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A multiobjective control problem is introduced. The definition of invexity for
continuous functions is extended to p-invexity, p-pseudoinvexity, and p-quasi-
invexity. Duality results are established for Wolfe as well as Mond-Wier type
duais. © 1995 Academic Press. Inc.

{. INTRODUCTION AND PRELIMINARIES

In this paper we introduce the following multiobjective control
problem:

.. b b b
(VCP) Minimize U N, x, v) de, f, L, x, vy de, ..., J‘ Lt x,y) dt]

subject to x(a) = « x(b) = 8 )
X = h(, x,y) tel (2)
gt, x, ) =0 = 3)

Here R” denotes an n-dimensional euclidean space and I = [a, b] is a
real interval. Each fi: I X R" X R"— Rfori= 1,2, ..., r,g: 1 X R" X
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CONTROL PROBLEM WITH INVEXITY 677

R™ — Rf, and h: I X R" x R™ — R" is a continuously differentiable
function.

Let x: /— R" be differentiable with its derivative ¥, and let y: I — R be
a smooth function. Denote the partial derivatives of f by f,, f;, and f,,
where

_of
_at’f‘_

[af of af]’fv:[af 3f a_f],

ax'’ axr’ 7 gxn

ﬁ ayp ayp_y teey ay,,,

where superscripts denote the vector components.

Similarly we have 4, h,, h, and g,, g., g,. X is the space of continuously
differentiable state functions x:  — R" such that x(a) = « and x(b) = 8
and is equipped with the norm x| = |x|. + |Dx|-, and ¥, the space of
piecewise continuous control functions y: I — R™, has the uniform norm
|'ll=. The differential equation (2) with initial conditions expressed as
x{(t) = x(a) + fz h(s, x(s), y(s)) ds, t € I may be written as H, = H(x, y),
where H: X X Y — C(I, R"), C, R") being the space of continuous
functions from 7 to R" defined as H(x, y)(¢) = h(t, x(1), y(#)). Two duals for
(VCP) are proposed and duality relationships are established under gener-
alized p-invexity assumptions:

Wolfe Vector Control Dual
(WVCD) Maximize U" (At u, v) + w(OTglt, w, v} d, ..,
[ 150, 0 0+ wTgtt, u, ) dz]
subject to x(a) = « x(h) =8 “4)

i Nifilt, u, v) + w(@)Tg (e, u, v) + 2(OTh(t, 1, v) + 20) = 0 rel
i=1
%)

2 Nifio(t, u, v) + w@®)Tg,(t, u, v) + z(Th,(t, u, v) = 0 tel (6)
i=1

fh 2T, u, v) — 4] dt = 0 trel N

w(t) =0 tel (8)

-

)\iZO,i=l,2,...,r, A,‘-_—l: (9)

i=1
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Mond-Wier Vector Control Dual
(MVCD)

.. b b b
Maximize Ua filt, u, v) dt, L L, u,v) de, ..., I’ Lt u, v dt]

subject to x(a) = « x(b) = B (10)

> Nifult, u, ) + w(OTgu(t, u, v) + 2OTh(t, u,0) + 2D =0  tEI
i=1

(11

r

Nt u, v) + wOTg (e, u, v) + zOTh(t, u,v) =0 €T (12)

i=1

[[comth, u ) - G di =0 1ex (13)
f” w)Tgt, i, ) dt =0 1€ (14)
w(® =0 trel (15)

N=0,i=1,2,..,r,

i

A= 1. (16)

Optimization in VCP, WVCD, and MVCD means obtaining efficient
solutions for the corresponding programs.

DEerINITION 1. A feasible solution (x*, y? for VCP is efficient for VCP
if and only if there is no other feasible (x, y) for VCP such that

]" £t x, y) di < f” £ K0y dt forsomei € {1,2, ...r} (I17)

[ eyydr= | fu x0y0de forallje {12, ... r) (18)

In the case of maximization, the signs of inequalities (17) and (18) are
reversed. We need the following information for the proofs of strong
duality results.

LeMMA 1 (Chankong and Haimes [2]). (x°, y°) is an efficient solution
for VCP if and only if (x°, y°) solves P(x°, y%) forall k = 1,2, ..., r, defined
as
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Pi(x°, Y): Minimize f " At x, y) di

subject to x(a) = a,  x(b) = B
X =hitx,y)
glt,x, ) =0
St x, y) = fi(e, X0, y9),
forallje{1,2, .., r},j#* kL
Chandra et al. [1] gave the Fritz—John necessary optimization condi-

tions for the existence of an extremal solution for the single objective
control problem (CP):

(CP) Minimize fb f(t, x, y) dt

subject to x =h(, x,y)
gt, x, ) =0

where f, g, h are as defined earlier.

