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Abstract 

Generalized theoretical prediction of temperature distribution, peak temperature, cooling rate and thermal cycles in a 

solid work piece welded by laser welding process, where no melting is occurs, i.e., from the boundary of fusion zone to the end 

of heat affected zone. With the moving point or line heat source may be considered for the analysis that indicates the temperature 

gradient ahead of the heat source is much higher than that behind, increasing welding velocity elongates the isotherms 

surrounding the heat source, higher thermal conductivity of materials make the isotherm more circular, reducing the temperature 

gradient in front of the heat source. The peak temperature experienced throughout the workpiece, determine the size of the heat 

affected zone (HAZ). The peak temperature at a given point is experienced by the point shortly after it is passed by the heat 

source. The size of the HAZ increases with the net energy input. The cooling rates experienced by a material, determines the 

grain structure and phases that are formed. Increasing the heat input reduces the cooling rate. While increasing the welding 

velocity increases the cooling rate. Higher thickness, thermal conductivity of the material also increases the cooling rate.   
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1. Introduction  

Laser beam welding process has numerous advantages compared to the conventional welding processes. 

Due to high intensity of its localised heat source, a nonuniform transient temperature field occurs, Klaus Zimmer 

(2009). This field initially causes a rapid thermal expansion followed by a thermal contraction of the laser irradiated 

materials during welding.  

Nomenclature 

Q  The heat flux or rate of heat flow per unit area across the surface in W/mm2  

K  A constant, coefficient of thermal conductivity in W/mm/K 

A  The unit area of cross section perpendicular to the flow of heat in mm2 

T  The increase in temperature above the surroundings in Kelvin  

T0 Ambient temperature in Kelvin 

∂T/ (∂x)  Temperature gradient with respect to distance from the point of irradiation in K/mm  

  (= m/Aδx) The density of a medium in kg/m3  

m   Mass of a substance in kg 

v  (= Aδx) Volume of a substance in mm3  

Cp  Specific heat capacity of a substance in J/KgK 

E  Emissivity power of the surface  

P  Perimeter of a work piece in mm 

Qg (=H/K) Rate of internal heat generation in a work piece in W/mm2 

Laplacian operator 

 (=K/ρs) Thermal diffusivity of a work piece in mm2/sec 

∂T/∂t  The time rate of change of temperature in the moving coordinate system in K/sec. 

 x, y, z  A coordinate system with origin “O”.  

, y’, z’ Transformed coordinate system with origin “O”.  

h  The plate thickness of the work piece in mm 

Ux Welding velocity in x-direction in mm/s. 

r  The radius of a cylinder drawn around the heat source in mm 

K0 (χ)  The modified Bessel function of the second kind of order zero  

e Natural exponent (= 2.71828)  

Tp  The peak or maximum temperature at a distance Y from the fusion boundary in Kelvin 

Y  The distance from the fusion boundary at the workpiece surface in mm 

Tm   Melting point of the work piece in Kelvin 
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The severity of the induced temperature gradients and the degree of restraint the joint imposes on the thermal 

deformation determine the residual state of the weldment when it has finally cooled, Moraitis G.A and G.N. Labeas, 

(2008). This residual state is characterized by a combination of internally balanced residual stresses and weld 

distortion. Residual stresses and weld distortion in a weld joint occur throughout the area of solidified weld metal 

and the heat affected zone. Both the magnitudes and the distributions of the residual stresses are taken into account 

to accurate estimate a weldment’s fatigue life, Shah ram Sarkani et al. (2000). Mathematical models have been 

developed, computed and simulated and also validated through experimental results, are of major importance for a 

high number of reasons: the deep understanding of the laser welding physics, reliable extension of the process 

applicability to modern demanding industrial applications and to optimize the process parameters, with less cost 

penalty, Moraitis G.A and G.N. Labeas (2009). 

