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Medicinal chemical approaches have been applied to all four of the adenosine receptor (AR) subtypes (A1, A2A,
A2B, and A3) to create selective agonists and antagonists for each. The most recent class of selective AR ligands
to be reported is the class of A2BAR agonists. The availability of these selective ligands has facilitated research
on therapeutic applications of modulating the ARs and in some cases has provided clinical candidates. Prodrug
approaches have been developed which improve the bioavailability of the drugs, reduce side-effects, and/or
may lead to site-selective effects. The A2A agonist regadenoson (Lexiscan®), a diagnostic drug for myocardial
perfusion imaging, is the first selective AR agonist to be approved. Other selective agonists and antagonists are
or were undergoing clinical trials for a broad range of indications, including capadenoson and tecadenoson
(A1 agonists) for atrial fibrillation, or paroxysmal supraventricular tachycardia, respectively, apadenoson and
binodenoson (A2A agonists) for myocardial perfusion imaging, preladenant (A2A antagonist) for the treatment
of Parkinson's disease, and CF101 and CF102 (A3 agonists) for inflammatory diseases and cancer, respectively.
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1. Introduction

Extracellular adenosine acts on a family of four cell surface
receptors termed adenosine receptors (ARs) of which there exist
four subtypes: A1, A2A, A2B, and A3 [1,2]. The ARs are G protein-coupled
receptors (GPCRs) and consist of a single polypeptide chain that
transverses the membrane from the extracellular side beginning at
the N terminus to form seven transmembrane helices (TMs). The A1

and A3 receptors preferentially couple to Gi protein to inhibit
adenylate cyclase and consequently the production of cyclic AMP
(cAMP), and the A2A and A2B subtypes stimulate the production of
cAMP by coupling to Gs or Go. These two subtype pairs also share
higher sequence identity: the human A1 and A3ARs are 49% identical,
and the human A2A and A2BARs are 59% identical.

The human A2AAR became the first non-rhodopsin, non-adrenergic
GPCR for which an X-ray crystallographic structure was reported [3].
The availability of this physically determined structure has aided in
recent drug discovery efforts [4,5], as did theoretical homologymodels
previously. The initial structure of the A2AAR contained ZM241385
(53), only one of the many known potent antagonists of nanomolar
affinity. There is now an effort to crystallize the receptor with other
ligands and to crystallize other AR subtypes. Another structural issue
to be considered in drug discovery is the phenomenon of GPCR
dimerization, which can have a major effect on the pharmacological
behavior. The ARs have been proposed to participate in both homo-
and heterodimerization or even oligomerization [6,7]. For example, a
well-established A2AAR/D2 dopamine receptor heterodimer occurs in
the striatum and is the target of drug discovery for antagonists to treat
Parkinson's disease [8–10].

The effects of activation of ARs tend to be cytoprotective in many
organs and tissues under a wide variety of physiological conditions. The
levels of extracellular adenosine can rise substantially in response to
stress, such as hypoxic stress, and the resultant activation of ARs acts to
adapt to the stress [1,2]. Extracellular adenosine concentrationsmay rise
as a result of the release of the breakdown of extracellular ATP or from
intracellular sources, which leads to the activation of ARs in the vicinity.
These protective responses may take the form of decreased energy
demand (e.g. bradycardia), increased energy supply (e.g. vasodilation or
angiogenesis), ischemic preconditioning (e.g. in the heart or brain),
inhibition of the release of excitotoxic neurotransmitters, suppression of
cytokine-induced apoptosis, or reduced inflammatory response [1,2].

Medicinal chemical approaches have been applied to all four of the
AR subtypes to create selective agonists and antagonists for each (see
Figs. 1–9 andTables 1–3). Themost recent class of selectiveAR ligands to
be reported is the class of A2BAR agonists [11–13]. The availability of
these selective ligands has facilitated research on therapeutic applica-
tions of modulating the ARs and in some cases has provided clinical
candidates. It must be kept in mind that there is a marked species
dependency of ligand affinity at the ARs, and that the same ligand
(especially antagonists of the A3AR) could be selective for a given
subtype in one species (e.g. human) and lose or reverse that selectivity
in another species (e.g. rat) [14,15,17–20]. Therefore, caution must be
used when characterizing new ligands and when using them in
pharmacological experiments. In addition to receptor subtype selectiv-
ity, major considerations in the design of new ligands have been
bioavailability and metabolic stability.

Synthetic adenosine agonists are under development as thera-
peutic agents. The half-life of adenosine in circulation is very short
(~1 s), due to the action of enzymes that convert it to inosine
(adenosine deaminase) or phosporylate it to 5′-AMP (adenosine
kinase), or due to its uptake through nucleoside transporters (such as
the equilibrative transporter ENT1) [1,2,21]. Therefore, analogues of
adenosine for selective activation of ARs tend to prevent these
processes and thereby lengthen the half-life. For example, the A3-
selective agonist IB-MECA (29) has a half-life of 8–9 h in man [22].
Adenosine itself is in use as an AR agonist for the treatment of
paroxysmal supraventricular tachycardia (through the A1 receptor)
and in radionuclide myocardial perfusion imaging (through the A2A

receptor). For those applications, the short half-life of adenosine is
advantageous. There are many selective and potent synthetic AR
agonists that have been introduced as research tools and for
consideration to be used in humans. So far, only one synthetic
adenosine agonist (A2AAR agonist regadenoson, 19, Lexiscan™) is in
clinical use, and that, so far, is for a diagnostic purpose rather than
therapeutic use. One major consideration in the development of AR
agonists is that desensitization of the receptor can occur after agonist
binding, resulting in downregulation of the receptor. Thus, AR
responses can desensitize rapidly, typically on the scale of less than
one hour [23].

Synthetic adenosine antagonists have also been explored for
potential therapeutic applications. Various early analogues of the
xanthines, which greatly increased the AR subtype-selectivity over
the naturally occurring alkylxanthines, tended to be hydrophobic and
poorly water-soluble and consequently of low bioavailability [24–26].
More recently introduced AR antagonists and prodrug approaches
have overcome some of these issues [e.g. 25–28].

The introduction of numerous radioligands for the ARs has aided in
the drug discovery process. Thus, the primary screen of newly
synthesized compounds in many AR drug discovery efforts has
consisted of convenient radioligand binding assays [24]. Furthermore,
both agonist and antagonist ligands containing positron-emitting
radioisotopes have been introduced for 3-dimensional in vivo imaging
of the receptors [29]. Such ligands for positron emission tomography
(PET) might prove useful for diagnostic as well as research purposes.
Now fluorescent ligands have been introduced for characterization of
the ARs [30–32]. Some of these spectroscopic probes are suitable for
compound screening and avoid the use of radioisotopes.

2. Adenosine receptor agonists

The structure–activity relationship (SAR) of adenosine derivatives as
AR agonists has been exhaustively probed. Nearly all of the known AR
agonists are derivatives of purine nucleosides, either adenosine (1) or
xanthosine (Figs. 1–4 and Table 1). Therefore, in screens of structurally
diverse chemical libraries, most of the hits will typically provide
antagonists, rather thanagonists. One exception to that generalization is
the class of 2-aminopyridine-3,5-dicarbonitrile derivatives that act as
agonists at ARs with varied degrees of subtype selectivity [33–35].

