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Cardiac ventricular myocytes exhibit a protein kinase A-dependent Cl� current (ICl.PKA) mediated by the
cystic fibrosis transmembrane conductance regulator (CFTR). There is conflicting evidence regarding the
ability of the divalent cation nickel (Ni2+), which has been used widely in vitro in the study of other car-
diac ionic conductances, to inhibit ICl.PKA. Here the action of Ni2+ on ICl.PKA activated by b-adrenergic stim-
ulation has been elucidated. Whole-cell patch-clamp recordings were made from rabbit isolated
ventricular myocytes. Externally applied Ni2+ blocked ICl.PKA activated by 1 lM isoprenaline with a log
IC50 (M) of �4.107 ± 0.075 (IC50 = 78.1 lM) at +100 mV and �4.322 ± 0.107 (IC50 = 47.6 lM) at
�100 mV. Thus, the block of ICl.PKA by Ni2+ was not strongly voltage dependent. Ni2+ applied internally
via the patch-pipette was ineffective at inhibiting isoprenaline-activated ICl,PKA, but in the same experi-
ments the current was suppressed by external Ni2+ application, indicative of an external site of Ni2+

action. In the presence of 1 lM atenolol isoprenaline was ineffective at activating ICl.PKA, but in the pres-
ence of the b2-adrenoceptor inhibitor ICI 118,551 isoprenaline still activated Ni2+-sensitive ICl.PKA. Collec-
tively, these data demonstrate that Ni2+ ions produce marked inhibition of b1-adrenoceptor activated
ventricular ICl.PKA at submillimolar [Ni2+]: an action that is likely to involve an interaction between Ni2+

and b1-adrenoceptors. The concentration-dependence for ICl.PKA inhibition seen here indicates the poten-
tial for confounding effects on ICl,PKA to occur even at comparatively low Ni2+ concentrations, when Ni2+ is
used to study other cardiac ionic currents under conditions of b-adrenergic agonism.

� 2013 Elsevier Inc. Open access under CC BY-NC-ND license. 
1. Introduction

A number of distinct chloride conductances have been identi-
fied that may contribute to the normal and pathological function
of cardiac myocytes [1,2]. These include swelling-activated Cl� cur-
rent [1,2], Ca2+-activated Cl� current [1,2], anionic background cur-
rent [3,4] and cAMP/PKA-activated Cl� current (ICl.PKA) activated by
b-adrenergic agonists [2,5,6]. The channels that carry ICl.PKA are
mediated by a cardiac isoform of the cystic fibrosis transmembrane
conductance regulator protein (CFTR: [2,7–9]). Sympathetic activa-
tion of ICl.PKA may act to counter the effects of b-adrenergic stimu-
lation of L-type calcium current (ICa,L); consequently ICl.PKA may
contribute to the rate-dependent shortening of ventricular action
potentials [10,11]. However, the direct measurement of ICl.PKA from
cardiac cells and of its modulation of action potentials under phys-
iological recording conditions is confounded by a lack of potent
and selective pharmacological CFTR inhibitors [2]. Consequently,
cardiac ICl.PKA is usually studied under ‘selective’ recording condi-
tions, with other overlapping conductances inhibited.
8.
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The in vitro study of b-adrenergic modulation of some other car-
diac ionic conductances is facilitated by the availability of selective
pharmacological inhibitors [12,13], which in principle allows these
to be separated from b-adrenoceptor activation of ICl.PKA. However,
this is not necessarily the case for all the ion currents of cardiac
myocytes. The electrogenic Na+–Ca2+ exchanger (NCX) is present
throughout the heart and plays an important role in Ca2+ ion han-
dling and in shaping cardiac action potentials [14,15]. Similar to
ICl.PKA, cardiac NCX current (INCX) is difficult to study under normal
physiological conditions due to a lack of NCX-selective pharmacol-
ogy. Direct measurements of INCX have therefore tended to involve
the inhibition of overlapping voltage and time-dependent conduc-
tances and INCX measurement as current sensitive to millimolar
concentrations of nickel ions (Ni2+) [16–18]. Selective measure-
ment conditions for cardiac INCX exclude overlapping ICl.PKA in the
absence of PKA stimulation, but in the presence of such stimulation
there is potential for both currents to be activated [15,19,20]. The
results from some studies are suggestive that the use of Ni2+ to
study INCX under conditions of b-adrenergic agonism may be com-
plicated by an inhibitory effect of Ni2+ on b-adrenoceptor activated
ICl.PKA [19,20], although other data appear inconsistent with
this possibility [21]. The present study was therefore undertaken
to determine, under CFTR-selective recording conditions, the
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response of b-adrenoceptor activated cardiac ICl.PKA to Ni2+. The re-
sults obtained demonstrate a marked, concentration-dependent
inhibitory modulation by Ni2+ of b1-adrenoceptor mediated ICl.PKA.
2. Methods