2.   Brief History about Modelling of Laser Welding 

Researchers have studied the laser welding process since the early 1970s and several mathematical models 

have been developed. Rosenthal (1946) and many other authors, have studied classical solutions of the heat 

conduction equations. Carslaw and Jaeger (1959) have brought this together in a complete reference book with 

analytical solutions of the heat conduction equations. The heat sources used are point sources, line sources and plane 

sources, since these are the only types of geometry were analytical solutions are straightforward to obtain. This type 

of sources is suited to predict the thermal history at a large distance from the source. K.N.Lanakala palli et al.         

(1996) reviewed the range of mathematical models for laser welding associated with a number of different 

parameters used for deriving the governing equations until 1995.  S.E.Chidiac and F.A.Mirza (1993) were developed 

3D heat flow model for Arc welding to determine the thermal cyclic response for various materials and for different 

types of welding arcs. The most common problem of welding dissimilar metals with respect to residual stresses is 

the differences in the coefficient of thermal expansion and thermal conductivity of the two welded metals, Anawa 

E.M and A.G.Olabi (2008).  S. Murugan et al. (1998) investigated the temperature distribution, thermal cycles of the 

bead on plates weld joint welded with MMA method by single pass and with multipass, since thermal cycles cause 

microstructural changes, subsequently, arise the residual stresses which affect the performance the welded 

components. In another publication, S. Murugan et al. (1999) also calculated the experimental temperature 

distribution for different thickness of plates of dissimilar multipass welding and those hints to establish the 

microstructural changes, phase transformation and degradation studies from results of average peak temperatures. 

M.R. Frewin and D.A. Scott, (1999) were developed a model to estimate the temperature contours as function of 

time during pulsed laser welding in addition to the measurement of fusion zone and heat affected zone.   Most of the 

heat transfer models developed until the year 2002 was reviewed by A.P. Mackwood and R.C. Crafer (2005).  S. 

Sarkani et al. (2000) reported the possibility of replacing a computationally expensive 3D FE analysis of welding 

temperature distribution in the central zone and residual stresses with a less expensive 2D and validated with single 

pass multipass T-Joint welding. Wenchun et al. (2009) modelled the temperature history and residual stress of 

vacuum brazed stainless steel plate-fin structure by Finite Element Analysis with ABAQUS code. B.S.Yilbas et al.  
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(2010) consecutive publications on modeling of temperature and thermal stress field distribution using FEA with 

ANSYS code for low carbon steel and alumina. M. Van Elsen et al. (2007) effectively used the analytical and 

numerical solutions of the heat conduction equations to calculate the temperature distribution in a semi-infinite 

medium for a localised moving 3D heat source of any type for use in laser material processing, as welding, layered 

manufacturing and laser alloying. Martinson et al. (2009) stated that phase transformation due to different cooling 

rates is important when dealing with high strength or advanced high–strength steels which are seeing increasing use 

in the car industry.  Jaroslav Mackerle, (2004) have been published many bibliography that provides hundreds of 

references until from the year 1976 to 2004 on modelling and analysis of Laser beam welding of 2D, 3D thermo 

mechanical, to evaluate temperature, stress and distortion distributions, linear and non-linear analysis, phase change 

problems, solidification, melting, austenitic-martensitic phase change, martensitic transformation, solid liquid phase 

transformation etc., including welding under consideration of austenitic stainless steel and other metals and alloys.  

 

In this paper, the main objective is to present the generalized analytical model to predict the temperature 

distribution, peak temperature, cooling rates and thermal cycles from the boundary of fusion zone to the end of heat 

affected zone of a weld-joint welded by laser welding. 
 

2.  Heat Flux Conduction Equation in a Laser Irradiated Work Piece  

During laser beam welding process, heat can be transferred from one part of the materials to another part 

by three different ways viz conduction, convection and radiation. If heat is transmitted by the actual movement of 

the heated particles, the processes is known as conviction, which is prominent in the case of liquids and gases. 

Radiation, the heat transferred from materials surface to the surroundings directly without the necessity of the 

intervening medium.  

When laser beam irradiated on a metal slab which start to conduct heat energy, the molecules at the surface 

vibrate with higher amplitude (kinetic energy) and transmit the heat energy from one particle to another and so on 

without actual motion of the particles, known as conduction. 

