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A characterization of collectively compact sets of linear operators on the Banach 
algebra of almost periodic functions is obtained by using Gelfand-Naimark theory. 
Properties of collectively compact sets are then used to prove that the Fourier coef- 
ficients of an almost periodic function are approximately the eigenvalues of 
Fredholm type integral operators. 

1. INTRODUCTION 

Collectively compact sets of linear operators in Banach spaces have been 
studied and used by Anselone [ 1 ] and others in finding approximate 
solutions of integral and operator equations. An excellent treatment of this 
development of the theory can be found in Anselone’s book [ 11. Further, 
Higgins [6] obtained characterizations of collectively compact sets of 
operators on several special spaces which frequently occur in analysis. 

In this paper we use the characterization obtained by Higgins [6] to derive 
necessary and sufficient conditions for a family of operators on a 
commutative B* algebra with unit to be collectively compact. This charac- 
terization is then applied to the Banach algebra of almost periodic functions 
to obtain approximations for Fourier coefftcients of an almost periodic 
function. 

2. COLLECTIVELY COMPACT SETS OF OPERATORS 
ON THE ALGEBRA OF ALMOST PERIODIC FUNCTIONS 

In this section we obtain the characterization of collectively compact sets 
of operators on the Banach algebra of almost periodic functions. Before we 
obtain this, it will be convenient to describe the notation which will be used 
throughout this paper. For Banach spaces X and Y, BL(X, Y) will denote the 
space of all continuous linear operators from X to Y. Unless otherwise 
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stated, the topology on BL(X, Y) will be assumed to be the uniform operator 
topology. X* will denote the topological dual of X. KL(X, Y) will be the 
space of compact linear operators from X to Y. When X = Y, we write 
&5(X, Y) = &5(X) and KL(X, Y) = KL(X). For a compact Hausdorff space 
S, C(S) will denote the Banach space of continuous complex valued 
functions on S. 

DEFINITION 1. Let X and Y be Banach spaces. Then a set 
R c BL(X, Y) is said to be collectively compact if (K(x): IIxJj < 1, K E.R } 
is relatively compact. 

THEOREM 1. Let S be a compact Hausdorfl space and X an arbitrar) 
Banach space. Let II: S + [C(S)]* be defined by z(s)(f) =f(s), fE C(S). 
For TE BL(X, C(S)) define p,: S+X* bJ1 ,uu, = T*7c. Then 
8 c BL(X, C(S)) is collectively compact if and only if (i) 
sup{ll,q(~)I/: TE .R, s E S} is finite and (ii) (,uT: TE .3 } is equicontinuous. 

The above theorem is Proposition 1.3.5 from [6]. We use this theorem to 
obtain a characterization of collectively compact sets in BL(A), where A is a 
commutative B* algebra with unit. We recall that for such an algebra. the 
maximal ideal space can be described as the carrier space @, of 
multiplicative linear functionals on A. 

PROPOSITION 1. Let A be a commutatitje B* algebra with unit and Q4 
its carrier space (or the maximal ideal space) Gth induced break star 
topology. Then f c BL(A) is collectively compact if and only if 

(a) the family of mappings pK: @,4 -+ A* defined by p,(g) = # 0 K, 
K E.3; is equicontinuous and 

(b) .R is uniformly bounded. 

Proof: It is well known that by the Gelfand-Naimark theorem, @,4 is 
compact Hausdorff and A is isometrically isomorphic to C(@,). If e denotes 
the isometric isomorphism from A onto C(@,4), then e(f) =f is defined by 
f(d) = 4(f), $ E QI(. Now it is easy to see that .iy is collectively compact if 
and only if.7= e$e-‘: C(@,4)- C(@,) is collectively compact. Let T E i 
be such that T= eKe-‘, K E.fl. Then for any q5 E Qa and f E A, we have 

lMN3) = I7-*7wl~P) = I$@> o 7x3) 
= 4d-h = &, = (4 0 K)(f) 
= IPKU>lCf)~ 

Hence we conclude that for any 4, w E aA and T = eK2 Il,u#) -,a,(~)[/ = 

IIP&) -P~(v/II~ M Oreo-r, for any fE A IIK(fIl = IIW7l = su~llNW))l: 
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4 E @,4} = sup{1 [,4@)](3)1: $ E @,4). Hence it follows that (,L+: T E F) is 
equicontinuous if and only if {pK: K E .X } is equicontinuous and 

~uP~lllur(4N: 4 E @A 7 T E .i’) is finite if and only if .Z is uniformly 
bounded. Application of Proposition 1 now proves the proposition. 

