound the Taylor coefficients (about zero) of

0 S S,
n,p P .
E |:log<1+ E _p" )— —p ]:. E Cp, (262)
p>ck2 n=1 p>ck?

again redefining C,. Fix a prime p. Since p is fixed, we may drop dependency on it in Sy p. Applying
the Taylor expansions to the local factor Cp,, we obtain
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x5y (=D (X s\
n n
G- Y S () 263
n=2 p m=2 m n=1 p
again redefining C,. Next, write
00 o0 m o0
—1)m+1 S —1)m+1 SnySny S
Z( ) Z_n _ ( ) Z ny2ny nm’ (264)
m pn m phittim
m=2 n=1 m=2 ny,ny,....,np=>1

sort the n;’s, and count them according to their multiplicity, i.e. let Sy, Sp, --- Sy, = S)l\1 ng ~~~S§\r,
where each A; >0, and A, > 1 with r the largest integer among nq, ..., npy. Notice that A1 + 2A; +
«e-+4T1Ar=n1+---+ny, and that m= i1 +--- + A;. The above thus equals

) R |
1 (DM Gy )
)R

A ch2 Ar
PRI W WS WL I B (265)

n=2 p M +2h2+--+TAr=n
AtetAr 22
Ai=>0,r>1

Next, we can absorb the first sum in (263) into this by changing the condition A1 +---+ A > 2 to
include the case A1 +---+ A = 1. But, because A =1 we then have A1 =--- = A,_1 = 0. And because
M +2A3 + -+ 1A =n, we thus have r =n, i.e, if we extend the sum to include A1 +---+ A, =1, it
introduces precisely the terms Y oo, 2—2. Therefore, we have arrived at

© MAtAr+1

1 -1 A A A)!

C =Z_ Z ( ) ( 1 T) SA1SA2__.SAr' (266)

P p" M4+ Ar PO 172 r

n=2 AMA24+4TAr=n : '
2i=0,r>1

We consider the coefficient of z{'---z;% in the Taylor expansion of Cp. Let us overload notation

again and denote the said coefficient by ay ,. As noted at the beginning of the current section, it may
be assumed that « is of the form

oa=(o1,...,0,0,...,0,Qs1,...,0%+d,0,...,0), 0<d<I<k, o;>0. (267)

In particular, as far as ay,p is concerned, it is equivalent to consider the series

[e¢) A+ A+1
y Ly G GtcEiloage g (o)
n [ re
n=max{l,2} p AM+2hp++rAr=n A+ +Ar Al Art
2i>0,r>1

We restrict the sum over n to max{l,2} because, in order for a term of the form z‘l)‘1 -~~zg‘,f",

with o > 0 for all i <Ili <k, we need to have at least | individual z;’s, with i <k, appearing in
S?l 5’2\2 -~~S£". But each term in the sum S; involves at most j individual z;'s, hence overall we re-
quire Zj =1"jrj=n>l

Now, define

2k

T:=Y p4. (269)
i=1
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Ok+1 Ok+d

It is then not too hard to see (e.g. by considering the number of ways in which z‘l)‘1 .- -zf”zkﬂ Z

can be formed) that aq  is bounded by the coefficient of z{" ~~-z;x’zzfr§’ ~-~zgf;f in
St 2n
T A4+ 2)!
Z pn Z Ala (270)
n=max{l,2} AM+2A++TAr=n
2 =0.r>1
Also,
1+ ap)!
) IR CAND DI L @7
MA+20+HTAp=n 1 r M+2hg+HTAp=n
2 =0.r>1 2 =0.r>1

For the first step above use:

Gt b AL () (oA (et (272)
Al Ap! Ar Ar—1 A

and bound each binomial coefficient by: ('7) < 2™, For the second step, the number of terms is

bounded by the number of unordered partitions of n, which is easily < 2", since the number of
ordered partitions of n equals 2"~1,

Hence, ay,p is more simply bounded by the coefficient of z{' -~~zf“zgfj]‘ ~--zﬁj_§d in
0 eZn
o1 (273)
n=max{l,2} 4
Let
o1 o Xk+1 Hetd] . ; o1 0 1 Ykd s o 20
(272" g - 7 1] = Coefficient of {7 - - 2z, - - 2,45 in T*". (274)
Setting zj4q1 =--- =2, =0, and zgyg41 =--- =23, =0 in T?" gives