Mond and Hanson [3] pointed out that if the optimal solution for the CP
is normal, then Fritz-John conditions reduce to Kuhn-Tucker condi-
tions.

THEOREM 1 (Kuhn-Tucker Necessary Optimality Conditions). [f
(x%, Y% € X X Y solves CP, if the Fréchet derivative [D — H (X", y9)] is
surjective, and if the optimal solution (X%, y°) is normal, then there exist
piecewise smooth w': I — RP and % I — R", satisfying the following for
allt € I

£t 2, 9) + w0 g, (1, x° ¥ + 20)Th, (2, x°, %) + 2% = 0 (19)
£, 2% ¥%) + wh()T g, (2, x°, ¥°) + 22(0)Thy(r, x° ¥y = 0 (20)
wi(n)Tg(t, x% ) =0 1

wi(t) = 0. (22)

Let ¢: X — R defined by ¢(x) = [% (¢, x, £) dt be Fréchet differentiable.

Let there exist functions n: I X X X X — R withn(t, x, x) = 0and &: I x
X X X — R and a real number p.

DeFinITION 2. A functional ¢(x) is said to be p-pseudoinvex at ¥ with
respect to functions » and &, if for all x € X,
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fh {n(t, x, D)f(t, x, X) + % n(t, x, D)fe(t, x, D} dt = —pllet, x, DIF
= ¢(x) = ¢(X)
or equivalently
P (x) < d(¥)

b o
> f {n(t, x, X)f. (1, x, X)

+ L, x, D, x. D) de < —plie, x, D

DEFINITION 3. A functional ¢(x) is said to be p-strictly pseudoinvex
at X with respect to functions n and &, if for all x € X,

2

Jb @, x, Dt x, 2) + Bd; n(t, x, ) fe(t, x, D)} dt = —plié(t, x, )

= ¢x) > $(x)

or equivalently

o (x) = d(X)

> [ e, x. Dt x, D

+ %n(t, x, X)fe(t, x, )} dt < —plle(e, x, D

DEeFINITION 4. A functional ¢(x) is said to be p-quasiinvex at ¥ with
respect to functions » and ¢, if for all x € X,

$x) = $(x)

b o
= f (e, x, D, x, %)

+ L nte, %, D30, x, D) dr = ~plie, x, D
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or equivalently

[/ tnte. . ke, x D + it x Dt x, D) di > —plte, x, O

> ¢(x) > ¢(x).

DEFINITION 5. A functional ¢(x) is said to be p-strictly quasiinvex at
X with respect to functions n and ¢, if for all x € X,

d(x) = ¢(X)
b o
> L {n(t, x, N)f: (1, x, x)

d o 2
+ e X, Dfele, x, D) dr < —plle(r, x, DI
or equivalently

" e, x DAt % D + 5, x, D x, D) dr = —plett, x, D

> o) > b (X).

We write the functional ¢(x) to be p-PIX, p-SPI1X, p-QIX, and p-SQIX
if ¢(x) is p-pseudoinvex, p-strictly pseudoinvex, p-quasiinvex, and p-
strictly quasiinvex, respectively, at each point of X.

2. DuALity BETWEEN VCP AND WVCD

THEOREM 2 (Weak Duality). Assume that for all feasible (x, y) for
VCP and all feasible (u, v, w, z, \) for WVCD:

(i) filt,x,y) + w()Tg(t, x, ¥) is p;-PIX with respect to functions m,,
&) and p;-SPLY with respect to functions 1,, &€, (or p{-SP1X with respect to
Sfunctions my, &€, and p{-P1Y with respect to functions n,, &), for all i €
{1,2, ..., r}L
() z(OT[A, x, y) — ()] is o-QIX with respect to the same func-
tions ny, &€, and o'-QLY with respect to the same functions ma, &.
(i) 2l hp;+o=o0and Z_) \p] + o' = 0.
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Then the following cannot hold:
b b
f Sfilt, x, y) dt < f {fi(t, u, v) + w()Tg(t, u, v)} dt
for somei€{1,2, ....r} (23)
b b
[\ x p di= [ UG uw) + w@Tg, u, v} de
foralljE{1,2, ..., r}. (24)
Proof. Suppose contrary to the result that (23) and (24) hold. Since