Remark 1. We note that in the above proposition, QA is weak star 
compact. Hence condition (a) can be equivalently written as pK: @,, + A*. 
K E 8, is a uniformly equicontinuous family. 

Now we state a purely topological result about an extension of an 
equicontinuous family to the closure of the domain. It is well known that a 
uniformly continuous function can be uniquely extended continuously to the 
closure of the domain 17, Theorem 26, p. 195 1. The following lemma 
constitutes a simple extension of this result to uniformly equicontinuous 
family of functions. The proof is similar and hence omitted. 

LEMMA 1. Let jr be a family of functions whose domain is subset A of a 
untform space (X, ?/) and range in a complete Hausdofl untform space 
(Y, 7’ ‘). Suppose that jT is uniformly equicontinuous on A in the sense that 

for every V in 7 ‘, there is U in f7/ such that (x, ,x2) E U, x,, x2 E A implies 
that (f(xAfC%)) E vf or all fE.7. Then .P= {fz fE.F}, where $ is a 
unique untformly continuous extension off to closure of A, is uniformly 
equicontinuous on closure of A. 

Now we come to the principal results of this section. Hereafter A will 
denote the space of almost periodic functions on R with supremum norm. 
Then A with pointwise multiplication becomes a commutative B* algebra 
with unit. For any x E R, let J?: A + C be defined by i(f) = f(x), f E A. 
Then, it is well known that Iff = (a: x E iR 1 is dense in QA, the carrier space 
of A. Therefore, applying Proposition 1 to the algebra A of almost periodic 
functions and using Lemma 1, we obtain the following characterization of 
collectively compact sets of operators on A. 

PROPOSITION 2. A set .3 c BL(A) is collectively compact if and only if 

(a) the family of mappings pK: Rf + A * is uniformly equicontinuous 
and 

(b) .Ris untformly bounded. 

For h E A and n > 1, let the operator T,,: A + A be defined by (T, g)(x) = 
(1/2n) II,, h(x - t) g(t) dt, g E A. 

PROPOSITION 3. The sequence {T,,) is collectively compact subset of 
BL(A). Zf (Tg)(x) = lim,+, (1/2n) II, h(x - t) g(t) dt, then for each g E A. 
II T,, g - WI -+ 0. 
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Proof. It is easy to see that each T, is continuous. Hence by 
Proposition 2, it is enough to show that (T,,} is uniformly bounded and the 
family P,,: rff + A * defined by p,(i) = i? o T,, is uniformly equicontinuous. 
Since for each n > 1, 11 T, 11 < 11 hll, (T,} . IS uniformly bounded. Now to prove 
the uniform equicontinuity of (p,}, let E > 0 be given. Since h is an almost 
periodic function, the set of ali translates of h is a totally bounded subset of 
A. Thus (II,: t E P) is totally bounded in A, where h,(x) = h(x + f), x E IF. 
Hence there exist t,, t, ,..., fk in IF’ such that for every t in Ip there is a ti, 
i < k, with II h, - h,J < s/3. Let 6 = e/3 and f. = /I,~, i = 1. 2 ,..., k. Then for 
x,. ,yy? E IF with j.<,(jJ) - &(fi)l < 6 for all i = 1. 2 ,..., k, we have 

IIP#,) - P”(&)lI 
=suPilTnd-~,)- ~ndx,Mgl/~ 11 

< sup{ I h(X, - t) - h(XZ - t)]: I E IF } 

< sup{ I /2,(X,) - h,(xz)l: f E F }. 

But for each t E 114, 

IW,) - Wl)l < IW,) -h&)1 + /h,i(x,) - h&,)1 
+ I hicd - W*)I 

G II h, - kll + l.~,(f;:) - -WA + II A, - hill 
< E/3 -I- E/3 f E/3 

E. 