2.1. A1-selective agonists

The SAR of adenosine ligands at the A1AR was recently reviewed
[36]. The earliest synthetic analogues of adenosine, such as N6-[(R)-
phenylisopropyl]adenosine (2, R-PIA), to be characterized at the ARs
tended to be selective for the A1AR (Fig. 1). In general, substitution of
adenosine at the N6-position with a wide range of alkyl, cycloalkyl,
and arylalkyl groups increases selectivity for the A1AR. In addition,
any modification at the N6-position precludes the action of adenosine
deaminase, which rapidly degrades adenosine itself, in vivo.



Fig. 1. A1 adenosine receptor agonists.
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N6-Cycloalkyl substitution has been themost successful and general
means of achieving selectivity for the A1AR. N6-Cyclopentyladenosine
(3, CPA) and its 2-chloro analogue (4, CCPA) are among themost potent
and selectiveA1AR inwideuse as pharmacological agents. Aswithmany
otherN6-substituted adenosine analogues, these twoderivativesdisplay
considerable affinity at the A3AR. In fact, CCPA was shown to act as an
antagonist of the humanA3ARwith aKi value of 35nM[37]. Itwasnoted
that the bicyclic analogue S-ENBA (5) has subnanomolar affinity at the
A1AR and has less residual affinity than CPA (3) or CCPA (4) for other AR
subtypes [19]. Bayer Co. (Germany) discovered 2-amino-3,5-dicyano-
pyridine derivatives, e.g. capadenoson (6), as non-nucleoside-derived
adenosine receptor agonists [33,36]. Besides 6 several A1-selective
adenosine derivatives, including GW493838 (7), selodenoson (8),
GR79236 (9), tecadenoson (10), and CVT-3619 (GS9667, 11) have
been evaluated in clinical trials for various indications (see below).

2.2. A2A-selective agonists

The SARs of ligands at the A2AAR have been reviewed recently
[38,39]. Substitution of adenosine at the 2-position, especially with
(thio)ethers, secondary amines, and alkynes, has resulted in many
synthetic analogues selective for the A2AAR. The presence of a 5′-N-
alkyluronamide modification, as found in the potent nonselective
agonist NECA, a 5′-N-ethyluronamide, tends to maintain or enhance



Fig. 2. A2A adenosine receptor agonists.
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the selectivity for the A2AAR. These two modifications are present in
the widely used A2AAR agonist CGS21680 (15) (Fig. 2). The 2-(2-
phenylethyl)amino modification of adenosine was particularly con-
ducive to enhanced affinity at the A2AAR and is present in an extended
chain in CGS21680 (15). The carboxylate group at the terminal
position of CGS21680 was found to act as a general site for chain
extension and derivatization with bulky groups, including fluorescent
groups and dendrimeric polymers [40,41], without losing high affinity
of binding to the receptor. In receptor docking of agonist struc-
tures [42,43], this chain is pointing toward the extracellular face of the
receptor, which has relaxed structural constraints relative to the main
TM binding site. The 2-(2-cyclohexylethyl)amino modification of

image of Fig.�2


Fig. 3. A2B adenosine receptor agonists.
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adenosine also favored high affinity at the A2AAR. Extended
substituents are also present at the 2-position of the more recently
introduced A2AAR, such as apadenoson (ALT-146e, 16) and ATL-313
(17), which are 5′-uronamide modified analogues.

Certain N6-position substitutions have also been found to increase
the affinity at the A2AAR. An example of this is the class of N6-(2,2-
diphenylethyl)adenosine analogues, such as UK-432097 (18). Rega-
denoson (Lexiscan™, 19) [191] has been introduced as a diagnostic for
stress testing due to its vasodilatatory effects, and apadenoson (16) is
developed for the same application.

An inverse amide structure in the 4′-position as in the C2,N6-
substituted adenosine analogue 20, which is additionally lacking the
Fig. 4. A3 adenosine r
oxygen atom in the ribose-analogous cyclopentane ring, is also well
tolerated by the A2AAR. Furthermore, the 4′-hydroxymethylene group
in adenosine derivatives can be exchanged for a tetrazolyl residue as
in GW328267X (21) (Fig. 2).

Several A2A-selective agonists including UK-432097 (18), sonede-
noson (22), and binodenoson (23) have been clinically evaluated (see
below). Amajor problemwith the systemic application of A2A agonists
as anti-inflammatory therapeutics has been their potent hypotensive
effects. Recently, efforts have been undertaken to obtain A2A agonists
which show site-specific action. A2A agonists, such as 18 have been
developed for the treatment of bronchial inflammation (constructive
pulmonary disease, COPD) by inhalation with limited systemic
eceptor agonists.

image of Fig.�3
image of Fig.�4


Fig. 5. A1 adenosine receptor antagonists.
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exposure [44]. In another approach 5′-phosphate prodrugs of A2A

agonists have been prepared (e.g. 24) which are to be preferably
cleaved releasing the A2A agonist 25 at sites of inflammation where
ecto-5′-nucleotidase (CD73) is highly expressed [45].

2.3. A2B-selective agonists

The SAR of adenosine agonists at the A2BAR was recently reviewed
[11,13]. Substitution of adenosine at the N6-position with a narrow
range of aryl groups increases affinity at the A2BAR. Also, very specific
modification of the 5′- and C2-positions complements this increased
affinity at the A2BAR (e.g. compound 26) (Fig. 3). Thus, combinations
of narrowly defined modifications have resulted in compounds that
interact selectively with A2BAR [11,46] or that activate the A2BAR
along with the A2AAR (MRS3997, 27) [47].

BAY 60-6583 (28) is one of the 2-aminopyridine-3,5-dicarbonitrile
derivatives found to activate the ARs [33]. This compound appears to
be an A2BAR-selective agonist [48,49].

2.4. A3-selective agonists

The SAR of ligands at the A3AR was recently reviewed [50].
Substitution with an N6-benzyl group or substituted benzyl group
increases selectivity for the A3AR in both human and rat (e.g. 29, 33)
(Fig. 4). Even bulky substituents as in compound 31 are well tolerated
[51]. The N6-methyl (e.g. compound 32) and ethyl groups also favor
A3AR in human [52]. As with A2AAR agonists, the NECA-like 5′-
uronamide modification has also been found to be conducive to
selectivity in A3AR agonists. IB-MECA (29) and its 2-chloro analogue
Cl-IB-MECA (30) are prototypical and widely used agonists of the
A3AR. Cl-IB-MECA (30) is more A3AR selective (~2000-fold compared
to the A1AR) than IB-MECA (~50-fold compared to the A1AR). The 4′-
thioadenosine derivative LJ-529 (33), which is otherwise equivalent
to Cl-IB-MECA, acts as a highly potent and selective A3AR agonist with
a subnanomolar affinity [53].

The ribose ring is normally freely twisting in solution and can adopt a
range of conformations. The North conformation of the ribose ring was
found to be the preferred conformation for binding to the A3AR. It is
possible to chemically freeze this preferred conformation in analogues
containing a [3.1.0]bicyclohexane ring system in place of the ribose 5-
membered ring. This observation was utilized in the design of more
potent and selective analogues such as MRS3558 (34), which displays
nanomolar affinity at the A3AR [54]. The selectivity of MRS3558 for the
A3AR is evident in a comparison of human ARs and rat ARs, but at the
mouse ARs only 10-fold selectivity for the A3AR vs. the A1AR was
observed. A third (alkynyl) substituent at the 2 position in MRS5151
(35) remedied this issue of species-dependent selectivity [55].