(x, y) is feasible for VCP and (u, v, w, x, A) is feasible for WVCD, it
follows from (3), (8), (23), and (24) that

fb {fitt, x, ) + wn)Tglt, x, y) di} < fb {fitt, u, v) + w(n)Tg(t, u, v)} dt
forsomei € {1,2,....,r} (25

fb {fi, x, ) + w()Tglt, x, y) di} = fh {fit, u, v) + w(O)Tg(t, u, v)} dt
forallj € {l,2,..,r} (26)

Using (i) and relations (25) and (26) we get

Jh {m, x, W fiut, u, v) + wt)T g, (2, u, v)]

+ a1, y, W fi(t, u, v) + wt)g,(t, u, v)]} dt
< —pilléit, x, WP = piléAz, y, V)P
forallie {1,2, ...,r}. (27)

Multiply each inequality of 27) by A\; =2 0,i =1, 2, ..., r, and add

fh {m(t. X, u) [Zl Aifults u, v) + wOTe (1, u, v)]

+ ma(z, y, v) [i Nfo(t, u, v) + w(t)¥g, (2, u, v)]} dr (28)
i=1

< =2 nplét x WP = 2 wpillexes v, ol
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From (2) and (7) it follows that

[P 2o, x ) - 20V dr = [ 207G, w, v) - @0 d.
Now using (ii) we get

b d
L {m(t, X, wz(OTh,(t, u, v) — 7 (¢, x, w)z(2)

+ mat, y, )UO)Th, (2, u, v)} dt (29)
= —a&@t, x, Wl — o’jé(t, y, V)|

By integrating (d/dt)n,(¢t, x, u)z(t) from a to b by parts and applying the
boundary conditions (1) we have

b d b ]
ja Lot x, w2(0) di = —f" mi(t, x, W) dr. (30)
Using (30) in (29) we get
f: {m(t, x, W) OTh(, u, v) + 2] + (e, y, VD [2(OT (L, u, v)]} dt

= ~olléit, x, Wl = o620y, VP G

Adding (28) and (31),

fb {m(t, X, u) [}; Aifiult, u, v) + w(t)T gu(t, u, v)

+ z(O)Th(t, u, v) + é’(t)]

+ e, y, v) [Z Aifilt, u, v) + w(O)T g1, u, v)
i=1

+ 2T h,(t, u, v)]} dt

< —(§ \ipi + 0') &, x, wl? — (2} Nipl + o-’) €202, v, V2.
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Hence by using (iii) we have

f: {7’]([, X, u) l:}: Aif;'u(ts u, U) + W(I)Tg“(t, u, U)

+ z(OTh,(t, u, v) + z°(t):|

+ m(t, y, v) [i ANifw(t, u, v) + w() g, (1, u, v)
i=1
+ z2(OTh,(t, u, v)]} dt < 0.

This contradicts (5) and (6). The result follows.

Remark. The weak duality theorem also holds good under the follow-
ing different types of assumption:

@) fi(r, x, ¥y + w(OTg(t, x, y) is p;-QIX with respect to the func-
tions i , &; and p-QIY with respect to functions m,, & foralli € {1, 2, ...,
r}.

(i) z(OT[A(t, x, ¥) — X¥(0)] is o-QIX with respect to the same
functions 7, £, and o’-SQIY with respect to the same functions 7», &, (or
o-SQIX with respect to the same functions 7, & and ¢'-QIY with re-
spect to the same functions n;, &;).

(lll) E,L] )\,'p,' + o =0and E;:l )\,p,' + o0 =0
d)() fit, x, ¥) + w(OTg, x, y) is p-QIX with respect to functions
m, & and p/-QlY with respect to functions n,, &, foralli € {1, 2, ..., r}.
(i) z(OT[A@, x, ¥) — X)) is o-QIX with respect to same func-
tions n , £, and o'-QIY with respect to the same functions 7,, &,

(i) > Api+a=0 and D Ap/+o' >0
i=1 i=]
or
ZAip,-+0'>O and E}\,-p,’+o'20.
i=1 i=1

(ci) N, >oforallie{l,2, .., r}
) 2o Afilt, x, ¥) + wTg, x, y) + 2(0TLAG, x, y) — #(1)] is
p-PIX with respect to functions 7, £, and p’-PIY with respect to function
M, €2.



CONTROL PROBLEM WITH INVEXITY 685

(i) p=0andp =0.