I d - on I d j
2 .
< § pZi + E ka+i + (2[{ — - d)) — E ( ]Tl) (Zk N d)Zn—J< E pZi + § ka+i> . (275)
i=1 i=1

i=1 i=1 j=0

Taking the multinomial expansion of the bracketed term, and applying the operator

9% 9% 9%k+1 azxk 4
e (276)
Z4 Z 0z, 02y g 1(21.e2)=0
to T2", thus gives
o o k1 Aftd
(2" 3" 2l ]
o O] 4 41 Ok+d
— (log ) Z <2n>(2k—l—d)2”—|*|}”1 SRRV VLV S RRRRY by [A]! . 277)
N [\ ol olagr! s akpg! Al Aggg!

[A1<2n.2 21
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Note that 0° is defined to be 1 whenever it occurs. Thus,

o o ay
[Zl1 g Izkfl] "’Zk—,;id]n
g 3° (M) @i (1= )" e i 278
< (o ek - == e S L— 7
(ogp)®! 3 <J>( ) ( 2k> X nrona @
]=l+d A=(A1,.es )\4[+d)
[A=j,ri=1

The factor el is accounted for by e*1t+4+ = eJ and comparing to the terms obtained by multiplying
out the Taylor series for each e*J. 4 '
By the multinomial theorem, interpreting (I +d)’ to be (1 + 1+ ---+ 1)/, we therefore get

« « 2 o - I+d\*" . ,

o —

[ 2288 20 ], < Gogp) ! ) <j>(2l<)2" f<1—7> ed+a). (279
j=l+d

From this we deduce, using (2]") < 2?", and relabeling the sum to start at j = 0, that

o o k41 O+d
(772 I

k+1 7 Zkd

2n—l-d 2n—l—d—j j

. 2k 2k
j=0
Hence,
[£ - 1204 2] < (log p) 18" (2k)2m el (1 4 d) . (281)
And so
1
MR M R i (252)
n=max{l,2}
o 2nqony2n—Il—d
e<"32"k
<logp) e+t 37— (283)

pﬂ

n=max{l,2}

Choose ¢ in p > ck? to be ¢ = 64e? say, then

2max(l.2)—1—a 1og P)!!

|ag,p| < el+d(l+d)l+dk pmaxil] (284)
Finally,
- (log p)'*!

D 00 pl < et aidRmatiazd N B AL (285)

p>ck? p>ck?

24 lee| -1
I+d I+dj2max(1.2)—1-d [2I" (logck®)

< (14 d) ik R (286)
< (32]a]) (log k=124, (287)
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In summary, the contribution to a, of the combinatorial sum corresponding to “the large primes” is

o] lot|—13,2—m()
< (32]e]) " (logk) '~k . (288)

6.2.2. The convergence factor sum
We wish to bound the Taylor coefficients (about zero) of

Z |:S;p + Z 10g<1 B pkti Zx)] Z Cp- (289)

p>ck? i,j=1 p>ck?

Expand log(1 — w) = — Y ° w™/m, w = p?+~%~1 and cancel the S1,p/p term with the m =1 term
to get

m(zkﬂ—z,

o) k
Z % Z (290)

The Taylor coefficients of a local factor C, are zero except for the coefficients of monomials of the
type z{!, with 1 <i < 2k (case m(a) =1), or z}‘z,‘gﬂ, with 1 <, j <k (case m(or) = 2). Here u, v € Zxo.
So, by symmetry, it is enough to consider the monomials z¥ and z'{z,‘gJr1

We deal with the case m(cr) =1 first. So, let a,, denote the coefficient of z4 in Cp, where

a=0,...,0), ueZxyog. (291)
Then,

m4 10k(log pH
< ulp™ p?2

|ag. p| < k(log p)" Z (292)

Therefore, when m(«) = 1, the contribution to a, of the convergence factor sum corresponding to
“the large primes” is

log p)le! a|!(4logk)lol-1
<<kZ(g1;) <<||( g k) _

: (293)

p>ck?