According to the Fourier first law of heat conduction in a rectangular metal slab is   

 -------- (1) 

Hence, heat transmitted per second by the metal slab between any two points at the distance δx is given by  

     ------ (2) 

Before the steady state is reached, the quantity of heat Q is used in two ways before steady state is reached. 

Partly the heat is used to raise the temperature of the metal slab and the rest is lost due to radiation.  The heat used 

per second to raise the temperature of the metal slab is  

= Mass X Specific heat X Rate of raise of temperature 

  ------ (3) 

The heat lost per second due to radiation in from the surface of the metal slab 
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          ------- (4) 

 Where E is emissivity power of the surface, P is perimeter and T is average excess of temperature of the 

metal slab between any two points considered.  

To obtain the temperature distribution as function of time, we consider control volume as shown in the 

figure 1.  

 
Figure 1: Heat flow in a control volume 

Considering the law of conservation of energy, the rate of change of internal energy (  , which is also 

known as the internal heat generation, ratio of amount heat ‘H’ to thermal conductivity ‘K’) per unit volume of the 

control volume must be equal to the sum of the net rate of heat flux per unit volume across its faces and any heat 

sources or sink with in it per volume such as chemical reactions or current passing through it (Joule effect).  

Hence, the heat balance on the differential element can be stated that rate of heat conduction and the 

internal heat generation are equal to the heat convection and radiation.      

+     (or) 

+    ----- (5) 

The rectilinear flow of heat along a rectangular metal slab in three dimensions in terms of Cartesian 

coordinates is  

+    ----- (6) 

In a more compact form, 

  +     ----- (7) 

Where,   is laplacian operator. 

Thermal diffusivity or Thermometric conductivity ( ): It’s defined as ratio of thermal conductivity to 

thermal capacity per unit volume 

    ----- (8) 

Under steady state flow of heat , therefore, hence, the equation (7) can reduced as follows, 

 ------ (9) 

Equation (9) is known as Laplacian transformation. 
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In the case of transient heat conduction, If the surface of the material is assumed that it is impervious to 

heat flow has arbitrary of temperature in the direction of x and y, independent of z (Since, there is no heat flow in z 

direction actually which is perpendicular direction to laser beam incident on materials surface).  From the 

assumptions,   

= 0 and    

Hence, the equation (7) can reduced as follows, 

   ------ (10) 

Now, the above expression is reduced to the two dimensional equation for rectilinear flow of heat along a 

rectangular metal slab in terms of Cartesian coordinates. In this simplified lumped parameter energy balance 

equations are presented that enable quick estimates to be made of energy requirements for a given laser welding 

process. This differential equation with its associated boundary conditions can be solved using analytical or 

numerical methods such as the finite difference, finite element or control volume methods, S. Murugan et al. (1998).   

 

3.  Temperature Distribution in a Laser Welding Process 

Generally, the solution of heat flow equations for any welding conditions is a complicated problem. In 

order to find analytical solutions to the equations, it is therefore necessary to make many simplifying assumptions. 

To make the problem more tractable analytically, the following assumptions are made, 

1. The workpiece material is assumed to be homogeneous and isotropic.  

2. Heat conduction through the workpiece is usually much greater than any heat exchange with the 

surroundings by natural convection or radiation. It is further assumed that the workpiece surfaces are 

adiabatic; that is, there is no heat loss or gain by either convection or radiation. 

3. The heat source is considered to be a moving line that goes through the entire plate thickness 

uniformly.  

4. A Gaussian distribution that is more representative of the heat source is then considered. TEM00 spatial 

mode most suitable specifically for welding, also for cutting and drilling.  

5. Analysis of the moving heat source case is facilitated by using a coordinate system that is attached to 

the heat source. 

6. In a realistic model the thermal conductivity and specific heat should be considered as functions of 

temperature. The equation is linearized by assuming that the material’s physical coefficients such as 

thermal conductivity are independent of temperature. Even though the thermal conductivity for plain 

carbon steel, for example, may vary from about 65 W/m K at 0◦C to about 30 W/m K at 1200◦C, using 

an average value (about 50 W/m K) provides a reasonable approximation and enables a closed form 

solution to be obtained. Thus ∂k/∂T = 0.  