(A1) 2 Nfilt, x, 9) + w(n)Tg(t, x, ¥) + 20T [A(L, x, y) — £(@)] is
p-PIX with respect to function 7,, £, and p’-SPIY with respect to func-
tions 7, &; (or p-SPIX with respect to functions 7, ¢, and p’-PIY with
respect to functions 7, £,).

(i) p=0andp =0.

(e)(l) 2:=l Alf;(t’ X, )’) + W(I)Tg(ls X, )’) + Z(t)T[h(ts X, y) - f(t)] iS
p-QIX with respect to functions n, & and p’-QIY with respect to func-
tions 73, &;.

(i) p=0andp' >0o0rp>0andp =0.
COROLLARY 1. Assume that weak duality (Theorem 2) holds between
VCP and WVCD. If (u° v is feasible for VCP, (", v°, w®, 20, X) is

feasible for WVCD with w®()Tg(¢, u”, v°) = o. Then (4, V% is efficient for
VCP and (1°, v°, w9, 2%, A) is efficient for WVCD.

Proof. Suppose (1%, v°) is not efficient for VCP. Then there exists
some feasible (x, y) for VCP such that

[ s xoyydi< [ fi i, v dr, for some i € {12, ... 1)

[ fex =] fa . od forallje (1.2 ...rh

Since W) g(z, u°, V%) = o, we get

fb file, x, y) dt < fb {filt, 10,00 + Wi, u, W)} dt
for some i € {1, 2, ..., r}
b b
f filt, x, y) dt f {fite, u®, %) + wi(n)Tg(z, u® v} dt
forallj € (1,2, ..., r).
This contradicts weak duality. Hence (19, v°) is efficient for VCP.

Now suppose («°, v°, w?, 2% X) is not efficient for WVCD. Then there
exist (u, v, w, z, A) feasible for WVCD such that

f: {fitt, u, v) + w()Tg(t, u, v)} dr < f: {fi (2, 4 1Y)

+ wi(n)Tg(r, 1, v} dt for somei € {1,2, ..., r}
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J'j (£, u, v) + wTg(t, u, )} dt < f {£i(t, W, v0)
+ wi()Tg(t, 1, v9)} dt forallj€{1,2,..,r}h

Since w0 g(t, «°, V%) = 0,

[ 15 w0+ wo g6, w0 dr < [ dia, w0, o) di

forsomei e {l, 2, ..., r}

fb filt, u, v) + w(O)Tglt, u, v)} dt = fb dfi(t, u®, V%) dt
forallje{l,2,..,r}

This contradicts weak duality. Hence (49, v°, w® z° A) is efficient for
WVCD.

THEOREM 3 (Strong Duality). Let (1°, V%) be efficient for VCP and
assume that (u®, V%) satisfies the constraint qualification of Theorem 1 for
Pilug, vo) for at least one k € {1, 2, ..., r}. Then there exist \° € R” and
piecewise smooth w’ [ — R? and 2°: 1 — R" such that (u®, v°, w°, 2%, A% is
feasible for WVCD and wo(£)Tg(¢, u®, v%) = 0. If weak duality also holds
between VCP and WVCD then (10, 1°, w°, 20, A% is efficient for WVCD.

Prooj.  As (1, V') satisfy the constraint qualifications of Theorem 1 for
at least one k € {1, 2, ..., r}, it follows from Theorem 1 that there exist
A € R'"Vand piecewise smooth w': I — RP and z': I — R", satisfying for
all ¢ € { the following:

fralt, 10, 00 + D0 N fult, 10, 0°) + w (DT g, (2, 40, v°)
i=1
i+k (32)
+ 2O h(t, W0, ) + (1) =0

,
fio(t, 10, 00 + D0 A fult, 40, v°) + w' (BT g, (¢, u°, v°)
i=1

i+k
+ 'O h(t, u®, V7)) =0 (33)
wTe@ u®, v =0 (34)

w'(t) = 0, N=zo,i=1,2..,ri#k (35)
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Now let us set, fori =1,2, ..., r, i # k,

PN

)\,f/(l + > )\{), A = 1/(1 + > )\{)
i=1 i=1

i+k i*k

w(1) = w’(t)/(l + 2’:‘ )\{), 2 = z’(t)/(l + 2 )\,-’).

ik ik

Dividing (32) and (33) by 1 + 27, .x A/ we get

MLt 10, %) + wiDT g, (¢, 1, %) + 2D h,(t, u®, %) + 2%1) = 0
i=1

I

(36)

> A, 10, ) + wAOT g, (1, 1, V) + 22D hy(t, 1O, V) = 0. (37)
i=1

Also, we get

SN =1, (38)
i=1
As (u°, 19 is feasible for VCP, #°() = h(z, u°, v*). Hence
[ 0T, w0, o) - @) di = 0. (39)

Now it follows from (35)—(39) that (.?, v°, w®, 2%, A% is feasible for WVCD.
Also, w()Tg(t, «°, v%) = 0 and weak duality holds between VCP and
WVCD. The result now follows from Corollary 1.