Right ventricular cardiomyocytes were isolated from the hearts
of Langendorff-perfused male New Zealand White rabbits as
described previously [22]. All procedures were approved by the
Fig. 1. The effect of extracellular Ni2+ on isoprenaline-activated ICl.PKA. (A) Panel (Ai) sho
10 s) used for recording Cl� currents. Panel (Aii) shows representative currents, plotted a
indicate traces obtained from the time-points indicated in panel (B). (B) Representative
�100 mV (filled circles) during saw-tooth voltage-ramps; the solid bars at the top indicat
Concentration–response relationship of the effect of Ni2+ on ICl.PKA. Concentration–resp
numbers at each respective concentration are shown in parentheses. Solid and dashed lin
fitted logIC50 (M) at +100 and �100 mV were respectively �4.107 ± 0.075 and �4.322 ± 0
�100 mV.
Ethics Committee of University of Bristol and conformed to the
UK Animals (Scientific Procedures) Act, 1986. Prior to use, myo-
cytes were stored at 4 �C in Kraft–Brühe (KB) solution [22,23].
2.1. Electrophysiological recording and data acquisition

Whole-cell patch-clamp recordings were made at 37 �C. The
data acquisition and recording methods used here have been
reported previously [20,24]. Cells were superfused with normal
ws the voltage-ramp protocol (holding potential = 0 mV, frequency of application 1/
gainst voltage, obtained during the descending phase of the ramp saw-tooth. Letters
time course of an experiment with currents sampled at +100 mV (open circles) and
e application of 1 lM isoprenaline (ISO) and Ni2+ at the concentrations indicated. (C)
onses are shown at +100 mV (open circles) and �100 mV (filled circles). The ‘n’
es represent fits to the data with Eq. (2) at �100 mV and +100 mV respectively. The
.101; the nH values for the fits were 1.145 ± 0.187 at +100 mV and 1.019 ± 0.214 at
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Tyrode’s solution containing (in mM): 140 NaCl, 5 HEPES, 10
D-glucose, 4 KCl, 1 CaCl2, 1 MgCl2, 1 BaCl2, pH 7.45 with NaOH.
CFTR-mediated ICl.PKA was recorded as reported previously [20]
using a Ca2+, K+-free external solution containing 1 mM CdCl2

and was activated using 1 lM isoprenaline (ISO) [20,25].
Atenolol (Sigma–Aldrich) was made up as a 10 mM stock solu-

tion in distilled deionised (Milli-Q) water and was used at a final
concentration of 1 lM in external solutions. ICI 118,551 (Tocris,
Bristol, UK) was made up as a 4 mM stock solution in deionised
water and was used at a final concentration of 100 nM.