7. The internal heat generation is neglected. This means  = 0. This assumption is reasonable for a 

number of applications, especially when one compares the external heat sources associated with some 
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laser processes with any heat that might be generated within the material. However, this is not 

necessarily true of oxygen assisted laser cutting where the exothermic reaction can be considerable. 

8. In most types of welding, melting occurs and convective heat transfer in addition to conductive heat 

transfer takes place. In addition, most realistic welding problems have heat losses at the boundaries 

caused by convection, radiation and contact with other bodies, so the precise boundary conditions are 

often unknown. 

9. No phase changes occur; that is, the effect of latent heat of fusion is negligible.  The major drawback 

lies in the fact that the behaviour of molten material cannot be taken into account. 

Let us, therefore, consider a coordinate system moving with the heat source along the x-axis, as shown in 

Figure 2. The corresponding governing equation is obtained by a coordinate transformation from the plate to the 

heat source, with x being replaced by ξ, y by y′, z by z′, and t by t′, that is,   

ξ = x - uxt, y′ = y, z′ = z, t′ = t 

Where, ux is the traverse velocity of the heat source in the x-direction (mm/s). 

 
Figure 2: Schematic of moving coordinate system associated with laser processing  

 

where ξ, y, z is a coordinate system attached to the moving heat source, with positive ξ in the direction in 

which the heat source is moving; x, y, z is a coordinate system with origin O and fixed to the workpiece, with 

positive x in the direction in which the heat source is moving; and ∂T/∂t is the time rate of change of temperature in 

the moving coordinate system. Since the heat source is uniform through the thickness, there can be no change in 

temperature in the thickness direction. 

The Gaussian heat source is considered separately for two forms of solutions: 

1. One case is that of a thick plate on which a point heat source moves and involves three-dimensional heat 

flow. This might be the case, for example, in conduction mode welding. 

2. The other case is that of a thin plate with a line heat source that penetrates through the thickness and 

involves two-dimensional heat flow. Examples would be keyhole welding or laser cutting. 

To determine whether a plate is thin or thick, the following equation may be used as an initial 

approximation: 

 ------ (11) 
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The plate is considered to be thin when βc < 0.6 and thick when βc > 0.9. When high accuracy is desired 

and 0.6 < βc < 0.9, then it is best to solve the equations numerically.  

 

4.  Temperature Distribution of a Weld Plate with Moving Heat Source  

The configuration for this case is illustrated schematically in Figure 3. In this case, heat flow is in two 

directions ξ (or x)-direction and y-direction. There is no flow in the z-direction. 

 
Figure 3: Two-dimensional conduction mode laser beam, (Andrzej Sluzalec, (2005)). 

The heat source is considered to be a line that goes through the entire plate thickness uniformly. Thus, heat 

is input to the system as power per unit thickness. Now let r =  , the radius of a cylinder drawn around the 

heat source. Since the heat source is uniform through the thickness, there can be no change in temperature in the 

thickness direction. Thus, we have 

= 0 for all z 

The temperature distribution in a plate for a moving line heat source (John Michael Dowden, 2001) is given 

as 

 ------ (12) 

Where K0 (χ) is the modified Bessel function of the second kind of order zero.  

Equation (12) is also sometimes known as the Rosenthal equation, before Carslaw and Jaeger (1959) who 

first derived them. Samples of the temperature distribution as represented by a family of isotherms drawn around the 

instantaneous heat source position (x − y plane) are shown in Figures 4 shows the effect of thermal conductivity by 

comparing the isotherms for a relatively low thermal conductivity material (say steel) and a relatively high thermal 

conductivity material (say aluminum) when other processing conditions are the same. Figure 4 shows the effect of 

speed on the isotherms, for the same input power. Finally, Figure 4 compares the isotherms obtained for a thin plate 

and a thick plate, when the processing conditions are the same.  
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(4.1a)                                                            (4.2a)                                                 (4.3a) 

 

 
 

(4.1b)                                                             (4.2b)     (4.3b) 

 

Figure 4: Temperature distributions in a plate for (4.1a) low thermal conductivity low carbon steel and (4.1b) high 

thermal conductivity aluminum, Temperature distributions as a function of processing speed (4.2a) Low speed. 

