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We give a characterization of random-coefficient autoregressive processes of order 1, using 

analytical properties of the transition probabilities. As an example we show that these transition 

probabilities can be used to find solutions of certain integro-differential equations. 

random-coefficient AR( 1) processes * transition probability 

1. Introduction 

Following Lawrance and Lewis (1987), there are at least three definitions of an 

autoregressive process of order one. Let (X,),=o,...,r be a stationary, univariate 

@-valued) and time-homogenous Markov process. We say that (X,) is an 

autoregressive process of order 1 (AR(l)), if a A ~1-1, l[ and a sequence (E,) of 

i.i.d. variables exist, such that 

x, = AX,_, + 8,. (1) 

This is the standard definition of an AR(l) process and the definition that will be 

used in this paper. It is not necessary that for all A E ] - 1, l[ a process satisfying 

(1) can be defined. Two other definitions are given by the expectation 

F(X, -CL, IX,H) = A(X,-, -p*) (2) 

with p, = E(X,) and by the Yule-Walker equation, which is equivalent to 

pk =Ak, (3) 

where (pk) is the sequence of autocorrelations. It is a common practice in applications 

of time-series models to justify model (1) by checking (2) or (3). The hierarchy is, 

however, the other way round. (1) implies (2) and (2) implies (3). 

In this paper, which can be regarded as a successor of Potzelberger (1987), we 

shall give a characterization of a class of models that are more general than the 

class of AR(l) models and satisfy equation (2), called random-coefficient 

autoregressive processes of order 1. A general reference for random coefficient 
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autoregressive processes is the book by Nicholls and Quinn (1982). Some of these 

processes have been studied in detail by Dewald and Lewis (1985), Gaver and Lewis 

(1980), Jacobs and Lewis (1983), Lawrance and Lewis (1981,1985) and McKenzie 

(1985). 

2. Random coefficient AR(l) processes 

In this part of the paper we give the definition of random AR(l) processes and 

establish some features of AR(l) and random AR(l) processes. 

A stationary, univariate and time-homogenous Markov process (X,) is called a 

random coefficient AR( 1) process of order 1 (RAR(l)), if a sequence of i.i.d. random 

variables (A,, F,), exists, with (A,, F,) independent of (X,_,), _, , such that 

x, = AX_, + F,. (4) 

We shall assume that P(A, f 0) > 0. For a fixed RAR( 1) process (X,), denote by p 

the marginal distribution of X, and by T( . )(x) the transition probability, given by 

E(f(X,)IX,_, =x) = T(f)(x). The domain of T depends on CL. Denote by D and 

J differentiation and integration, i.e. Df(x) =f’(x) and Jf(x) = j,“f( t) dt. If p has 

moments of all orders, then the linear operators D”TJ” are defined on C” -functions 

with compact support. Denote by H(p) the subset of [ -1, l] given by H(p) = 

{A13~*: pCLn is a probability measure and k(s) = $(hs)fi’(s)}, where h denotes the 

characteristic function of the distribution p. For a A E [-1, l] an AR( 1) process 

satisfying (1) exists, if and only if A E H(p). To see that these conditions are 

equivalent, we remark that if a stationary process satisfying (1) exists, then @i(s) = 

@(As)@‘(s), where ph is the distribution of F,. On the other hand, let G(s) = 

@(As)G(s) for a distribution 7. Let (E,),=,,, be a sequence of independent n- 

distributed variables, let X,, - p, independent of (F,) and define for t 2 1, X, recur- 

sively through (1). Then X, - p for all t 2 0 and (X,) is thus stationary. 

Theorem 1. Let (X,) be a RAR( 1) process with marginal nondegenerate distribution 

p. If k has moments of all orders, then 

(a) For all n E N, a polynomial q,, with degree( q,,) = n, ifn is even and degree( q,,) = n 

or n - 1, if n is odd, exists, such that 

E(XY I x,-1) = qn(X,-I). (5) 

(b) Denote the leading coeficient of qn by A,, if degree(q,) = n and let A,, = 0 if 

degree(q,) < n. Let the marginal distribution of A, be v. Then supp( V) c [-1, l] and 

A,, = A” dv(h). 
I 

(X,) is an AR( 1) process if and only if u is a Diruc measure, v = 6,, 
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(c) For each n E 2N a transition probability T,,( .) (x) exists, such that p 0 T,, = p 

and for C”-functions f with compact support, 

T,(f)(x) = D”TJ”f (x)/L. (7) 

Furthermoreforalln E 2N, h,D”TJ” -A,,+, D”+‘TJ”+ andh,D”TJ” +A,+,D”+‘TJ”+’ 

are positive on Cm-functions with compact support. 