Recently, a PAMAM dendrimer conjugate of a chemically functio-
nalized AR agonist was reported to bind to and activate the A3AR
selectively with nanomolar affinity [56]. Such macromolecular
receptor ligands can display pharmacological properties that are
qualitatively different in comparison to the monomeric agonists.

3. Adenosine receptor antagonists

The prototypical AR antagonists were alkylxanthine derivatives.
The stimulants caffeine (38) and theophylline (39) are natural
products that behave as weak and nonselective AR antagonists

image of Fig.�5


Fig. 6. A2A adenosine receptor antagonists.
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(Fig. 5). The structure–activity relationship (SAR) of xanthine
derivatives as AR antagonists has been exhaustively probed. The
effects of receptor subtype selectivity of substitution at the 1-, 3-, 7-,
and 8-positions have been explored in detail [15]. However, many
newer, highly selective AR antagonists are more chemically diverse
than the xanthines and contain nonpurine heterocyclic core struc-
tures (Figs. 5–8 and Table 2). Various classes of AR antagonists and
their synthetic methods have been reviewed [21,24,57,58].
3.1. A1-selective antagonists

A1-selective AR antagonists have recently been reviewed [36,59]. In
general, modifications of the xanthine core structure at the 8-position
with aryl or cycloalkyl groups have led to high affinity and selectivity for
the A1AR. Highly selective xanthine antagonists of the A1AR have been
reported. Many contain a cycloalkyl substitution at the 8-position. For
example, the 8-cyclopentyl derivative DPCPX or alternately abbreviated

image of Fig.�6


Fig. 7. A2B adenosine receptor antagonists.
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CPX (40, 8-cyclopentyl-1,3-dipropylxanthine) (Fig. 5) is highly selective
and of nanomolar affinity at the rat A1AR and is still selective, to a lesser
degree, at the human A1AR. A bicycloalkyl group is present in the 8-(3-
noradamantyl) group of rolofylline (41, KW-3902, MK-7418) [60].
Another 8-bicycloalkyl xanthine analogue naxifylline (BG9719, 42) was
evenmore selective for the A1AR, with a Ki ratio human A2A /A1 of 2400
comparedwith a ratio of 150 for KW-3902 (41).While BG9719 is highly
selective for A1AR compared to the human A2BAR, the selectivity of the
related A1AR antagonist BG 9928 (42) is only ~10-fold. The 3-(3-
hydroxypropyl)-substituted 1-butyl-8-noradamantylxanthine (44,
PSB-36) shows a particularly high affinity and A1-selectivity [25].
Phosphate prodrugs of 3-(3-hydroxypropyl)xanthine derivatives show
greatly improved water-solubility [25,62].

A variety of A1-selective antagonists with a non-xanthine structure
has been developed [18,36,59], including the pyrazolopyridine
derivative FK-453 (45) and the 7-deazaadenine derivative SLV320
(46), both of which have been evaluated in clinical trials. Recently, a
2-aminothiazole derivative (47) showing high A1 affinity and
selectivity has been developed [63].

3.2. A2A-selective antagonists

Recent developments in the field of A2A antagonists have been
described [64–66]. Modification of xanthines at the 8-position with
alkenes (notably styryl groups) has led to selectivity for the A2AAR. The
8-styrylxanthine istradefylline (49, KW6002) was among the first
A2AAR antagonists reported (Fig. 6). Some 8-styrylxanthine derivatives,
such as CSC (50, 8-(3-chlorostyryl)caffeine), were later found to inhibit
monoamine oxidase-B in addition to the A2AAR [67]. The phosphate
prodrugMSX-3 (51a) and the L-valine ester prodrugMSX-4 (51b) have
beenprepared aswater-solubleprodrugs of the potent and selectiveA2A

antagonist MSX-2 (51) [26,27]. Both are now broadly used as
pharmacological tools in particular for in vivo studies [e.g. 67–70].

Substituting various heterocyclic ring systems in place of the
xanthine core has led to exceptionally high affinity and selectivity at
the A2AAR. An early example of a heterocyclic structure proposed as
an A2AAR antagonist was the triazoloquinazoline CGS15943 (52),
which was later demonstrated to be only slightly selective. Later
refinement of the triazoloquinazoline by addition of a third ring or
alteration of the pattern of N inclusion in the heterocyclic system
greatly improved the A2AAR selectivity. The triazolotriazine
ZM241385 (53), the triazolopyrimidine vipadenant (54, BII014,
V2006), and the pyrazolotriazolopyrimidine SCH442416 (55) are
examples of highly potent A2AAR antagonists of later generation.
ZM241385 (53) also binds to the human A2BAR with moderate
affinity, and in both tritiated and iodinated form has been used as a
radioligand at that receptor [71]. A recently described analogue (56)
shows somewhat higher selectivity [72].

The affinity of SCH 442416 (55) at the human A2AARwas originally
reported as Ki 0.048 nM [73], however later reports of binding assays
have placed it in the low nanomolar range (4.1 nM in [32]). Related
compounds include SCH 58261 (57) and preladenant (SCH 420814,
58). The latter is undergoing clinical trials for the treatment of
Parkinson's disease (see below).

Examples for further non-xanthine A2A antagonists are the
adenine derivative ST-1535 (59) and the benzothiazole derivative

image of Fig.�7


Fig. 8. A3 adenosine receptor antagonists.
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SYN-115 (60), both of which are being clinically evaluated. Very
recently, benzofurans [74], 7-imino-2-thioxo-thiazolo[4,5-d]pyrimi-
dines [75] (e.g. 61) and the related thiazolotriazolopyrimidinethiones
[76] (e.g. 62) have been described as new potent A2A-selective AR
antagonists.
Fig. 9. Radioligands for positron emi
3.3. A2B-selective antagonists

A2B AR antagonists have recently been reviewed [12,13]. Certain
modifications of the xanthine core structure at the 8-position with
aryl groups have been found to result in selectivity for the A2BAR [15].
ssion tomography (PET) studies.
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Table 1
Adenosine receptor affinities of agonists.

Ki (nM)a

A1 A2A A2B
b A3

1 Adenosinec [35] ca. 100 (h) 310 (h) 15,000 (h) 290 (h)
73 (r) 150 (r) 5100 (r) 6500 (r)

A1-selective agonists
2 R-PIA 2.04 (h) [128] 220 (r) [129] 150,000 (h) [130] 33 (h) [132]

1.2 (r) [129] 158 (r) [133]
19,000 (m) [131]

3 CPA [109] 2.3 (h) 794 (h) 18,600 (h) 72 (h)
4 CCPA 0.83 (h) [109] 2270 (h) [109] 18,800 (h) [109] 38 (h) [109]

1.3 (r) [134] 950 (r) [134] 237 (r) [134]
0.1 (rb) [134] 37.7 (rb) [134]

5 (S)-ENBA [19] 0.34 (r) 477 (r) ndd 282 (h)
915 (r)

6 Capadenoson (BAY68-4986) nd nd nd nd
7 GW493838 nd nd nd nd
8 Selodenoson (DTI-0009) nd nd nd nd
9 GR79236 [109] 3.1 (r) 1300 (h) nd nd
10 Tecadenoson [109] 6.5 (p) 2315 (h) nd nd
11 CVT-3619 (GS 9667) [135] 55 (h) N10,000 (h) N50,000 (h) N1000 (h)
12 AMP579 [136] 5.0 (r) 56 (r) nd nd
13 SDZ WAG 994 [137] 23 (p) 25,000 (p) Inactive (p) nd
14 NNC 21-0136 [93] 10 (r) 630 (r) nd nd