2.2. Data analysis and presentation

Data were analyzed using Igor Pro (WaveMetrics, Inc., USA),
Clampfit from the pClamp 10.0 software suite (Molecular Devices),
Excel 2007 and GraphPad Prism 5 software. Data are presented as
mean ± standard error of the mean (SEM), ‘n’ values refer to num-
Fig. 2. Intracellular Ni2+ does not inhibit ISO-activated ICl.PKA. (Ai) Mean current–voltag
dotted lines show SEMs) recorded using pipette solution without intracellular Ni2+. Cu
isoprenaline (ISO) (b) and in the presence of 1 lM ISO plus 10 mM Ni2+ (c) (n = 6). (Aii)
current–voltage relations (mean ± SEM; solid lines show the mean values and the su
intracellular Ni2+ (300 lM). Currents were recorded in control extracellular solution (a),
(n = 6). (Bii) Mean ISO-activated ICl.PKA calculated from the data shown in panel (Bi).
bers of cells for recordings (typically P two hearts). Statistical
comparisons were made using a Student’s paired t test and one-
or two-way repeated measures (RM) ANOVA. P < 0.05 was consid-
ered to be statistically significant.

The fractional block of ICl.PKA by Ni2+ ions was calculated from
the fraction of b-adrenoceptor-activated current remaining in the
presence of Ni2+ compared to that activated prior to Ni2+ addition,
as follows Eq. (1):

fractional block ¼ 1� ðINi � IControlÞ=ðIIso � IControlÞ ð1Þ

where the IControl, IIso, and INi represent currents in the presence of
control, isoprenaline and Ni2+ with isoprenaline, respectively.

The half-maximal inhibitory concentration (IC50) of Ni2+ was
calculated by plotting the mean ± SEM fractional block of ICl.PKA

against the Ni2+ concentration and fitting the data with a logistic
equation:
e relations (mean ± SEM; solid lines shows the mean values and the surrounding
rrents were recorded in control extracellular solution (a), in the presence of 1 lM
Mean ISO-activated ICl.PKA calculated from the data shown in panel (Ai). (Bi) Mean
rrounding dotted lines shows SEMs) recorded using pipette solution containing

in the presence of 1 lM ISO (b) and in the presence of 1 lM ISO plus 10 mM Ni2+ (c)



Fig. 3. Involvement of b-1 adrenoceptors in Ni2+-sensitive ICl.PKA. (A) Representative
time course of an experiment with currents sampled at +100 mV (open circles) and
�100 mV (filled circles) during saw-tooth voltage-ramps; the solid bars at the top
indicate application of 1 lM isoprenaline (ISO), 10 mM Ni2+ and 1 lM atenolol. (B)
Representative current–voltage relations obtained during the descending phase of
the ramp saw-tooth. Letters indicates traces obtained as indicated in panel (A). (C)
Mean current–voltage relations for the Ni2+-sensitive (n = 5) and atenolol-sensitive
(n = 5) difference currents in the presence of 1 lM ISO. Bars indicate ±SEM. There
was no statistically significant difference between the mean Ni2+-sensitive and
atenolol-sensitive current–voltage relations.
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Y ¼ Bottomþ Top� Bottom

1þ 10ðLog IC50 � XÞHillSlope ð2Þ

where Y, Top and Bottom represent the response, maximal and min-
imum response to the drug respectively; X represents the logarithm
of [Ni2+] (lM).

3. Results and Discussion

Fig. 1(Ai) shows the ‘saw-tooth’ voltage command protocol used
to record CFTR-mediated ICl.PKA[20,25]. It was applied continuously
(at a frequency of 0.1 Hz) first in control solution, then in the pres-
ence of 1 lM isoprenaline and following subsequent Ni2+ ion appli-
cation in the maintained presence of isoprenaline. Current
between +100 mV and �100 mV was measured during the
descending ramp phase of the voltage command. Fig. 1(Aii) shows
representative currents during this ramp phase, from an individual
experiment, plotted against voltage under the three conditions.
Both inward and outward current components were increased
markedly by isoprenaline, with an accompanying negative shift
in zero-current potential, as anticipated for ICl.PKA activation. In
the presence of Ni2+ (3 mM), current was restored toward control
values, indicative of substantial inhibition of the isoprenaline-
activated current component. Fig. 1(B) shows a time-course plot
(same experiment as Fig. 1A) of currents at +100 and �100 mV,
illustrating (i) the rapid onset and reversal of Ni2+ effects and
(ii) the fact that Ni2+ inhibition of isoprenaline-activated ICl.PKA

exhibited concentration-dependence. Fig. 1C shows concentration–
response relations for inhibition by Ni2+ of isoprenaline-activated
ICl.PKA. The IC50 values derived from the plots in Fig. 1(C) were
78.1 lM at +100 mV (95% confidence intervals of 55.0–111.0 lM)
and 47.6 lM at �100 mV (95% confidence intervals of 29.7–
76.3 lM); thus ICl,PKA inhibition by Ni2+ was not strongly voltage
dependent.