Proof. Denote the marginal distribution of A, by v. Let p* be a regular condition 

distribution of E, given A, = A, so that 

I f(x)dE.L*(x)=E(f(et)lAt=A) 

and 

Ef(e,) = f(x) dpA(x) dv(A) 

for integrable functions J: Then for C”-functions f with compact support 

E(f(X,)IX,_,=x)= E(f(X,)(X,p,=x,A,=A)d+) 
I 

= f(A + t) dk*(t) dv(A). (8) 

Forf(x) =x2” a sequence (fn) of positive C”-functions with compact support exists, 

such that fnTJ which implies E(fn(X,)IX,PI)TE(f(X,)IX,P1). 1‘ T(f)(x) dp(x)= 

J f(x) dp(x) implies that (8) holds even for polynomials. 

To complete the proof of (a) and (b), we show that supp( v) c [-1, 11. It is easy 

to see that A,< 1: Let p, = EX, and u2 = Var X,. Then 

a’=E((A,(X,-I-CL,)+&,--,(I-A,))‘) 

= E(A:)a’+E((e, -/_+(I -A,))‘)> E(A;)&, 

so that A2 = E(A:)< 1. Now suppose that A:> 1 with probability #O. Let (ii,, z,) 

be a sequence of i.i.d. random variables with E(f(i,, ;,I)) = E(f(A,, E,) IAt> 1). 

The distribution of (,I,, 6,) is the same as the distribution of (A,, e,), conditional 

on A:> 1. We then define a RAR( 1) process (Y,) with marginal distribution p by 

Y,=X,and Y,=~,Y,_,+~,.ButE(il”~)=~~~-.,A2dv(A)/v(]-~,-l[u]l,~[)~1, 

a contradiction. 

To prove (c), we observe that for C”-functions f with compact support 

D”TJ”(f)(x) =I A” If(Ax+ t) dp*(t) dv(A).Thesameargumentasabove (approxi- 

mation of positive continuous functions by C”-functions with compact support) 

gives (c). Cl 
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3. Characterization of RAR( 1) processes 

Definition Denote the set of C”-functions with polynomially bounded derivatives 

by QN, i.e. f E QM, if for all n EN a C Z= 0 and a m EN exists, such that 

ID"f(x)ls C(l+X2yn. 

Theorem 2. Let (X),,,, be a time homogeneous, stationary and z&variate Markov 

process with nondegenerate marginal distribution t_~ and transition probability T, given 

by T(f)(x) = E(f(X,) IX,+, =x). SUPP ose t.~ has moments of all orders. If for all 

n, mEVfEBll, 

is positive on Q.,,, 

(c) a A,, E R exists, such that 

t.~ Q D”TJ” = h,t_~, 

then (X,) is equivalent to a RAR(l) process, i.e. a RAR(l) process (Y,) exists, such 

that for all 0~ t, X0, . . , X, and Y,, . . . , Y, have the same distribution. 

We shall prove the theorem by establishing a series of lemmas. 

Lemmal. IfD”TJ”‘=OforamE2N, thenforfE6,, 

Tf(x) = f(t) G(t). 
I 

(9) 

Proof. Let fn(x) = x”. It is easy to see that TfH is a polynomial with degree ( Tfn) s n. 

Let m be the smallest positive integer with D”TJ’” = 0. For all f E B,, reals 

a,(f), . . . , a,_,(f) exist, such that Tf(x) = a”(f)+a,(f)x+. . .+a,_,(f)x’“-‘. 

a,,_,(f) = lim,,, Tf(x)lx”-’ a,_,(f)20 all fz0 u,,_,(f)= 

.x--in gives for fE fz0, that for 

f Q#. 
m=2, Tf(x)=a,(f), that T=p Tf(x) dp(t). 

m Then = Tf(x)/x”‘-* a,_2(f)~Ofora11fE~~,,f~0. 