(4.2b) High speed (doubled) and Temperature distribution as a function of plate thickness, other processing 

conditions being the same. (4.3a) Thin plate. (4.3b) Thick plate (more than 20 times thicker), (D. Rosenthal, (1946).  

 These graphs were obtained by solving equations (12). From these figures and the equations, the following 

deductions can be made: 

1. The temperature gradient ahead of the heat source is much higher than that behind it. 

2. Different points along the y-axis in a given section reach their peak temperature at different times. Points 

farther away have a lower peak temperature, and that is reached at a later time. The locus of points that reach their 

peak temperatures at the same instant is indicated by curve n - n in Figure 4 The curve bends backward. This is due 

to the finite time that it takes for heat to flow in materials, which delays the occurrence of the peak temperature at 
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points along the y-axis. Curve n - n also separates points in the plate with rising temperature from those with falling 

temperature. Its shape depends on both the traverse speed and the thermal diffusivity of the material. 

3. A higher thermal conductivity material such as aluminum makes the isotherms more circular, reducing 

the temperature gradient in front of the heat source, 4.1a and 4.1b of figure 4. 

4. Increasing the traverse speed makes the isotherms more elongated, while also increasing the lag of the 

locus n - n, 4.2a and 4.2b figure 4.  

5. Increasing the heat input or preheating does not change the shape of the isotherm but increases the size. 

This widens the fusion zone, as well as the heat-affected zone (HAZ). 

6. For the same conditions, a thinner plate results in a greater heat affected zone size than a thicker plate, 

while the thicker plate results in a higher temperature gradient, 4.3a and 4.3b of figure 4. 
 

5.  Peak Temperature 

The peak temperature at a given point is experienced by the point shortly after it is passed by the heat 

source, S. Murugan et al. (1998). This is evident from an isotherm (locus of points with the same temperature) of the 

temperature distribution obtained from equation (12) (Figure 4). At any position of the heat source, the isotherms of 

various temperatures are oval shaped. Higher temperatures have smaller size ovals. The point on any isotherm that is 

furthest from the x-axis (or line of motion of the heat source) is at its peak temperature at that instant.  

 

Using equation (12) and considering temperatures in terms of distance from the fusion zone boundary, it 

can be shown that the peak temperature for a thin plate (line source) is given 

  ------ (13) 

While that for a thick plate (point source) is  

 ------ (14) 

Where e = natural exponent = 2.71828, Tp is the peak or maximum temperature at a distance Y from the 

fusion boundary and Y is the distance from the fusion boundary at the workpiece surface. 

 

Equations (13) and (14) are applicable to single-pass processes and have to be applied to each pass by 

itself. They are useful for estimating the heat-affected zone size and also for showing the effect of preheat on the 

HAZ size. It is evident from the equations that all parameters being constant, preheating increases the size of the 

HAZ. Also, the size of the HAZ is proportional to the net energy input. Thus, high-intensity processes such as laser 

welding generally have a smaller HAZ. A high intensity energy source results in a lower total heat input because the 

energy used in melting the metal is concentrated in a small region. 

In general, the equation (i.e., (13) or (14)) that gives the higher computed distance from the fusion zone or 

higher peak temperature at a given location is the more accurate of the two. 
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6.  Cooling Rates 

The heat and the fluid flow that occur during laser processing influence the microstructures (through the 

grain structure and phases that are formed), residual stresses (through the thermal stresses that result from 

differential strains), and distortions that evolve during the process. These in turn affect the mechanical properties 

and thus the quality of the process, Shahram Sarkani et al. (2000).  

When a material is heated to a high enough temperature, the rate at which it cools afterwards determine the 

grain structure and phases that are formed. These in turn affect mechanical properties such as strength and ductility. 

For example, high cooling rates result in a finer grain structure, which increases the strength but reduces the ductility 

of the material. Knowledge of cooling rate is most important for materials that are polymorphic in nature, for 

example, steels. This enables a variety of phases with widely different mechanical properties to be produced. It is of 

less interest for aluminum, for example, where the cooling rates are always high. In the general case, the cooling rate 

at any position at any time can be obtained by differentiating equation (12) with respect to time. 