A2A-selective agonists
15 CGS21680 289 (h) [109] 27 (h) [109] N10,000 (h) [109] 67 (h) [109]

1800 (r) [134] 19 (r) [134]
120 (rb) [134] 584 (r) [134]

N10,000 (r) [134] 673 (rb) [134]
16 Apadenoson (ATL-146e) [109] 77 (h) 0.5 (h) nd 45 (h)
17 ATL-313 nd nd nd nd
18 UK-432097 [44] nd 4 (h) nd nd
19 Regadenoson (CV-3146) [109] N10,000 (h) 290 (h) N10,000 (h) N10,000 (h)
20 [138] N10,000 (h) 5.4 (h) 9866 (h) 1640 (h)
21 GW328267X [138] 882 (h) 2.3 (h) 51 (h) 4.2 (h) (antagonist)
22 Sonedenoson (MRE-0094) [139] N10,000 (h) 490 (h) N10,000 (h) nd
23 Binodenoson (WRC-0470) [45] 48,000 (h) 270 (h) 430,000 (h) 903 (h)
25 [45] 400 (r) 372 (r) nd 3640 (h)

50 (m)

A2B-selective agonists
26 [46] 1050 (h) 1550 (h) 82 (h) N5000 (h)
27 MRS3997 [47] 253 (h) 150 (h) 128 (h) 90 (h)
28 BAY 60-6583 N10,000 (h)c, [140] N10,000 (h)c, [140] 3–10 (h) [140] N10,000 (h)c, [140]

330 (m)e, [141]
750 (d)e, [141]
340 (rb)e, [141]

A3-selective agonist
29 IB-MECA (CF101) [109] 51 (h) 2900 (h) 11,000 (h) 1.8 (h)
30 Cl-IB-MECA (CF102) 220 (h) [109] 5360 (h) [109] N10,000 (h) [134] 1.4 (h) [109]

280 (r) [134] 470 (r) [134] 0.33 (r) [134]
35 (m) [134] ~10,000 (m) [134] N10,000 (m) [134] 0.18 (m) [134]

31 [51] 245 (h) N10,000 (h) nd 2.25 (h)
32 [52] 32,800 (h) 41,700 (h) N30,000 (h) 0.44 (h)
33 LJ529 [142] 193 (h) 223 (h) nd 0.38 (h)
34 MRS3558 (CF502) 260 (h) [109] 2330 (h) [109] N10,000 (h) [109] 0.29 (h) [109]

105 (r) [134] 1080 (r) [134] 1.0 (r) [134]
15.8 (m) [134] 10,400 (m) [134] 1.49 (m) [134]

35 MRS5151 [143] 14,900 (h) ~10,000 (h) nd 2.38 (h)
10,500 (m) N10,000 (m) 24.4 (m)

36 CP608,039 [144] 7300 (h) nd nd 5.8 (h)
1750 (rb) 83 (rb)

37 CP532,903 [103] 898 (m) N10,000 (m) N10,000 (m) 9.0 (m)

a h = human; d = dog; m = mouse; p = pig; r = rat; rb = rabbit.
b Most data are from functional studies.
c Data from functional studies.
d nd = no data available.
e Data from radioligand binding studies versus the antagonist radioligand [3H]MRS1754.
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The first antagonist to be reported was MRS1754 (63) (Fig. 7). Later,
groups at Univ. of Bonn, Germany (PSB-1115 (64), PSB-603 (65)),
Univ. of Ferrara, Italy (MRE-2029-F20, 66), at CV Therapeutics (now
Gilead Sciences, CVT-6883, GS6201, 67) and at Adenosine Therapeu-
tics (now Clinical Data Inc., ATL802, 68) improved on the degree of
selectivity and/or the water solubility of the xanthines as A2BAR



Table 2
Adenosine receptor affinities of antagonists.

Ki (nM)a

A1 A2A A2B A3

Non-selective antagonists
38 Caffeine 10,700 (h) [145] 23,400 (h) [67] 33,800 (h) [14] 13,300 (h) [145]

44,900 (h) [67] 9560 (h) [145] 10,400 (h) [149] N100,000 (r) [133]
41,000 (r) [146] 45,000 (r) [147] 20,500 (h) [150]
44,000 (r) [147] 32,500 (r) [148] 30,000 (r) [131]
47,000 (gp) [20] 48,000 (r) [145] 13,000 (m) [131]
44,000 (c) [20]

39 Theophylline 6770 (h) [127] 1710 (h) [127] 9070 (h) [149] 22,300 (h) [145]
14,000 (r) [151] 6700 (h) [145] 74,000 (h) [150] 86,400 (h) [127]
8740 (r) [145] 22,000 (r) [151] 15,100 (r) [149] N100,000 (r) [133]
7060 (gp) [152] 25,300 (r) [145] 5630 (m) [141] 85,000 (r) [154]
4710 (rb) [152] 11,000 (gp) [153] N100,000 (d) [155]
9050 (s) [152] 17,700 (rb) [141]
6330 (c) [152] 38,700 (d) [141]

A1-selective antagonists
40 DPCPX (CPX) 3.0 (h) [25] 129 (h) [127] 51 (h) [25] 795 (h) [156]

0.50 (r) [25] 60 (h) [25] 63.8 (h) [149] 243 (h) [25]
1.0 (r) [149] 157 (r) [148] 186 (r) [149] 509 (h) [155]
0.18 (r) [152] 500 (r) [149] 200 (r) [153] 3960 (h) [127]
1.06 (gp) [152] 86.2 (m) [141] N10,000 (r) [25]
3.9 (gp) [20] 145 (gp) [153] 43,000 (r) [155]
0.21 (rb) [152] 96.0 (rb) [141] 708 (rb) [155]
0.10 (s) [152] 147 (d) [141] 115 (d) [155]
0.05 (c) [152] 132 (d) [153]
0.29 (c) [20]
11.4 (d) [155]

41 Rolofylline (KW3902,
NAX)

0.72 (h) [61] 108 (h) [61] 296 (h) [157] 4390 (h) [157]
8.0 (h) [157] 673 (h) [157]
0.19 (r) [158] 380 (r) [158]
12.6 (r) [61] 510 (r) [61]

42 Toponafylline (BG-9928) 7.4 (h) [157] 6410 (h) [157] 90 (h) [157] N10,000 (h) [157]
3.9 (mk) [159] 943 (mk) [159]
1.3 (r) [157] 2440 (r) [157]
29 (d) [159] 4307 (d) [159]

43 Naxifylline (BG9719,
CVT-124)

0.45 (h) [61] 1100 (h) [61] 611 (h) [158] 4810 (h) [158]
12 (h) [158] 1660 (h) [158] 1010 (m) [141]
0.67 (r) [61] 1250 (r) [61] 470 (rb) [141]

742 (d) [141]
44 PSB-36 0.7 (h) [25] 980 (h) [25] 187 (h) [25] 2300 (h) [25]

0.124 (r) [25] 552 (r) [25] 6500 (r) [25]
45 FK-453 18 (h) [109] 1300 (h) [109] 980 (h) [109] N10,000 (h) [109]
46 SLV320 1.00 (h) [160] 398 (h) [160] 3981 (h) [160] 200 (h) [160]

2.51 (r) [160] 501 (r) [160]
47 Thiazole derivative 57.4 (h) [63] 6250 (h) [63] N1000 (r) [63] 2160 (h) [63]