The rapid onset and reversal of Ni2+ effects evident in Fig. 1(B)
indicates that Ni2+ was able to reach its site of action rapidly on
application. One possible explanation for this rapidity of action is
that Ni2+ ions may interact directly with an extracellular target
to inhibit ICl.PKA. If this is the case, then internally applied Ni2+ ions
should be ineffective at inhibiting ICl.PKA. This possibility was inves-
tigated by including Ni2+ in intracellular pipette dialysate. The Ni2+

concentration used (300 lM) was selected as it was sufficient to
inhibit ICl.PKA by >80% when applied externally (Fig. 1C). The mean
current–voltage (I–V) plots in Fig. 2(Ai) and (Bi) show that there
was little difference in control currents, those in isoprenaline or
those in isoprenaline + externally applied Ni2+ between cells
dialysed with Ni2+-free and Ni2+-containing pipette solutions.
Fig. 2(Aii) and (Bii) show close similarities between isoprenaline-
sensitive currents in cells dialysed with Ni2+-free and Ni2+-contain-
ing solutions and also in the remaining isoprenaline-sensitive
current in the presence of externally applied Ni2+. Thus, without
Ni2+ in the pipette solution, the isoprenaline-sensitive current at
+100 mV was 12.46 ± 1.90 pA/pF (n = 6), and decreased to
1.82 ± 0.91 pA/pF with 10 mM external Ni2+. When 300 lM Ni2+

was included in the pipette solution, the isoprenaline-sensitive
current at +100 mV was 13.53 ± 2.04 pA/pF (n = 6; P > 0.05, com-
pared with pipette solution without Ni2+), and decreased to
2.63 ± 0.99 pA/pF with 10 mM external Ni2+ (P > 0.05, compared
with pipette solution without Ni2+). These data demonstrate an
external site of Ni2+ action to inhibit ICl.PKA. A direct effect of exter-
nal Ni2+ on the CFTR channel mediating ICl.PKA is precluded from
previous observations that when ICl.PKA is activated by forskolin
(to activate adenylate cyclase downstream of the b-adrenoceptor),
externally applied Ni2+ does not inhibit the current [19,20]. Thus,
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Ni2+ is most likely to exert its inhibitory action by direct interaction
with b-adrenoceptors.

In order to determine whether b1 or b2 adrenoceptors are the
likely targets of Ni2+, isoprenaline was applied in the presence of
b1 or b2 adrenoceptor inhibitors. Fig. 3 shows the results of exper-
iments with the b1-adrenoceptor inhibitor atenolol. Fig. 3(A) and
Fig. 4. b-2 adrenoceptors do not activate Ni2+-sensitive ICl.PKA. (A) Representative
time course of an experiment with currents sampled at +100 mV (open circles) and
�100 mV (filled circles) during saw-tooth voltage-ramps; the solid bars at the top
indicates application of 100 nM ICI 118,551, 1 lM isoprenaline (ISO) and 10 mM
Ni2+. (B) Representative current–voltage relations obtained during the descending
phase of the ramp saw-tooth. Letters indicate traces obtained as indicated in panel
(A). (C) Fractional block by 10 mM Ni2+ of ISO-activated ICl.PKA at +100 mV and
�100 mV in the absence (control) and presence of 100 nM ICI 118,551. ICI 118,551
had no statistically significant effect on fractional block at either voltage. Replicate
numbers are given in parentheses.
(B) show that 1 lM atenolol application produced a rapid inhibi-
tion of ICl,PKA that was similar to that produced by 10 mM Ni2+, with
current in the presence of each agent close to that in control solu-
tion. Fig. 3(C) shows that mean I–V relations for Ni2+-sensitive and
atenolol-sensitive currents (i.e. the isoprenaline-activated ICl.PKA