A positive measure cr exists, such that a,_,(f) = o(f). degree( Tl) s 1 gives CT(R) = 0, 

so that (T = 0 on 0,,(, which implies a,_,(f) = 0 for all f E 0,t,, which contradicts the 

choice of m. 0 

Lemma 2. Let T not be given by (9). Let f”(x) = x”. Then for all n EN a polynomial 

qn exists with Tfn = qn. If n is even, then q,, has degree n and leading coefjicient A,,. If 

n is odd, then if A,, f 0, degree(q,) = n, and if A, = 0, then degree(q,) = n - 1. q 
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Lemma 3. A probability density Y exists, such that 

A, = A” dv(A). 
I 

Proof. We have to show that for all sequences ((ai)i=o,...,,) of reals 

f a,a,hi+i 2 0. 
n,j=O 

This is the solution of Hamburgers moment problem. See Akhiezer (1965). Let 

f;(x) = xi and f!.“)(x) =J;(yx). We have 

Now let y = l/x. Then, for x + ~0, y’qi(X) + hi, which proves the lemma. 0 

Lemma 4. Let v be given by (10). Then supp(v)~ r-1, 11. 

Proof. Let p,=EX,,a’=VarX, and b=E((X,-p,)21X,_,=p,). Then bz0. A 

real a exists, such that E((X,-P,)~]X,-, =x) =A,(x-p,)‘+a(x-p,)+ b, which 

implies u2 = A2a2+ b 3 A202, so that A ,~l.IfA,=O,then v=&,sothatsupp(v)~ 

[-1, 11. If A,> 0, then A,, >O for all even n, so that D”TJ”/A, is the transition 

probability of a process that satisfies again (a), (b) and (c) of Theorem 2. For 

f2(x) = x2, D”TJ”f,/A, is a polynomial with leading coefficient An+2/A,. We conclude 

that A,+2/A, G 1, for all even n, which implies supp( v) G r-1, 11. 0 

Lemma5 LetforsER,c,(t)=e”‘. Then 

dv(A). (10) 

Proof. If T is given by (9), then v = so, so that the lemma holds. Now let T not 

be given by (9). Let for E > O,fb”‘(x) = ePFxZ Tc,(x). j-l” is in Sq the space of functions 

with rapid decrease. A my,,(t) E Y exists, such that f:.“(x) = 5 elfXm’&(t) dt. The 

substitution t = sh gives f:“(x) =I ei~‘Axm,~,F(A) dh for a m,,,. E 9. Let k(n, s) = 

11 m>:,,, I( + I( rn::Tin ]I+ I] my,:,,, I( + I]m:,;,,, (I, where for example rn:;:,,, denotes the posi- 
tive real part of m, ,,n. If c(s) # 0, then for even m, 

DmTJmc,(x) =lim 
F’O 

A” eishxm,,,(A) dh 

and 

/_L 0 D”TJ”q = A,,$(s) 
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imply that k( n, S) 74 00. For any countable dense subset Q G [w with C;(S) # 0 on Q, 

a complex measure n and a measurable function h,(A) exist, such that 

m,,,,,(A) dA M.* h,(A)7 (dh). 

We conclude that A,,@(.s)=J h”fi(As)h,(A) dv(A), so that for any SE Q, 

@(As)h,(A)n(dA) is a complex measure having the same moments as @(s)v(dA), 

so that supp( V) z [-1, I] implies fi(s)v(dA) = fi(A.~)h.,(A)v(dA), which proves the 

lemma. 0 

Lemma 6. Zf T is not given by (9), let K,, = {v,,, ,,, 1 n, m E N}, where the probability 

measures un n, are absolutely continuous with respect to u and the Radon-Nikodym 

derivative is given b-y 

/I A*“(1 -A’)“’ dv(A). 

Denote by K the smallest w*-closed and convex set of Bore1 measures on [-1, l] 

containing I&,. An 77 E K is called extremal, if for CY E IO, l[, q, , v2 E K, q = 

cq,+(l-o)nz impliesv=rt,=qz. 

Now, if 77 E K is external, then b, CY E [0, l] exist, such that 

Proof. It is easy to see that v E K with supp( q) g { -1, 0, 1) implies 7,) v2 E K, 

where 7, and v2 are absolutely continuous with respect to 7~ and the Radon-Nikodym 

derivatives are given by 

A’dn(A) 

and 

%(A)=(l-A’) (1 -A’) dv(A). 