4.83 (r) [63] N1000 (r) [63]
48 L-97-1 580 (h) [161] N100,000 (h) [161] N100,000 (h) [161] ndb

A2A-selective antagonists
49 Istradefylline (KW6002) 841 (h)c 12 (h) [162] N10,000 (h)c 4470 (h)c

230 (r)c 91.2 (h)c

2.2 (r) [163]
4.46 (r) [164]

50 CSC (Ki MAO-B=80.6 nM)
[164]

28,000 (r) [165] 54 (r) [165] 8200 [165] N10,000 (r) [133]

51 MSX-2 900 (r) [26] 8.04 (r) [26,148] N10,000 (h) [26] N10,000 (h) [26]
2500 (h) [26] 5.38 (h)d, [26]

14.5 (h)e, [26]
52 CGS15943 3.5 (h) [18] 1.2 (h) [18] 32.4 (h) [141] 35 (h) [18]

6.4 (r) [18] 9.07 (m) [141]
53 ZM-241385 774 (h) [109] 1.6 (h) [109] 75 (h) [109] 743 (h) [109]
54 Vipadenant (BIIB014,

V2006)
68 (h) [166] 1.3 (h) [166] 63 (h) [166] 1005 (h) [166]

55 SCH-442416 1110 (h) [109] 4.1 (h) [32] N10,000 (h) [109] N10,000 (h) [109]
56 2720 (r) [72] 18.3 (r) [72] 3420 (h) [72] 489 (h) [72]
57 SCH-58261 725 (h) [109] 5.0 (h) [109] 1110 (h) [109] 1200 (h) [109]
58 Preladenant

(SCH-420814)
N1000 (h) [65] 0.9 (h) [65]0 N1000 (h) [65] N1000 (h) [65]

59 ST-1535 71.8 (h) [167] 6.6 (h) [167]9 352.3 (h) [167] N1000 (h) [167]
60 SYN-115 nd nd nd nd
61 2.8 (h) [75] 0.0038 (h) [75] nd nd

0.14 (h) cAMP [75]
62 228.4 (h) [76] 0.38 (h) [76] nd nd
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Table 2 (continued)

Ki (nM)a

A1 A2A A2B A3

A2B-selective antagonists
63 MRS1754 403 (h) [168] 503 (h) [168] 1.97 (h) [168] 570 (h) [168]

16.8 (r) [168] 612 (r) [168] 12.8 (r) [168]
16.6 (r) [153]
3.39 (m) [141]
9.12 (gp) [153]
1.79 (rb) [141]
12.8 (d) [141]
12.3 (d) [153]

66 MRE-2029-F20 200 (h) [169] N1000 (h) [169] 5.5 (h) [169] N1000 (h) [169]
65 PSB-603 N10,000 (h) [14] N10,000 (h) [14] 0.553 (h) [14] N10,000 (h) [14]

N10,000 (r) [14] N10,000 (r) [14] KD 0.403 (h) [14]
KD 0.351 (m) [14]

67 GS 6201 (CVT-6883) 1940 (h) [170] 3280 (h) [170] 22 (h) [170] 1070 (h) [170]
64 PSB-1115 N10,000 (h) [156] 24,000 (r) [151] 53.4 (h) [156] N10,000 (h) [156]

2200 (r) [151]
68 ATL 802 369 (h) [168] 654 (h) [168] 2.36 (h) [168] N1000 (h) [168]

9583 (m) [168]1 8393 (m) [168] 8.58 (m) [168] N10,000 (m) [168]
69 LAS38096 2821 (h) [171,172] N1000 (h) [171,172] 17 (h) [171,172] 1043 (h) [171,172]
70 nd 965 (h) [173] 3.5 (h) [173] nd
71 100 (h) [174] 51 (h) [174] 8 (h) [174] nd

21 (h) cAMP [174]
72 931 (h) [174] 239 (h) [174] 4 (h) [174] 3754 (h) [174]
73 2444 (h) [175] 2126 (h) [175] 11 (h) [175] N1000 (h) [175]
74 OSIP 37 (h) [176] 328 (h) [176] 0.41 (h) [176] 450 (h) [176]
75 QAF805 186 (h) [177] 1775 (h) [177] 3.4 (h) [177] 10.2 (h) [177]

A3-selective antagonists
76 MRS1523 N10,000 (h) [134] 3660 (h) [134] N10,000 (h) [134] 18.9 (h) [109]

15,600 (r) [134] 2050 (r) [134] 113 (r) [134]
N10,000 (m) [134] 731 (m) [134]

77 MRE3008-F20 1200 (h) [109] 141 (h) [109] 2100 (h) [109] 0.82 (h) [109]
78 562 (h) [178] 778 (h) [178] N10,000 (h) [178] 0.108 (h) [178]
79 VUF-5574 ≥10,000 (r) [179] ≥10,000 (r) [179] nd 4.03 (h) [179]
80 KF26777 1800 (h) [180] 470 (h) [180] 620 (h) [180] 0.20 (h) [180]
81 PSB-10 1700 (h) [181] 2700 (h) [181] nd 0.441 (h) [28]

805 (r) [28] 6040 (r) [28]
82 PSB-11 1640 (h) [181] 1280 (h) [181] 2100 (m) [28] 2.34 (h) [181]

440 (r) [181] 2100 (r) [181] KD 4.9 (h) [182]
83 N1000 (h) [183] N1000 (h) [183] N1000 (h) [183] 1.2 (h) [183]
84 MRS5147 1760 (h) [55] 1600 (h) [55] nd 0.73 (h) [55]
85 MRS5127 3040 (h) [55] 1080 (h) [55] nd 1.44 (h) [55]
86 LJ1251 2490 (h) [184] 341 (h) [184] nd 4.16 (h) [184]
87 OT7999 N10,000 (h) [50] N10,000 (h) [50] N10,000 (h) [50] 0.95 (h) [50]

a h = human; c = cow; d = dog; gp = guinea pig; m = mouse; r = rat; rb = rabbit; s = sheep; a few A2B data are from functional (cAMP) studies.
b nd = no data available.
c Unpublished data (Müller et al.).
d Recombinant receptors (expressed in CHO cells).
e Native receptors (post-mortem brain).

Table 3
Adenosine receptor affinities of ligands used for positron emission tomography.

Ki (nM)a

A1 A2A A2B A3

88 CPFPX 1.26 (h) [29] 940 (h) [29] ndb nd
0.63 (r) [29] 812 (r) [29]
1.37(p) [29]
0.18 (c) [29]

89 FR194921 2.91 (h) [185] N100 (h,r,m) [185] nd N100 (h) [185]
4.96 (r) [185]
6.49 (m) [185]

90 (E)-KF17837 390 (r) [186] 7.9 (r) [186] (E/Z) 1500 (h) [186] nd
1.0 (r) [186] (E)

91 IS-DMPX 8.9 (r) [123] N8000 (r) [123] nd nd
92 BS-DMPX 1200 (r) [187] 8.2 (r) [187] N10,000 (h) [188] N10,000 (h) [188]
93 KF18446 nd 5.9 (r) [124] nd nd
94 FE@SUPPY 6050 (r) [189] 9670 (r) [189] nd 9.67 (h) [189]

a h = human; pig; m = mouse; p = pig; r = rat; a few A2B data are from functional (cAMP) studies.
b nd = no data available.
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antagonists. For example, GS-6201 (CVT-6883, 67) has a selectivity of
88-fold vs. A1, 149-fold vs. A2A, and 49-fold vs. A3ARs (human
species).