Hence whenever Ia, -az(fi)l < 6 for all i = 1, 2,..., k, we have 

II&G, I- Pn(&)lI G E f or all n > 1. This shows that (p,: n > 1 }: n + A* is 
uniformly equicontinuous. Thus (T,} is collectively compact subset of 
BL(A). Now to show T, + T pointwise, let g E A be given. It is enough to 
show that (T,(g)} is a Cauchy sequence in A. Let E > 0 be given and 
M = 1 + 2 )I g/l. By total boundedness of (A,: x E R ), there exist x,, x2 ,..., xk 
in IF: such that for every x E Ft, there is xi with 11 h, - hxill < E/M. Now we 
know that for any almost periodic function g, lim,+,( 1/2n) jl, g(t) df exists. 
Hence ((1/2n) J”‘,g(r) dt} is a Cauchy sequence for every g E A. Thus 
applying it to finite number of functions gi, i = 1, 2,..., k, defined by g,(t) = 
h(x, - t) g(t), we get positive integers N(i), i = 1, 2,..., k, satisfying I( 1/2n) 
jI, Iz(.u, - t) g(t) dt - (1/2m) I!,,, h(xi - t) g(t) dtl < e/M for all n, RI > N(i), 
i = 1, 2,..., k. Hence if N = max(N(i): i = 1, 2 ,.... k}, for n, m > N, we have 
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I( 1/2n) 1”. h(xi - t) g(t) dr - (1/2m) j”‘, h(x, - t) g(t) dtJ < E/M for each 
i < k. Now it remains to prove that whenever n, m > N, 11 T,, g - T, gl( < E. 
Let n. m > N and x E IF. Then we have 

1 T, g(x) - T,,, g(x)1 = k.1” h(x - t) g(t) df 
-” 

h(x - t) g(f) dt - & r’” 
m 

,< +-.l’ 
,I 

(h(x - f) - h(xj - t)] g-(t) dt ( 

+ $‘I h(xi - 11 g(t) dl- kj.1 h(xi - t ) g(t) dt 
n m 

This shows that T, + T pointwise and completes the proof. 
We now give a counterexample to show that T,, does not tend to T in the 

uniform operator topology. This will mean that in deriving spectral 
properties of (T,,) we shall be using collective compactness in a crucial way. 

EXAMPLE 1. We give an example to show that { (1/2n) 1”. g(t) df) is not 
Cauchy uniformly over 11 g/l < 1. Thus it is enough to construct an E > 0 
such that for every n > 1, there exists m > n and f, in A with Ilf,ll < 1 
satisfying 

Let E = sin( 1)/4 and n > 1. Then (p/n) sin(n/p) -+ 1 as p-’ co. Hence I(p/n) 
sin(n/p) - 1 I < sin( 1)/6 for p > p,. Also (n/q) sin(q/n) + 0 as q + 00. Hence 
l(n/q) sin(q/n)l < sin( 1)/6 for q > pz. Let m = max{n, pz}. Then we have 

I(n/m) sin(m/n)l < sin( 1)/6. (1) 

For the above chosen m, we have (r/m) sin(m/r) -+ 1 as r -+ co. Hence 
I(r/m) sin(m/r) - 11 < sin( 1)/6 for r > pJ. Let k = maxi p,, pJ). Then we 
have 

and 
I(k/n) sin(n/k) - 11 < sin( 1)/6 (2) 

I(k/m) sin(m/k) - l( < sin( 1)/6. (3) 
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Now define f,(t) = (1/2)(eic’:” + eiuk}. Then ]]f,]] = 1 and f, EA. Also it is 
easy to verify that for any p > 1, (1/2p) I!,f,(t) dt = (n/2p) sin(p/n) + 
(k/2p) sin( P/k). Hence 

= (l/2) I sin( I) + (k/n) sin(n/k) - (n/m) sin(m/n) 

- (k/m) sin(m/k)] 

> (l/2) sin(l) - ](k/n) sin(n/k) - (n/m) sin(m/n) 

- (k/m) sin(m/k)] / . 

But from (l), (2) and (3), it is easy to verify that 

I(k/n) sin(n/k) - (n/m) sin(m/n) - (k/m) sin(m/k)] < sin( 1)/2. 

Hence 

$1: f,(t) dt - & fm f,,(t) dt / > (l/2) Ml l/2 
n m 

This proves the required result. 
= sin( 1)/4. 