Leta=IA2d?7(h).Thenrl=curl,+(1-a)rlz,sothatthefunctionA’isconstanton 

supp(q), if n is extremal. 

It is easy to see that if supp(n)={-l,O, l}, with a, = q({-1}), (Ye= 7((O)), 

(~~=v({l}), then &,E K and ~S_,+(l-~)i3,~ K, where /~=(Y,/(cx,+cx~). This 

proves the lemma. 0 

Lemma 7. Let a, b E IO, l[ and suppose that for all x E [w, 

g,(s) = a emith’ tic;(s) tics) ----+(I _ a) ei\b.x - 

tici fi(bs) 

is the characteristic function of a probability measure on [w. 

Then @(s)/@(-bs) and @(s)/$(bs) are characteristic functions of probability 

measures on [w. 
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Proof. We shall show that fi(s)/p(bs) is a characteristic function. For all XE [w, 

h,(s) = g,.(s) e G”~’ is the characteristic function of a probability measure pl-. 

2(1- ~~)@(s)/fi(bs) = h,(s)+ hsr,2h, implies that fi(s)/fi(bs) (and fi(s)/fi(-bs)) is 

a bounded function of s. Let f~ 0,,,, f> 0. Then f is in Q,,< and 0 G 

jf(t) dp,(t)=jf(-s)&(s) ds/2n, so that sf(-s) e.-‘“‘fi(s)/fi(-bs) ds+O for 

x+00 gives Osjf(-s)g(s)/G(bs) ds. A probability measure pLh exists, such 

that for f E 0’(,, If(t) dp’(f) =jf(-s)fi(.y)/fi(bs) ds/2n. We conclude that 

fib(s) = fi(s)//i(bs). 0 

Proof of Theorem 2. Lemma 1 to Lemma 7 show that Tc,(x) =l ei’“‘fiii”(s) dv(h), 

where c,(t) = e”’ and p * is a probability measure on iw with fi”(s)fi(hs)=fi(s). 

We define a distribution 5 on [-I, l] x [w by 

5(B) = 
II 

I,s(A, t) dp.“(r) dv(A) (11) 

(for any Bore1 set B). To prove that a RAR(1) process ( Y,) which is equivalent to 

X, exists, let ((il,, e,),=,,...) be a sequence of independent c-distributed random 

variables, independent of X,, too. Let Y,, = X,, and for t B 1, Y, = ‘4, Y, , + F,. For 

any t ~0, X0,. . . , X, and Yo, . . . , Y, have the same distribution. 0 

4. Example 

Section 2 shows how models of AR( 1) and RAR( 1) processes can be constructed. 

Let ,u be the marginal distribution of the process. Then for any distribution v with 

supp(v)c H(p), a RAR(1) process (X,) exists with A, - Y and (A,, F,)-6, where 

A,, E, and .$ are given by (4) and (11). 

We give an example of a RAR( 1) process with uniform marginal distribution. 

This example is a well-known special case of a stationary Beta distributed process. 

Example. Denote by f_~ the uniform distribution on [0, 11. Then H(p) = (0)~ {A 1 l/A 

is an integer}. For A E H(p), A # 0, the distribution p”, (given by fi*(s)fi(As) = @i(s)) 

is discrete. If A = l/n, n E N, then 

p* =- 1 y Sk,,. 
n k=O 

ifh=-l/n, n~N,then 

p* YE- 1 i Sk,,. 
n k:l 

For any positive integer p and any h > 0, let V’ be a probability measure on 

{(l/p)“In~N}, given by ~“({l/p”})=e~“h”/n! (if A,, - v{‘, then -In ,l,,/lnp has a 
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Poisson distribution with mean h). We define a transition probability Th by (1 l), 

so that for any continuous bounded function f, 

Thf(x)=e-h f(x)+ f ‘~‘f((x+k)/p”)$$ . 
n-_, k-0 > 

(12) 

A “continuously indexed” process (X,),c,o,mL exists, such that for any continuous 

bounded function f and 0 < h < t, E (f( X,) 1 X,-l, = x) = Thf(x). 