PSB-603 (65) shows a particularly high affinity and selectivity, not
only in humans, but also in rodents. PSB-1115 (64) exhibits high
water-solubility and is therefore useful for in vivo studies, however its
A2B affinity and selectivity is lower than that for other A2B antagonists.
Besides xanthines, 2-aminopyrimidine derivatives, such as LAS38096
(69), 2-aminothiazolopyrimidines (e.g. 70), benzothiazoles (e.g. 71)
[174], pyridine derivatives (e.g. 72, 73) [171,175], have been
developed as A2B antagonists. Compound 72 was shown to be
metabolically unstable.

3.4. A3-selective antagonists

Review articles on A3AR antagonists have been previously
published [16,17,77]. After it was recognized that the xanthines
tended to be less potent as antagonists at the A3AR in comparison to
the other AR subtypes, chemically diverse sources were examined for
possible interactions with the A3AR. In an initial broad screen, several
classes of nonxanthine antagonists were identified for the A3AR: 1,4-
dihydropyridines, pyridines, and flavones. The pyridine derivative
MRS1523 (76) (Fig. 8) has become a useful tool since it shows
relatively high affinity not only for the human but also for the rat A3

receptor. Later it was noted that the potent nonselective AR antagonist
CGS15943 (52) could be modified to produce A3AR selectivity, two of
themost potent and selective compounds at humanA3 receptors being
MRE3008-F20 (77) and 78. The urea-substituted quinazoline deriva-
tive VUF5574 (79) also possesses high A2B affinity and selectivity.
Some tricyclic xanthines (80–82) have been found to be very potent
and selective antagonists at human A3 receptors showing increased
water-solubility due to a basic nitrogen atom in the additional
imidazole ring. Recently described A3-selective antagonists include
pyrazolopyrimidinones (e.g. 83). Many A3 antagonists are much more
potent at human as compared to rat A3 ARs.

The principles for converting selective A3AR agonists into selective
A3AR antagonists are based on either a conformationally constrained
ribose-like ring or one that is truncated at the 4′-position (i.e., missing
the ribose CH2OH group entirely). Thus, the nucleoside derivatives
MRS5147 (84) and its 3-iodo analogue MRS5127 (85) are highly
selective A3AR ligands generally across species. MRS5127 (84) was
recently reported as a radioligand selective for the A3AR [78]. The
truncated 4′-thioadenosine derivative LJ-1251 (86), which acts as a
A3AR antagonist across species, was shown to lower intraocular
pressure when applied topically [79,80].

4. Adenosine receptor ligands for diagnostic and therapeutic use

A selection of clinically used or evaluated AR ligands is collected in
Table 4.

4.1. Agonists

Adenosine (1) itself for a long timewas the only adenosine agonist to
be used in humans. It is in widespread use in the treatment of
paroxysmal supraventricular tachycardia (Adenocard®) due to its
activation of A1 receptors, and as a diagnostic for myocardial perfusion
imaging (Adenoscan®, Astellas Pharma, Inc.) utilizing its A2A-activating
effects resulting in vasodilation. In addition, adenosine is being
evaluated in several clinical trials for the treatment of inflammation,
neuropathic and perioperative pain, and cardioprotection.

AMP579 (12) is a mixed agonist at A1 and A2AARs. It was in clinical
trials for myocardial ischemic preconditioning and reperfusion injury.
It was tolerated in patients with end-stage renal disease, but in a
placebo-controlled trial of patients undergoing primary percutaneous
transluminal coronary angioplasty it failed to reduce infarct size
[81,82]. Recently it was also shown to activate the A2BAR, which may
account for its cardioprotective properties in the rabbit heart [83].

A1AR agonists are useful in preclinical models of cardiac arrythmia
and ischemia and in pain. Adenosine agonists are also of interest for
the treatment of sleep disorders [84,85]. A2A agonists exhibit anti-
inflammatory and immunosuppressive effects [86]. Activation of the
A2B AR protects against vascular injury [87]. A3AR agonists have been
proposed for the treatment of a wide range of autoimmune
inflammatory conditions, such as rheumatoid arthritis, inflammatory
bowel diseases, psoriasis, etc. [88–90], and also for cardiac and brain
ischemia.

4.1.1. A1-selective agonists
A1-selective (partial) agonists have been clinically evaluated for

the treatment of paroxysmal supraventricular tachycardia, atrial
fibrillation, or angina pectoris (capadenoson (6), selodenoson (8),
tecadenoson (10), and PJ-875), hypertriglyceridemia and type II
diabetes (GR79236 (9), RPR-749, and GS9667/CVT-3619 (11)) and
neuropathic pain (GW493838 (7), GR79236 (9)). Partial agonists are
usually preferred to avoid receptor desensitization and to possibly
achieve a certain tissue selectivity of the effects. The A1AR agonist
SDZ WAG94 (13) was one of the first agonists of this subtype to
progress to clinical trials, i.e. for consideration for treatment of
diabetes [91].

A1AR agonists have antiischemic effects in the heart and brain.
Recently, A1AR activation was shown to mediate neuroprotective
effects through microglial cells [92]. Various A1AR agonists have
been shown to be neuroprotective in ischemic and seizure models.
However, the peripheral side effects of A1AR agonists could be
severe. The A1AR agonist NNC-21-0136 (14) was previously in
clinical development for the treatment of stroke and other
neurodegenerative conditions [93]. It was found empirically to
provide some degree of in vivo selectivity for the CNS in
comparison to peripheral cardiovascular actions of adenosine that
was not based on subtype selectivity.

Other A1AR-selective agonists are intended for activation of the
receptor at peripheral locations. The A1AR-selective adenosine
derivative GR79236 (9) has analgesic and anti-inflammatory actions
in humans and animals [94]. The A1AR-selective agonist GW493838
(7) was also under evaluation for pain management. RPR749
(Aventis) and its methylated metabolite are orally active and
selective adenosine A1AR agonists that inhibit lipolysis in adipocytes
and lower plasma triglyceride levels [95]. GS-9667 (11, CVT-3619), a
partial agonist of the A1AR, is in development as an antilipolytic
agent. It acts as a full agonist of the A1AR in the inhibition of adenylate
cyclase in adipocytes, which have a large receptor reserve and/or
higher efficacy of coupling of the receptor to Gi. However, it is a
partial agonist in the cardiovascular system and therefore lacks
cardiovascular side effects.

A1AR agonists are of interest for use in treating cardiac
arrhythmias, and it recently was suggested that a partial agonist
of this subtype would have advantages over a full agonist for this
use [96]. The A1AR-selective agonist selodenoson (formerly DTI-
0009, 8) has been in clinic trials for treatment of acute and chronic
control of tachycardia and topical treatment of diabetic foot ulcers
(Aderis Pharmaceuticals). It was formulated for intravenous
administration to control heart rate during acute attacks and for
oral administration in the chronic management of atrial fibrillation.
The nonnucleoside AR agonist BAY 68-4986 (capadenoson, 6) is
under investigation for atrial fibrillation and for the treatment of
angina.

4.1.2. A2A-selective agonists
The 2-substituted A2AAR agonists apadenoson (16, ATL-146e),

binodenoson (23, MRE-0470 or WRC-0470), and sonedenoson (22,
MRE0094) have been cardiovascular clinical candidates [97–99]. Such



Table 4
Therapeutic drugs, imaging agents, and clinical candidates that act through adenosine receptors.