The latter inequality follows by comparing the sum to 35 log(t)!*/=1/t2dt (with one less power in
the exponent to account for the density of primes), integrating by parts || times, and using the
assumption that 10 < ¢ < 1000 < k:

oo \Oll—1 N 1
_ (log ck?)J (4logk)!™!
[log(t)""‘ V2 dt = (la| = 1)1 ) j‘c—k2<< ol —— 5 (294)
ck? j=0 .

On the other hand, when m(«) = 2, the contribution to ay is

logp)®!  |a|!(4logk)l*—1
<Z(gp) <||( g k) _

2 = (295)

p>ck?
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6.3. Bounding the coefficients of the arithmetic factor
We are now ready to state the main theorem of this section.

Theorem 6.1. The coefficients a,, in the Taylor expansion

k

log A(z1, ..., z2x) =: logay + By sz — Zkyi + Z a2y 25 (296)
i=1 la|>1
satisfy
A log k) @i + 2| log k)1 =1k, ifm@) =1, (297)
o
Ama)lel (logh) ! + A a1 log k)@ —1k2=m@) | ifm(ar) > 1

as k — oo, and uniformly in o, where A, is some absolute constant. More simply, but slightly less precisely,
o < 15 (log k) [m(a) @2 -minim@.2) 4|y 1p2-m@)] (298)
as k — oo. Asymptotic constants are absolute.

Proof. The terms A'f'(logk)'“'k and k'f‘m(oz)'“'(logk)‘“' in (297) come from the small primes, and
arise by combining the contributions to ay of:

e The combinatorial sum for the small primes when m(«) =1, (251):
< il (log k)@= 1k. (299)
e The combinatorial sum for the small primes when m(«) > 1, (249):
< n¥m(e) ! (log k). (300)
e The convergence factor sum for the small primes when m(x) =1, (257):
<« 50! (logk)!*Ik. (301)
e The convergence factor sum for the small primes when m(«) = 2, (261):
<« 501 (logk)!®!. (302)

While the terms )L‘za‘|oz|!(logk)|°‘|*1k and }lea‘|oc|!(logk)|“|*1k2*m(“) in (297) come from the large
primes, and arise by combining the contributions to a, of:

e The combinatorial sum for the large primes when m(«) > 1, (288):
< 32119l (log fo) 11 =1 2=m(@) (303)
e The convergence factor sum for the large primes when m(«) =1, (293):

< 4 (| (logk)!*=1 k. (304)
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e The convergence factor sum for the large primes when m(«) =2, (295):

<4 (Ja ) (logh) =1 /2. (305)

The A|2a||ot|! in the statement of the theorem accounts for both the 4/%!|¢|! in (293) and (295), and,
on using Stirling’s asymptotic, for the (32|«|)'®! in (288). O

Remark. A review of the previous argument shows the statement of the theorem can be made more
precise in the case m(x) =1:

Theorem 6.2. For « satisfying m(«) = 1, define

(=D ifa = =y =0,

sgn(a)::{—l, l:f()l1:-~-:0[k:0.

Then, with |«| fixed, and as k — oo, the coefficients a,, satisfy

g = sgn(a)W< 3 (ogp)@ 30
n=1

Hlreo(i)]

(log p)'“! 1
—sseng( 2 5o (o)) 200

p<k?

Asymptotic constants depend only on |«|. In particular,

By = aga,o,...,00 ™~ 2klogl<. (307)

Proof. Our plan is to show that, asymptotically as k — oo and for || fixed, the dominant contribution
to the a, when m(a) =1 comes from the convergence factor sum corresponding to the small primes.
Notice this asymptotic is not uniform in «, so it is not of immediate utility in the proof of the main
theorem, but it is included here because it might be of independent interest.