We call a process ( Y,),,m,o,xr a continuously indexed RAR( 1) process (CRAR( l)), 

if for all 0 < s < t, a random variable (A,,,, E,,\) independent of (X,),. , exists, such 

that 

X, = ‘%.,X\ + e,,, . (13) 

We give another method to construct a CRAR( 1) process with transition probability 

given by (12). Let (P,,,)+\_ , be the semigroup of positive operators, defined on 

bounded continuous functions f: [w’+ R by 

r p”p, 
(f--s)” m(,_,,, 

P,,,f(x,y)= C C f(xlp”,(~~+k)l~~“)nlp”e . 
n=o k-” 

Then P,,, 0 P,.,.= f,,, for any 0 < r < s < t. A process (A,, E,),< , ,,,, xl exists, such that 

for any 0 < s < t, E(f(A,, &,) 1 A, = x, E, = y) = P ,.,, f(x, y). Let Y(, be a random vari- 

able, independent of (A,, F,),,_,,,~, and uniformly distributed on [0, 11. For t > 0, 

set Y, = /I, Y,)+ E,. To prove that ( Y,) is a CRAR( 1) process, define for 0 < s < t, ‘I,, , 

and E,., by A,., =A,/-4, and s,,, =e,--.1,,~,. Then Y,=/I,,Y,+&,,. We have to . 

show that (A,%,5, E,,,) is independent of ( Y,)l. ,. It is sufficient to show that (‘I,,, , F,. ,) 

is independent of (n,, e,). We have P( A,, , E A, F,, , e B 1 A, = x, F, = y) = P,, ‘, f(x, y) 

(for Bore1 sets A, B), where f(u, v) = ZA(~/x)IB(n- uy/x), so that 

.r p ‘) - , 

P,,,f(X,Y) = c c JA(P 
(j-s)” -(,__(, 

n=O k =o 
-“xlx)l,,((y+k)l~“-ylp”)n’p”e 

= i “t’ I,(l/p”)Z,(k/p”) $f-$ e “--O . 
,I = 0 I = 0 

Thus P,, , f(x, y) does not depend on (x, y), which implies that (‘4,. , , F,, ,) is indepen- 

dent of (A,, E,). 

For bounded continuous functions J; (T’lf(x) -f(x))/h converges for h + 0 to 

W”(x)=-f(x)+;>:>f (14) 

G is the infinitesimal generator of the CRAR( 1) process. G is an integral operator, 

in contrast to the infinitesimal generator of an AR(l) process, which has the form 

GARf(x)= -~f’(x)+~~(x)+~~s”(x) 

+ 
I 

(f’(x+ t) -f(x)/(l+ t2))h(t) dr, (15) 
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for f~ %, where (Y, j3 E Iw and h( 1) is a measurable function, nondecreasing in 

IO, CO[ and in ]-ccJ,O[. 

5. Solution of an integro-differential equation 

The example in Section 4 shows that the function g(t, x) = T’f(x) is a solution of 

a certain integro-differential equation. 

Theorem 3. Let r] be a probability measure on R, A E 10, l[ and let f be a bounded 

and continuous function on R. If 

then a solution of the equation 

$?A=--P(W+ g(f,Ax+u)dv(u), 
J 

g(O, x) =f(x), (17) 

is given by g( t, x) = T’f (x), where T’ is the transition probability of a CRAR( 1) process 

with marginal distribution t.~, given by 

G(s) = kly” i(A”s). (18) 

Proof. The sequence of probability measures T,,, defined by q_, = 6, and G,,(s) = 

I7& <(A Ir, s), converges to a probability measure p on [w, if and only if (16) holds. 

A proof can be found in Wolfe (1982). Then for any k E N, A’ E H(p). Let for any 

t > 0, Y’ be the distribution of A Nf, where N, has a Poisson distribution with mean 

t. Define T’ on bounded continuous functions f by 

Tlf(x) = JJ f(A”x+u) drlkp,(U) dN,(k) 

k 

= 

k-0 Jf( Akx+u)d~,-,(~)~e~‘, (19) 

T’ is the transition probability of a CRAR(1) process. The infinitesimal generator 

G is then Gf(x) = -f(x)+j f(Ax+ u) dv(U), so that g( t, x) = T’f (x) is a solution 

of (17). 0 
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