Compound Selectivity Company Indication or use (phase)a

Agonists
Adenosine (1) (Adenocard, Adenoscan) A1, A2A Astellas Paroxysmal supraventricular tachycardia (approved),

myocardial perfusion imaging (approved), other uses in testing
AMP579 (12) A1, A2 Aventis Myocardial infarction (discontinued)
Apadenoson (16, Stedivaze, BMS068645, ATL146e) A2A Clinical Data Myocardial perfusion imaging (III)
ATL-1222 A2A Clinical Data Acute inflammatory conditions (preclinical)
ATL-313 (17) A2A Clinical Data Ophthalmic disease (preclinical)
BAY 60-6583 (28) A2B Bayer Atherosclerosis (preclinical)
Binodenoson (23, WRC-0470, MRE-0470) A2A Aderis, King Myocardial perfusion imaging (III)
BVT.115959 A2A Biovitrum Diabetic neuropathic pain (II)
Capadenoson (6, BAY68-4986, nonnucleoside) A1 Bayer Schering Atrial fibrillation, chronic treatment (II)
Cl-IB-MECA (30, CF102) A3 Can-Fite Liver cancer (I–II)
CP608,039 (36) A3 Pfizer Cardiac ischemia (discontinued)
GS 9667 (11, CVT-3619) A1 Gilead Hypertriglyceridemia associated with diabetes (I)
GR79236 (9) A1 GlaxoSmithKline Pain, hyperlipidemia (I, discontinued)
GW493838 (7) A1 GlaxoSmithKline Peripheral neuropathic pain (II, discontinued)
IB-MECA (29, CF101) A1 Can-Fite Rheumatoid arthritis, psoriasis, dry eye, and other

autoimmune inflammatory diseases (II), glaucoma (II)
MRS3558 (34, CF502) A3 Can-Fite Autoimmune inflammatory diseases (preclinical)
NNC-21-0136 (14) A1 Novo Nordisk Stroke, neurodegeneration (discontinued)
INO 8875 (PJ-875) A1 Inotek Pharmaceuticals Glaucoma (II); atrial fibrillation (discontinued)
Regadenoson (19, Lexiscan, CV-3146) A2A Gilead and Astellas Myocardial perfusion imaging (approved)
RPR749 A1 Aventis Hyperlipidemia (I)
SDZ WAG 94 (13) A1 Sandoz/Novartis Diabetes
Selodenoson (8) A1 Aderis Atrial fibrillation (II)
Sonedenoson (22, MRE-0094) A2A King Diabetic foot ulcers, wound healing (II)
Tecadenoson (10, CVT-510) A1 Gilead Paroxysmal supraventricular tachycardia (III)
UK 432097 (18) A2A Pfizer COPD (II)

Antagonists
ATL 844 A2B Clinical Data and Novartis Asthma and/or diabetes
Naxifylline (43, BG-9719) A1 Biogen-Idec Heart failure (renal function) (discontinued)
Caffeine (38) McMaster University Apnea
CPFPX (88) A1 Research Center Jülich, Germany PET imaging (18F)
FK-453 (45) A1 Astellas Acute renal failure
GS 6201 (67, CVT-6883) A2B Gilead Asthma (I)
Istradefylline (49, KW6002) A2A Kyowa-Hakko Kogyo Parkinson's disease (III, discontinued)
KF26777 (80) A3 Kyowa-Hakko Kogyo Asthma (preclinical)
LAS38096 (69) A2B Almirall Anti-inflammatory (preclinical)
LAS101057 [192] A2B Almirall Antiasthmatic (I)
L-97-1 (48) A1 Endacea Sepsis (preclinical)
MRE2029-F20 (66) A2B King Anti-inflammatory (preclinical)
OSIP339391 (74) A2B OSI Asthma (preclinical)
OT-7999 (87) A3 Otsuka Glaucoma (preclinical)
Preladenant (58, SCH-420814) A2A Schering-Plough Parkinson's disease (III)
SCH-442416 (55) A2A Schering-Plough PET imaging (11C)
QAF805 (75) A2B, A3 Novartis Asthma (I)
Rolofylline (41, KW3902, NAX) A1 NovaCardia and Merck Heart failure (renal function) (discontinued)
SLV320 (46) A1 Solvay Heart failure (renal function)
ST-1535 (59) A2A Sigma-Tau Parkinson's disease (I)
SYN-115 (60) A2A Synosia Therapeutics /UCB

(after Synosia Therapeutics)
Parkinson's disease (II), addiction

Theophylline/aminophylline (39) A1 King Faisal University Recovery after anaesthesia
Toponafylline (42, BG-9928) A1 Biogen-Idec Heart failure (renal function) (IIb)
Vipadenant (54, BIIB014, V2006) A2A Vernalis and Biogen-Idec Parkinson's disease (II)

a Many of the clinical trials indicated are no longer current.
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agonists are of interest for use as vasodilatory agents in cardiac
imaging (like adenosine itself, marketed as Adenoscan®) and in
suppressing inflammation [100]. Regadenoson (19, CVT-3146, Lex-
iscan®) is already approved for diagnostic imaging [101]. The A2A-
agonist BVT.115959 (Biovitrum; structure not disclosed) has been
claimed to show higher A2A affinity at pH 7.0 as compared to pH 7.4
and is currently in phase II for the treatment of diabetic neuropathic
pain. Since decreased pH values are found in pathological, e.g.
inflamed tissues, this would result in tissue-selective effects and
reduced side-effects. Two selective A2A agonists developed by
Adenosine Therapeutics (now Clinical Data) are in preclinical
development for acute inflammatory conditions (ATL-1222, structure
not disclosed) and ophthalmic disease (ATL-313, 17).
4.1.3. A3-selective agonists
The two A3AR agonists that are currently in clinical trials contain

the 5′-N-methyluronamide modification and have nanomolar
affinity at the receptor. Thus CF101 (29, Can-Fite Biopharma) and
Cl-IB-MECA (30, CF102) are in trials for autoimmune inflammatory
disorders and for liver cancer, respectively. CF101 (29) was recently
demonstrated to be efficacious in clinical trials of rheumatoid
arthritis, psoriasis, and dry eye disease [102]. Further clinical trials
are planned for glaucoma and osteoarthritis. Two other A3AR
agonists CP-608,039 (36) and its N6-(2,5-dichlorobenzyl) analogue
CP-532,903 (37) [103] were previously under development for
cardioprotection. MRS3558 (34, CF502) is in preclinical develop-
ment for the treatment of autoimmune diseases.

http://dx.doi.org/10.1021/ml100249e
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4.2. Antagonists

The non-selective AR antagonists caffeine (38) and theophylline
(39) have been used as drugs for various indications. Caffeine (38) is
mainly applied for CNS stimulation to restore alertness and to
counteract fatigue, for the treatment of pain (e.g. headache, migraine)
typically in combination with analgesics such as acetylsalicylic acid
and/or paracetamol/acetaminophen, and for the treatment of apnoea
in premature babies [104]. Theophylline or its salt aminophylline (39)
are mainly applied for the treatment of bronchial asthma and COPD as
a second-line treatment [105], although their use is now limited as a
result of side effects on the central nervous system and the renal
system. Theophylline may also be used for the prevention of sleep
apnea in adults and for apnea of prematurity as a substitute for
caffeine. A clinical study is currently performed using aminophylline
for recovery after sevoflurane anaesthesia, since sevoflurane indirect-
ly leads to an activation of A1ARs.