The centreline cooling rate for thick materials in three dimensional case is the cooling rate is proportional 

to the square of the temperature rise above the initial temperature. 

  ------- (15) 

For thin plates, that is, the two-dimensional case, the centreline cooling rate is given by 

 ------- (16) 

 

 
(a)                                                 (b) 

Figure 5: Dependence of cooling rate on (a) traverse velocity and Representative regions for the cooling 

rate equations, (Elijah Kannatey-Asibu Jr, (2009)) 

From equations (15) and (16), the following deductions can be made,  

(a) Increasing the heat input (q) reduces the cooling rate, while increasing the traverse velocity (ux) 

increases the cooling rate. 

(b) Increasing the initial workpiece temperature (or preheat) (T0) reduces the cooling rate, and is more 

effective than increasing the heat input or reducing the traverse velocity. 
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(c) The cooling rate increases with an increase in plate thickness (h). 

(d) A higher conductivity (k) material such as aluminum results in a higher cooling rate. 

(e) The cooling rate decreases with an increasing distance (y) from the process centreline. 

The last point may not be immediately obvious, unless one considers the fact that the cooling rate decreases 

with decreasing temperature and that from equation (12), the temperature reduces with increasing distance from the 

weld centreline.  

  

Equations (15) and (16) strictly give the centreline cooling rates behind a point or line source of heat moving 

in a straight line at constant velocity on a flat surface and are most accurate for cooling rates at temperatures that are 

significantly below the melting temperature. Fortunately, the temperatures at which cooling rates are of 

metallurgical interest, especially for steels, are well below the melting point, and the estimates from these equations 

are then reasonably accurate. Furthermore, since the centreline cooling rate is only about 10% higher than in the 

heat-affected zone, these equations also fairly well represent cooling rates in the regions of metallurgical interest. 

 

7. Thermal Cycles 

Figure 6 shows the variation of temperature with time at three points that are located at different distances 

from the fusion boundary. This is referred to as the thermal cycle diagram and can be obtained by substituting 

the relation τ = ξ/ux into equation (12). This will result in equations of temperature as a function of time 

Murugan et al. (1998). The following deductions can be made from the thermal cycle diagram: 

 

(a)                                                                                          (b) 

 

(c) 

Figure 6: Thermal cycle diagrams for (a) Thin plate. (b) Thick plate. (c) Configuration showing simulation points. 
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1. The peak temperature decreases rapidly with increasing distance from the centreline. 

2. The time required to reach the peak temperature increases with increasing distance from the centreline. 

3. The rate of heating and the rate of cooling both decreases with increasing distance from the centreline. 

However, the heat flow is considered only in the solid part of the workpiece, because, the predicted results 

are more accurate in the solid part of the workpiece. 

 

Conclusion  

The cooling rate of a material decreasing with respect to distance from the centre weld line as temperature 

distributed is decreasing. As the grain growth rates strongly depends on temperature distributed. An increase in 

temperature increases the thermal vibrational energy, which turn accelerates the net diffusion of atoms across the 

boundary from small to large grains or coarse grains. Subsequent, decrease in temperature slows down the 

boundary, but does not reverse it. Accordingly, the hardness of the weld joint is higher at the joint and starts to 

decrease with respect to distance from the centre weld line. Microstructure of the weld joint of a similar/dissimilar 

materials can be altered by particle coalescence (sometimes called as Ostwald ripening) that is directly comparable 

to grain growth. Since, there is very high temperature which adequate to facilitate diffusion, also, the higher 

temperature increases the cooling rate (the driving force) in range of super cooling, results in distribution of 

microstructure through an eutectic or eutectoid reaction, leads to formation of precipitation and coarse grains. The 

regions near the weld line undergo peak temperature and severe thermal cycle, thereby generating inhomogeneous 

plastic deformation and residual stress. The analytical model and the predicted results on heat flow of any solid 

material are directly applicable to laser welding process, but, its limited to where no melting is occurs.  
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