For the rest of the section, T,, fE A, will denote the operator from A into 
A defined by (T,g)(x) = lim,,,(l/T) j,‘f(x - t) g(t) dt = lim,,(l/2n) 
J?,j(x - t) g(t)dt. For fE A and E > 0, {s E R: ]]f, -f]] < E} will be 
denoted by E(e.f). For the definitions of relatively dense sets and other 
ideas related to almost periodic functions, we refer to [2]. In the next 
proposition, we prove sufficient conditions on .i7 c A to ensure that 
{T,: fE F) is collectively compact subset of BL(A). 

PROPOSITION 4. If .7 c A satisfies the following conditions, then 
(T,: f E .X) is collectively compact. 

(a) For each E > 0, there exists a 6 > 0 and finite number offunctions 
1;:, i = 1, 2 ,..., n in A such that Ifi - fi(xz)l < 6 for all i < n implies that 
XI - x2 E f-l,,, E(E,f )* 

(b) (T/: f E .6) is uniformly bounded. 

ProoJ: In the light of Proposition 2, it is enough to show that the 
condition (a) implies that the family p/: Iff -+ A* defined by p/(a) = 2 0 T,, 
f E.F, is uniformly equicontinuous. Let E > 0 be given. Then by (a), there 
exist 6 > 0 and f,, fi ,,.., f, in A such that whenever I&(x,) - fi(x2)l < 6 for 
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all i = 1, 2,..., m, x, -x2 E n,, r E(&,f). Thus whenever Ifi -J;(-uz)l < 6 
for all i < m, we have 

= sup 
II 

li~ij~ [/(x,-t~-f~x~--l~l~~~~~~~:/l~ll~~~ 
n 

G Ilfq -Lll 
= Ilf~,~,, -fll < E for all fE ..it. 

This proves the proposition. 

Remark 2. It is easy to see that II rfll < Ilfl/, fE A. Hence if .i7 is 
bounded and satisfies condition (a) of the previous proposition, ( r,.: f E F} 
is collectively compact. But we will prove something more in this situation. 
For that, we mention one result from [4]. 

DEFINITION 2. A family .i7 of almost periodic functions is a uniformly 
almost periodic family if it is uniformly bounded, and for every E > 0, 
nla, E(s,f) is relatively dense and includes an interval about 0. 

The above definition is taken from [4, p. 171. The following theorem is 
Theorem 2.5 from 141. 

THEOREM 2. If. i” is a untformly almost periodic family, then from exert 
sequence in. F, one can extract a subsequence which conoerges untformly on 
FJ. 

PROPOSITION 5. Let F c A satisfy1 the following conditions: 

(a) F is uniformly bounded and 
(b) for every E > 0, there exist 6 > 0 andfinite number offunctions 1;:. 

i = 1, 2,..., m in A such that whenever I&(x,) -fi(x& < 6 for all 
i = 1, 2,..., m, we have x, - x2 E n,6F E(E, f ). Then. iT is totally bounded. 

Proof. In light of the previous theorem, it is enough to show that jr is a 
uniformly almost periodic family. Since by assumption 3 is uniformly 
bounded, it remains to verify that n,,, E(e, f) is relatively dense and 
contains a neighbourhood around 0 for every E > 0. Let E > 0 be given. By 
(b), there exist 6 > 0 and f,, f2 ,..., f, in A such that whenever IA - 
fj(xz)l < 6 for all i < m, we have x, -x2 E nrcY E(&, f ). Since any finite set 
of almost periodic functions forms a uniformly almost periodic family, we 
have that (L: i < m) is a uniformly almost periodic family. Hence 
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n,,,,, E(6,f;:) is relatively dense and contains a neighbourhood, say, (-8, S’) 
around 0. Thus there exists T > 0 such that for every II E R, there is 
s E [a, Q + TI n Ini,, E(6,-()] and (-8’. 8’) c nig,,, E(6, f;.). With the 
same T, a and s. we have Ifi(s + t) -A(t)1 < 6 for all i < m. Hence (s + t) - 
u)=sm,,, E(e,J) by assumption. Also whenever 1x1 < 8, I& + t) - 
A.(t)1 < 6 for all t E IF: and i ,< m. This again implies that (X + t) - (t) =x E 
n,, z- E(e,f). This shows that rife F E(e,f) is relatively dense and contains 
a neighbourhood around 0. This proves the result. 

The converse of the above proposition also holds. 