A large number of synthetic AR antagonists that are much more
potent and selective than the prototypical alkylxanthines have been
introduced, although none have yet been approved for clinical use.
Potent and selective AR antagonists display therapeutic potential as
kidney protective (A1), antifibrotic (A2A), neuroprotective, antiasth-
matic (A2B), and antiglaucoma (A3) agents [105–108].

4.2.1. A1 receptor antagonists
Various A1AR antagonists, xanthines and non-xanthines, have

been or are currently being explored for clinical applications [109] for
heart failure, and for improving renal function and treatment of acute
renal failure. The xanthine derivative BG9719 (43), containing an
epoxide ring, is highly selective, while the selectivity of the more
water-soluble, metabolically more stable toponafylline (42) for the
human A1AR compared to the human A2BAR is roughly 10. The 8-
cyclopentyl derivative DPCPX (40), also known as CPX, which is
selective for the A1AR in the rat with nanomolar affinity but less
selective at the human AR subtypes, has been in clinical trials for cystic
fibrosis through a non-AR related mechanism [110]. The highly
selective A1AR antagonist L-97-1 (48, Endacea Inc.) is relatively well
water-soluble and in late preclinical development for the treatment of
asthma and sepsis [111]. As in the cases of DPCPX (40), rolofylline
(41), naxifylline (BG 9719, 42), and others a persistent problem in the
development of A1AR antagonists has been low water-solubility and
low bioavailability [18,112]; thus, A1AR antagonists, e.g. toponafylline
(43) and L-97-1 (48), with good water solubility are preferable
clinical candidates.

Nonxanthine antagonists of the A1AR have also been shown to
have high receptor subtype selectivity, e.g. FK453 (45) [113] and SLV
320 (46, Solvay Pharmaceuticals) [114]. For example, SLV 320 is in
clinical trials as an intravenous treatment for acute decompensated
heart failure with renal impairment.

4.2.2. A2A receptor antagonists
Several selective A2A antagonists have been evaluated in clinical

trials for the treatment of Parkinson's disease. The first one has been
istradefylline (49, KW6002), which did not reach the endpoint of
phase III clinical trials, but additional trials are planned [115]. The
non-xanthine derivatives preladenant (58, SCH420814; phase III),
vipadenant (54, BII014, V2006; phase II), ST-1535 (59; phase I), as
well as SYN-115 (60, phase II). Further potential indications include
other neurodegenerative diseases, such as Alzheimer's disease,
restless legs syndrome, depression, and addiction.

4.2.3. A2B receptor antagonists
Modification of xanthines at the 8 positionwith certain aryl groups

has given rise to preclinical candidates that are selective for the A2BAR
(e.g. 67, GS-6201, CVT-6883, Gilead Sciences). GS-6201 is the first
selective A2B antagonist to be clinically evaluated for the treatment of
asthma. Other A2B-selective xanthine and nonxanthine derivatives
include ATL844 (structure not disclosed), MRE2029-F20 (66),
LAS38096 (69), LAS101057, and OSIP339391 (74), which are intended
for treatment of asthma and/or inflammatory diseases. The ami-
nothiazole derivative QAF 805 (75), a mixed A2B/A3-antagonist, has
failed to attenuate bronchial hyperresponsiveness to inhaled AMP in a
phase 1b clinical trial in asthmatics [116], but has also been
investigated for other indications.

4.2.4. A3 adenosine receptor antagonists
Cyclized derivatives of xanthines, such as PSB-11 (82), are A3AR-

selective, and similar compounds have been explored by Kyowa
Hakko (e.g. 80). Selective A3AR antagonists, such as the heterocyclic
derivatives OT-7999 (87), are being studied for the treatment of
glaucoma [117], and other such antagonists are under consideration
for treatment of cancer, stroke, and inflammation [10,118]. No A3AR
antagonists have yet reached human trials.

5. Radioligands for in vivo PET imaging of adenosine receptors

With the established relevance of ARs to human disease states, it has
been deemed useful to develop high affinity imaging ligands for these
receptors, for eventual diagnostic use in the CNS and in the periphery.
Ligands for in vivo positron emission tomographic (PET) imaging of A1,

A2A, and A3ARs have been developed (Fig. 9 and Table 3). For example,
the xanthine [18F]CPFPX (88), similar in structure to DPCPX and the
nonxanthine [11C]FR194921 (89) have been developed as centrally-
active PET tracers for imaging of the A1AR in the brain [119].

11C-labeled (E)-KF17837 (90) was proposed as a potential PET
radioligand for mapping the adenosine A2A receptors in the heart and
brain [120,121]. 11C labeled (E)-8-(3-chlorostyryl)-1,3-dimethyl-7-
[11C]methylxanthine ([11C]CSC, 50) proved to accumulate in the
striatum, and PET studies on rabbits showed a fast brain uptake of
[11C]CSC, reaching a maximum in less than 2 min [122]. Further
styrylxanthine derivatives labeled with 11C were tested as in vivo
probes [123]. [7-Methyl-11C]-(E)-3,7-dimethyl-8-(3-iodostyryl)-1-pro-
pargylxanthine ([11C]IS-DMPX, 91) and [7-methyl-11C]-(E)-8-(3-bro-
mostyryl)-3,7-dimethyl-1-propargylxanthine ([11C]BS-DMPX, 92)
showed Ki affinities of 8.9 and 7.7 nM respectively, and high A2A/A1

selectivity values. Unfortunately, biological studies proved that the two
ligandswere only slightly concentrated in the striatum, and that the two
compounds were not suitable as in vivo ligands because of low
selectivity for the striatal A2A receptors and a high degree of nonspecific
binding [123]. A useful A2A PET ligand for in vivo imaging proved to be
[11C]KF18446 (93), also named (11C)TMSX [124]. Ex vivo autoradiog-
raphy for this molecule showed a high striatal uptake and a high uptake
ratio of the striatum to the other brain regions. In 2001 the synthesis and
evaluation of [11C]KW-6002 (49) was reported. This molecule showed
high retention in the striatum but it bound also to extra-striatal regions
[190]. [11C]SCH442416 (55) has recently been explored as a PET agent in
the non-invasive in vivo imaging of the human A2AAR [73,125].

Recently, an A3AR PET ligand, [18F]FE@SUPPY (94), based on a
series of pyridine A3AR antagonists, was introduced [126]. Several
nucleoside derivatives that bind with nanomolar affinity at the A3AR
and that contain 76Br for PET imaging were recently reported,
including the antagonist MRS5147 (84) [127].

6. Concluding remarks

In conclusion, selective agonists and antagonists for all four
adenosine receptor subtypes have been developed and diagnostic
and therapeutic applications are being explored. The first selective AR
agonist, the A2A agonist regadenoson (Lexiscan®), has been approved
as a diagnostic drug for myocardial perfusion imaging. Many other
selective agonists and antagonists for the various receptor subtypes
are undergoing clinical trials for a broad range of indications.
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Although some trials of the selective ligands have been discontinued,
the most advanced drugs so far have been capadenoson and
tecadenoson (A1 agonists for atrial fibrillation, or paroxysmal
supraventricular tachycardia, respectively), apadenoson and binode-
noson (A2A agonists for myocardial perfusion imaging), preladenant
(A2A antagonist) for the treatment of Parkinson's disease, and CF101
and CF102 (A3 agonists for inflammatory diseases and cancer,
respectively).
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