PARTIAL AMINO ACID SEQUENCE OF THE VARIABLE REGION OF A MOUSE γG2a IMMUNOGLOBULIN HEAVY CHAIN. EVIDENCE FOR THE EXISTENCE OF A THIRD SUB-GROUP OF VARIABILITY FOR THE HEAVY CHAIN POOL

Alain BOURGOIS
Laboratoire d’ImmunoLogie de l’I.N.R.A.,
78 Thiverval Grignon

Michel FOUGEREAU
Centre de Biochimie et de Biologie Moléculaire du CNRS,
31 chemin J. Aiguier – 13 Marseille

Received 4 May 1970

1. Introduction

Subgroups of variability have been described for both the light [1–3] and the heavy chains [4–8] of human immunoglobulins. In a previous publication [9], we have reported the isolation and characterization of CNBr fragments of murine plasmocytoma protein MOPC 173. Ten fragments, H1 to H10 were assigned to the heavy chains, and provisionally ordered. Fragments H1, H2, and H3 contained 34, 48 and 21 amino acid residues, respectively, and therefore accounted for the major part of the variable region of the heavy chains [4, 6, 8].

In the present communication, we report the sequence of fragments H1 and H3, linked together through a disulfide bond, and representing a total of 55 residues, thus covering approximately half of the Hv region.

2. Materials and methods

Preparation of MOPC 173 plasmocytoma protein and that of its CNBr derived fragments has been previously described [9]. Tryptic and chymotryptic peptides were separated by ion-exchange chromatography on Dowex 50 × 2 and further purified by high voltage paper electrophoresis, whenever necessary.

Amino acid sequence was determined by the Edman-dansylation method [10, 11].

Sequences were compared as suggested by Fitch [12] by calculating the minimum number of mutations required for every pair of amino acids in the homologous stretches.

3. Results

The NH2-terminus of the heavy chains was identified as glutamic acid; so was that of the H1 fragment which was thus assigned to the NH2-terminal portion of the heavy chain. Four tryptic peptides were isolated from fragment H1, in agreement with its lysine and arginine content. The amino acid sequence directly determined on residues 1 to 8 of fragment H1 imposed the order H1 T1 – H1 T2. Peptide H1 T4 contained HSR *, therefore the overall order was H1 T1 – H1 T2 – H1 T3 – H1 T4 as indicated on fig. 1. Analysis of the chymotryptic peptides provided additional evidence for the correctness of this conclusion.

Amino acid sequence of residues 1 to 10 of fragment H2 was directly determined and imposed the order of the tryptic peptides H2 T1 – H2 T2 – H2 T3. As H2 T5 contained an HSR residue, the overall

* Abbreviation: HSR = homoserine.

North-Holland Publishing Company – Amsterdam
Fig. 1. Amino acid sequence of fragment H₁, as determined by the Edman-dansylation technique (→) and by carboxypeptidase (A + B) digestion (←). H₁T₁ to H₁T₄: tryptic peptides and H₁C₁a to H₁C₆: chymotryptic peptides.

order must be that presented on fig. 2. Free tyrosine eluted with chymotryptic peptide H₃C₁ upon ion-exchange chromatography on Dowex 50 X 2 and further separation was obtained by high voltage paper electrophoresis.

4. Discussion

Most heavy chains analyzed so far had blocked NH₂-termini. MOPC 173 heavy chain and a human γG₄ myeloma protein (Vin) were found to possess glutamic acid as NH₂-terminal residue [13]. When the sequence of MOPC 173 H₁ fragment was compared with the corresponding sequence of human myeloma protein Vin (fig. 3), a strong homology was observed, since 67% of the positions (23 out of 34) were identical. Two subgroups of variability have already been reported for the human heavy chains [4–7]. Within the subgroup containing proteins Daw, He and Ou (fig. 3) 75% of the positions were identical when the homologous portion of 34 residues was considered. Homology was maximized, however, when residues adjacent to position 30 were not taken into consideration, perhaps because of the possible proximity of this area (close to the first intrachain disulfide bond) to the antibody active site. This situation would thus seem to parallel that described for the light chains [2]. Residues 1 to 27 (or 1 to 24 for the subgroup containing Ste, were tested for homology by expressing the minimum number of mutations required per codon [12]. It may be observed

Fig. 2. Amino acid sequence of fragment H₃, as determined by the Edman-dansylation technique (→) and by carboxypeptidase (A + B) digestion (←). H₃T₁ to H₃T₅: tryptic peptides and H₃C₁ to H₃C₃: chymotryptic peptides.
Table 1

Comparison of residues 1 to 27 of one murine plasmocytoma heavy chain with the corresponding sequences of 6 human myeloma proteins.

<table>
<thead>
<tr>
<th></th>
<th>MOPC</th>
<th>Vin</th>
<th>Eu</th>
<th>Ste</th>
<th>He</th>
<th>Daw</th>
<th>Ou</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPC</td>
<td>0</td>
<td>0.26</td>
<td>0.70</td>
<td>0.75</td>
<td>0.74</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>Vin</td>
<td></td>
<td></td>
<td>0.63</td>
<td>0.67</td>
<td>0.81</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Eu</td>
<td>0</td>
<td>0.25</td>
<td>0.85</td>
<td>0.89</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ste</td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>0</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Daw</td>
<td></td>
<td></td>
<td>0</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ou</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Figures represent the minimum number of mutations required per codon, as suggested by Fitch [11].

(table 1) that the calculated figures were below 0.30 when human heavy chains pertaining to the same subgroup were compared (i.e. Eu and Ste or Daw, He and Ou) whereas values over 0.63 were consistently observed whenever heavy chains from different subgroups were compared. From the calculated value of 0.26 resulting from comparison between the human heavy chain Vin and the homologous sequence of the murine MOPC 173 protein, it seems reasonable to propose the following:

(a) Proteins Vin (human γG4) and MOPC 173 (murine γG2α) allows us to define a third subgroup of variability for the heavy chains.

(b) at least for this subgroup, and for the considered stretch of sequence, a strong selection pressure does exist which imposes the conservation of large segments of the variable region of the heavy chains. This observation supports the idea that selection of antibody variability occurred prior to mouse-human divergence in the course of evolution [14, 15].

(c) In agreement with the translocation hypothesis [6, 7, 16, 17] our results favor the existence of a common pool of variability for the heavy chains, as opposed to the situation described for the light chain κ and λ systems. Care should be taken however in making such a generalization, in view of the limited number of sequences reported so far.

A different situation was observed when homology was investigated with fragment H3. Since H3 was
linked to $H_1$ by a disulfide bond, we proposed [9] by analogy with other immunoglobulins, that this fragment covered region 83–103 of the MOPC 173 heavy chain. When a limited number of deletions were taken into account in order to maximize homology, this position of $H_3$ appears to be valid (fig. 4).

The homology pattern that characterizes the various sequences presented on fig. 4 is strikingly different from that discussed for the terminal portions of the heavy chains. It may be observed, as already pointed out by Press and Mogg [4] that classification of the different heavy chains into subgroups becomes hardly justified in this region, since residues 91–99 (Ou numbering) remain practically constant throughout the series, whereas adjacent residues exhibit extensive variability. The presence of quasi-invariant tyrosyl residues in this region, already apparent from affinity labeling experiments [18] taken together with the extreme variability observed in the vicinity makes it consistent that this portion of the heavy chains might contribute to the antibody active site.

Acknowledgments

We thank Drs. Milstein and Pink for sending a preprint of their review article [15]. We express our gratitude to Dr. J. Asso who provided facilities for the mice transplantations.

References