PROPOSITION 6. Let. iT c A be totally bounded. Then. F is bounded and 
for euery E > 0, there exist 6 > 0 and f, , f?,..., f,, in A such that wheneoer 
I.&,) -fi(x2)l < 6 for all i < n, x, - x2 E n,, rE(c. f ). 

Proof. Let .F be totally bounded. Then obviously .F is bounded. Hence 
it remains to prove that for every E > 0, there exists 6 > 0 and f,, fi . . . . . f, in 
A such that whenever ifi -f.(x*)l < 6 for all i < n, we have 
IILY, -J;J < E for all f E. F. Let e > 0 be given and ( gi: i= 1.2...., m) be a 
fnnte c/S-net for .F. Thus for every f E .X, there exists gj such that 
I/f -gill ( c/5. Consider the set (( gi),: t E IF, i< m) of translates of 
( gi: i < ml. Since it is a finite union of totally bounded sets, there exist 

f, , fi ,..., f,, in A such that for every i < m and t E R, there is an fk satisfying 
II( - fkll ( s/5. Now let ifi -fi(xz)i < s/.5 for all i = 1,2,.... n, and 
t E R. Then we have for f E. F 

If (s, + t) -f (.q + t)l 

G Iftxt + [) - giCxl + f)l + I gitxl + f, -fk(-",)l 
+ IfkCxI) -fktx?)I + Ifk(x*)P giCxZ + f)l 

+ I gi(“2 + f, -f Cx? + r)l 

G Ilf -gill + II( -fkll + E/5 
+ II( -fkll + Ilf-gill 

< E/5 f E/5 + E/5 i- E/5 f E/5 

E. 

Hence 

IIL, -L,ll = SUPilfk, + t) -f(x* + 4: t E R t 
< E. 

This proves the result. 
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Now we construct an example of a family .ir of almost periodic functions 
which is unbounded but ( Tf:fE.r) is totally bounded in KL(A). For this. 
we require the following lemma. 

LEMMA 2. Let (ak } be any sequence of positive reals. Then for each 
n > 1, max(C; aiai: ai > O} under the constraint C; af = 1, is equal to 
(x7 a,)“*. 

ProoJ: Let n > 1 be fixed and F(a,, a,,..., a,) = x:‘I aiai + A(xy at - 1). 
Using Lagrange’s method of undetermined multipliers for finding extremal 
values of the function xy aiai of n variables a,, az,..., a,,, we equate 6F/6ai 
to zero. Hence we get a, + 2Aa, = 0, i = 1, 2,..., n. Using the constraint 
c;af= 1, we get C:af=U*. Then the extremal value of C: aiai = 
-(.C; a;)/21 = -2A. Solving C; a’ = 4A2, two values of 1 determine 
maximum and minimum values of 1: aiai, namely, *(x7 a:)“‘. This shows 
that max Cy=, aiai = (x7 at)“‘. 

Remark 3. The maximum value of I;=, aiai under the constraint 
s; ai < 1 is also equal to (C: a:)“‘. 

EXAMPLE 2. Let f,,(t) = x: (l/k) eikt, n 2 1. Then Ilf,ll = C; (l/k). 
Hence (f,} is unbounded. We now prove that ( Tf,: n > 1) is a Cauchy 
sequence in KL(A). Let E > 0 be given. Choose a positive integer N such that 
for n > m > N, Cz+, (l/k*) < E*. Then for n > m > N, we have 

II TI. - T,,ll = SUPW”~ - T’,)gll: II cdl G 1 I 
n 

= sup 
Ill 

KY i a(k, g) eik’ 
-k m+l II 

:IlgllG 11 

< sup 
Ill 

* 1 
m;, 7 4k g) erkr 

II 
:xla(k,g)J*< ll 

\ 

<sup $ ~la(k,g)l:~la(k,g)l’( 11 
! PPlfl 

< sup 1 f kla(k, g)l: i la(k, g)l* < 11. 
m+1 ??I+1 

Now applying Lemma 2, we get 

<E for n > m > N. 
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This shows that ( Tr,: n > 1) is a Cauchy sequence in KL(A) and hence is 
totally bounded. 

In the next proposition. we will see that for an almost periodic function f; 
even if the partial sums f,, of the Fourier series off do not converge to L the 
operators T/, do converge to T, in uniform operator topology. 

PROPOSITION 7. For any f E A with Fourier series r B,e’.‘@. let 
f,(x) = x,; B,e’@‘. Then 11 T,, - r,ll + 0. 