To this end, by the symmetry of A(zq,...,zy) in the first half of the variables zq,..., 2z, and,
separately, in the second half zy;1, ..., zy, we may assume o1 > o > -+ > o and o1 = Oy =

-+ 2 ayg. Thus, since m(a) =1, then all the «;’s are zero except a1 or o1, but not both.
Consider the case a7 # 0 first. Then o = (J«¢[,0,...,0), and a, is the coefficient of z‘“‘ in

A(z1,...,22¢). By (252) and (254), the contribution of the convergence factor sum correspondmg to
the small primes to this coefficient is

lo -
— Z ﬂ x Coefficient of /™" in %, (308)
p<ck2 1- P
where 10 < ¢ < 1000. Expanding, we obtain
_m21 o0 1 00 (—1)r
= Z T = Z i Z o m' (log p)'Z}. (309)
m=1 r=0 ’

P

Singling out the case r = |«| — 1 above, we have
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i 0 loe|—1
(308) = (1" = 3" (logp) 3 T
m=1

|
Ial.p e p
k (log p)*!
:sgn(oz)m > —=——[1+00/logh)]. (310)
p<ck?

where we used (—1)!*=1 = (=1)l@+1 = sgn(a), Y p<ck (log p)'*!/p > logk, and (hence)

X ylal-1 e
> togp) Y e = Y (l"ng) +oq)
m=1

p<ck? p<ck?

lar
=Y M[l—i—O(l/logk)]. (311)
p<ck?

Also, since c is fixed, we may replace the range of summation p < ck? in (310) by p < k? without
affecting the asymptotic.

The remaining contributions to a, (which, recall, is the coefficient of z'{x‘) come from the combi-
natorial sum for the small primes, the combinatorial sum for the large primes, and the convergence
factor sum for the large primes. But these contributions, which are bounded by (299), (303), and
(304), respectively, are asymptotically smaller than (310), as k — oo and for |«| fixed, by at least a
factor of 1/logk. Put together, this yields the asymptotic (306) in the case o1 # 0.

Last, the analysis in the case ay; 1 # 0 is completely similar except the coefficient of z
p~# /(1 —p~%/p) in (308) is replaced by the coefficient of z,‘fﬂ;l in —p%+1 /(1 — p%+1/p), thereby
changing sgn(x) to —1. O

1.
'f" in

7. The product of zetas

Finally, we bound the Taylor coefficients b, of

k k
log( []@-2z4pc+z —ZI<+j)> =ykY zi—zpi+ » bz 25 (312)

i,j=1 i=1 l|>1

The Taylor coefficients are zero except for those of monomials of the type z!', with 1 <i < 2k (case
m(e) = 1), or z,?‘z,‘:ﬂ, with 1 <1, j <k (case m(a) = 2). Here u, v € Zxo. By symmetry, it is enough
to consider the monomials z4{ and zﬁ’z,‘:H.

We deal with the case m(x) =1 first. So, let o be of the form

o=(,0,...,0), ueZxo. (313)
Setting zo = -+ - = z9;, = 0, the lhs of (312) becomes
o
klog[z1¢(1 4 2z1)] = ykz1 + Zb(u,o ,,,,, 02}, (314)
u=2

Now, by the well-known Taylor expansion, we have
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— (=1)"
z§(1+z)=l+z " YaZ"H1,
n=0

where the y;,’s are the generalized Euler constants satisfying, o =y = .577...,
of [B],

n—1)!
[yl <4 zn

WV

Consider the derivative

1 1
Zn SIIESH )(n+)yzn

a log[z;(1+2)] =

dz Zn 0 Zn+1
Note in particular, for |z| < 1/10, we have
d 8 e g
o loglzzq1 +z)]‘ = =0 A0n" g,

o0
~ 10 2n=0 (10m)"

So, by Cauchy’s estimate, the coefficients d, in the expansion

n

2

log[z¢(14+2)]=: ) dnz

m=1

satisfy

|dn| < 100(10)".

From which it follows

|be| < k(10)'*! when m(a) = 1.

Analogous reasoning yields

lbo| < (100)%!,  when m(a) = 2.
Put together, we have
Lemma 7.1. The coefficients b, in the expansion

k k
10g< 1_[ (Zi =z S+ 2z — Zk+j)> = VkZZi — Ziyi +

i, j=1 i=1 la|>1

are zero when m(«) > 2, otherwise, as k — oo, and uniformly in «, they satisfy
by < A 2m@)]

where X3 is some absolute constant. Asymptotic constants are absolute.

Z bazy" -

867

(315)

and, see Theorem 2

(316)

(317)

(318)

(319)

(320)

(321)

(322)

2k

o (323)

(324)
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