3. DuaLITY BETWEEN VCP AND MVCD

THEOREM 4 (Weak Duality). Assume for all feasible (x, y) for VCP
and all feasible (u, v, w, z, \) for MVCD that if

1) fi(t, x, y) is pi-QIX with respect to functions my, &, and p{-QlY
with respect to functions n, &, foralli € {1, 2, ..., r},
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(i) w(Tg(, x, y) is o-QIX with respect to the same functions m,,
&, and a’-QLY with respect to the same functions ma, &,

(i) x(O)T[AG, x, y) — ()] is u-SQIX with respect to the same
Junctions n, € and u'-QLY with respect to the same functions 1., &; (or
w-QIX and u'-SQLY with respect to the same functions ny, &€ and 13, &3,
respectively), and

(iv) ZLi\pi+t o+ pu=0and Z, \pl + o' + ' =0,
then the following cannot hold:

f: fil, x, yyde < j: fite, u, vy dt, forsome i < {1, 2, ...,r} (40)

[ fexpydi=|[ o wvd, foralj={1,2....r0 @

Proof. Suppose, contrary to the result, that (40) and (41) hold. Then
(i) yields

f: {7’1([’ X, u).fl:u(t’ U, U) + 772([, y’ U)ﬁu(ta u, U)} dt

= —pill&i(r, x, wI? = plll&2Ar, y, WP (42)
foralli € {1, 2, ..., r}.

Multiplying each inequality of (42) by A; = 0, and summing up forail i = 1,
2,3, ..., r, we get

b
1

J {m(r, X, 1) 2 Nfalt, w4, 0) + maes 3, 0) 2 Nalt, w v)} dt
i= i=1

= —; Nodl€e, x, wff - Z Npill€ae, y, V)P (43)

As (x, v) is feasible for VCP and (u, v, w, z, A) is feasible for MVCD, it
follows from (3), (14), and (15) that

[" w()Tg(t, x, y) dt = f” w(t)Tg(t, u, v) dr.
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It now follows from (ii) that

[} f16e, 5, 0T gutt, 1, v) + M, v, VgL, VY dr
(44)
= —al&t, x, WP ~ o'lléae, y, V)P

From (2) and (13) we have
b o b o
["z0mtha, . y) - 2oV de = [ 20Tk, 0, 0) - GG
From (iii) it follows that

Lb {m(t, x, wz(OTh e, u, v) = %m(t. x, wz(t)

+ na(t, v, ©)Z(OTh(t, u, v) dt (45)
< —ullé, x, WP ~ wé, y, v

Using (30) in (45) we have

[" e, x 02Okt w0y + £

+ (e, v, ©)Z(OTh(t, u, v)} dt (46)
< —ullE, x, WP = w22y, )P

Adding (43), (44), and (46),

fb {m(t, X, ) [}:1 Nifult, u, v) + w(®)Tg,(t, u, v)

+ z(OTh,(¢, u, v) + z°(t)]

+ naft, y, v) [Z Nifw(t, u, v) + w(®)'g,(t, u, v)
i=1

+ z(OThy(t, «, v)]} dt

< (3 npet o+ ) e, v 0l -

(Z Apl + o'+ #’)Ilfz(t, y, v
i=1
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It follows from hypothesis (iv) that

f: {7)!(’, X, ll) [2 )\if;'u(tv u, U) + "V(t)Tgu(ts u, U)

+ z(OTh,(t, u, v) + 2(:)]

- 47
+ 7’2(’1 Yy, v) [Z Aif;'v(ta u, U) + W(I)Tgv(t’ u, U)
i=1

+ z(OTh,(t, u, v)]} dr < 0.

Equation (47) contradicts (11) and (12). Hence we have the result.