inhibited by atenolol and Ni2+) were closely superimposed. These
observations implicate b1 adrenoceptors in the activation of Ni2+

sensitive ICl.PKA. In further experiments, isoprenaline was applied
subsequent to application of the b2 adrenoceptor antagonist, ICI
118,551. As shown in Fig. 4(A) and (B), ICI 118,551 (at a substantial
concentration of 100 nM) did not inhibit the ability of isoprenaline
to activate ICl.PKA, nor was the ability of Ni2+ to inhibit isoprenaline-
activated current impaired. Fig. 4(C) compares fractional inhibition
of isoprenaline-activated ICl.PKA by 10 mM Ni2+ in samples of cells
treated with ICI 118,551 to cells not exposed to this agent (‘control’
in Fig. 4C) at both a positive and negative voltage during the
descending ramp of the saw-tooth command: there was no signif-
icant difference between ICI 118,551 and control. Considered to-
gether with the data in Fig. 3, these observations demonstrate
that Ni2+-sensitive isoprenaline-activated ICl.PKA was mediated by
b1 adrenoceptor activation.

The findings of the present study are inconsistent with a
lack of Ni2+ modulation of ICl.PKA[21] and instead support and
extend evidence for an inhibitory effect of Ni2+ on CFTR-en-
coded ICl.PKA, when activated via b-adrenergic stimulation
[19,20]. This study reports for the first time the concentra-
tion-dependence of this effect and the b-adrenoceptor subtype
responsible. Ni2+ has been reported to inhibit ventricular INCX

with a KD of �290 lM in electrophysiological experiments with
a cAMP-free pipette dialysate and of �160 lM with raised
(100 lM) cAMP [18], values higher than the IC50 values for inhi-
bition of ICl.PKA found in this study. The concentration-depen-
dence of Ni2+ inhibition of ICl.PKA observed here therefore
indicates strong overlap between concentration-dependent inhi-
bition of INCX and of b1 adrenoceptor activated ICl.PKA. Thus, an
important consideration for the future study of b-adrenocep-
tor-mediated modulation of INCX is that this would best be
undertaken under conditions in which recording solutions are
chosen that either preclude CFTR activation, or in which alter-
native approaches (different NCX inhibitors to Ni2+ or ion
replacement) are used to isolate INCX.

Ni2+ inhibits cardiac L-type Ca current (ICa,L) in electrophysio-
logical experiments with a KD of �330–530 lM (the higher value
with raised cAMP in the pipette dialysate) [26], and produces
marked effects at submillimolar concentrations on the magnitude
and kinetics of Kv1.5 channel current [27,28] and upon hERG
channel activation kinetics [29]. These actions occur in the absence
of b-adrenoceptor activation and, in contrast to the effect on
b-adrenoceptor activated ICl.PKA shown here, involve direct interac-
tions between Ni2+ ions and the affected channels. However, extra-
cellular divalent ions have also been reported to modify the
neuromuscular junction acetylcholine receptor-channel complex
[30] and can influence ligand binding to G-protein coupled
receptors [31,32]. Zn2+ and Cu2+ ions have been reported to interact
with a(1A) adrenoceptors with micromolar affinity and to act as
allosteric modulators [33], whilst Mg2+ ions have been reported
to decrease agonist affinity for platelet b-adrenoceptors [34]. Thus,
the inhibitory effect of Ni2+ on ICl.PKA reported here appears likely to
result either from effects of the cation on isoprenaline binding to
b1 adrenoceptors, or upon subsequent coupling between the
receptor and adenylate cyclase. Future work to determine the
underlying mechanism of this effect of extracellular Ni2+ is
warranted. Perhaps most significantly, the findings of this study
indicate that care is required in the use of Ni2+ in the study of car-
diac conductances, particularly under conditions of sympathetic
agonism, during which effects on receptor-activation of ionic
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current may confound interpretation of direct effects of the cation
on ion channels or transporters.
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