Remark. The weak duality theorem also holds good under the follow-
ing assumptions:

(a)i) fi(t, x, y) is p;-QIX with respect to functions 75, & and p;-
SQIY with respect to functions 7, €2 (or p;-SQIX and p/-QIY with re-
spect to functions n, &; and 7, &, respectively) for all i € {1, 2, ..., r}.

(i) w(Tg@, x, y) is o-QIX with respect to the same functions
71, &) and o’-QlY with respect to the same functions 7, &;.

(i) z(OLAG, x, ¥) — X¥(D)] is u-QIX with respect to the same func-
tions 7, £, and p'-QlY with respect to the same functions 7, &.

(lV) Ef=lxipi+o+u20and Ef:l)\,p,’ + o' +M,20.

(b)(i) fi(t, x, y)is p-QIX with respect to functions 7, &; and p/-QIY
with respect to functions n,, &, foralli € {1, 2, ..., r}.

i) w(Tg(, x, y) is o-QIX with respect to the same functions
m, €1 and o’-SQIY with respect to the same functions 7;, &; (or o-SQIX
and o’-QIY with respect to the same functions %, & and 7,, &, respec-
tively).

(iii) z()TLA(, x, ¥) — 2] is u-QIX with respect to the same
functicns ny, &, and u'-QlY with respect to the same functions n;,, &.

(iV)Z)\,»p,-+0'+u20 and Npl+ o’ +u =0,

i=1 =1

(c)i) fi(z, x, y)is pi-QIX with respect to functions 7, &, and p;-QlY
with respect to functions n,, & foralli € {1, 2, ..., r}.

(i) w(nTe(t, x,y) is o-QIX with respect to the same functions 7,
¢ and o '-QIY with respect to the same functions 7,, &.
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(i) z(OT[A(t, x, y) — X(D] is u-QIX with respect to the same
functions 7y, £, and u’-QIY with respect to the same functions 7, &;.

(lV) 2:=| )\,'p,' + o + Bo= 0 and 2;:1 A,p,’ + o’ + /.L’ > 0 or
2 Apito+u>0and 2 \p/ + o'+ u =0.

It may further be remarked that Theorem 4 also holds good under the
assumptions (c), (d), and (e) of Theorem 2.

COROLLARY 2. Assume that weak duality (Theorem 4) holds between
VCP and MVCD. If (u, v) is feasible for VCP and (u, v, w, z, \) is feasible
for MVCD, then (u, v) is efficient for VCP and (u, v, w, z, A) is efficient for
MVCD.

Proof. Suppose (u, v) is not efficient for VCP. Then there exists some
feasible (x, y) for VCP such that

jb fi(t, x, vy dt < jb fi{t, u, v) dt, forsome i € {1, 2, ..., r}

[ fexeyar=[ o uvd. forallje 2, ..r.

This contradicts weak duality. Hence (u, v) is efficient for VCP. Now
suppose (u, v, w, z, A) is not efficient for MVCD. Then there exist some
feasible (i, v, w, Z, A) for MVCD such that

J’b filt, u, 0) dt > fb fit, u, v) dt, for somei € {1, 2, ..., r}
b b
[ s ana=[ feuvd, forajeil2 ...

This contradicts weak duality. Hence (i, v, w, z, \) is efficient for MVCD.,

THEOREM 5 (Strong Duality). Let (4°, v°) be efficient for VCP and
assume that (u°, v°) satisfy the constraint qualification of Theorem 1 for at
least one k €{1, 2, ..., r}. Then there exists \° € R" and piecewise smooth
wl [ — RP and 2% I — R" such that (u°, V°, wP, z° A9 is feasible for
MVCD. If also weak duality holds between VCP and MVCD then (1°, 1°,
w9, 20, A% is efficient for MVCD.

Proof. Proceeding on the same lines as in Theorem 3, it follows that
there exist piecewise smooth w% I — RP, % I — R", and \° € R’,
satisfying for all t+ € I the following relations:
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>Nty 10, 00 + W) g, (2, 1, V) + OT A, 10, 00 + 2() = 0
i1

>N, 10, 00) + W) T g, (2, 1O, U0) + 22T hy(t, 10, %) = 0
i

wi()Tg(zr, 1% v°) =0

wi(t) = 0

Al =1
i=1

M=o

The relations [5 wo(1)Tg(r, «°, v°) dt = 0 and [2 290)Th(r, u®, v°) — £°]
dt = 0 are obvious.

The above relations imply that (1, v°, w?, 2%, A% is feasible for MVCD.
The result now follows from Corollary 2.
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