ProoJ By using arguments similar to those in the previous example, it 
can be proved that {T,,: n > I } is a Cauchy sequence in KL(A). Hence it is 
enough to show that for every trigonometric polynomial P. Tf,JP) --t TAP). 
Equivalently, we show that T,fl(ei-“) + Tj(ei.‘*) for every A E IF?. But it follows 
easily from the observation that for each 1 E IF’ - (Ak}, 7”“(ei.“) = 0 = Tf(ei.“) 
and TJn(ei-‘A’) = B, &.I”’ = T&e’-“‘) for each n > k, k = 1. 2 ,.... This then 
proves that ]( Tf, - T,.ll -+ 0. 

3. APPROXIMATIONS OF FOURIER COEFFICIENTS 

In this section, we investigate the relation between the spectrum of the 
operator T/ with the Fourier coefficients of an almost periodic function J: 
This will then be effective!y used to find the approximations for the Fourier 
coefficients off: For this, we define a convolution type product on the space 
A of almost periodic functions. For f, g E A, define f * g by df* g)(x) = 
lim,+,( 1/2n) il,f(x - t) g(t) dt. Then it is known that with this product, A 
becomes a commutative Banach algebra without unit [5, 6.21. In the rest of 
the section, we will consider A as the Banach algebra with the above-defined 
product and with the supremum norm. For definitions of completely 
continuous Banach algebras, minimal idempotents, minimal ideals, etc., we 
refer to [ 3 1. 

PROPOSITION 8. Let A be the Banach algebra of almost periodic 
functions as defined above. Then the following holds. 

(i) A is completely continuous. 

(ii) A is semi-simple. 

(iii) A contains minimal idempotents and e E A is a minimal idem- 
potent if and only if e is of the form eilt for some 1 E R. 

ProoJ (i) We have already shown that the operator T,: A + A, defined 
by (Tfg)(x) = lim,+, (1/2n) j?,f(x - t) g(t) dt = (f* g)(x), is a compact 
operator on A. Hence for each f E A, g + f * g is a compact operator on A. 
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Now commutativity of the product shows that A is a completely continuous 
algebra. 

(ii) For h E A, let r(h) denote the spectral radius of h and rad(A) the 
radical of A. Then we know that rad(A) = (g EA: r(f* g) = 0 for all 
fE A}. Now to show that A is semi-simple, it is enough to prove that for 
every nonzero g in A, there exists fE A such that r(f* g) # 0. Let g be any 
nonzero member of A. Then by uniqueness of the Fourier series of an almost 
periodic function, it follows that there exists A E E such that a(A, g) # 0. Let 
f(t) = e’.“. Then f * g = a@, gy’ and hence r(f* g) = la(A, g)l r(f) = 
la@, g)( # 0. This proves (ii). 

(iii) Since A is a semi-simple completely continuous Banach algebra, 
A contains minimal idempotents [3, Section 33, Theorem 151. Let e(t) = e’.” 
for some A&IF?. Then (e * e)(x) = lim,+,( 1/2n) j1. e’-““-“e’.” dr = e”” = e(x). 
eAe = Ae’ = Ae and for any fE A, f * e = a(A,f)e. This shows that e is a 
minimal idempotent. Now to prove that these are the only minimal idem- 
potents in A, let e be any nonzero minimal idempotent in A. Then there 
exists 1 E R such that ~(1, e) # 0. Let f(t) = ei.4’. Then we show that f = e. 
By definition of minimal idempotent e’ = e and eAe = Ae’ = Ae = #I e. Hence 
e *f = ue for some a E 15. But e *f = a(& ey# 0. Therefore, f =/?e for 
p = a/a(A, e) # 0. Since f’ =A we)’ = p*e’ = @e = pe and p = 0 or 1. But /I 
is nonzero. Thus (iii) is proved. 

Let the spectrum of an operator K on A be denoted by o(K) and the 
spectrum of an f in the algebra A with the convolution type product be 
denoted by a(f ). 

PROPOSITION 9. For any f E A, a( T,) = o(f ). 

Proof: First we observe that 0 is in u(r,) as well as in u(f). Hence it is 
enough to show that the two sets coincide for nonzero points. Let 0 #,u be in 
~(7”). Then p is an eigenvalue of T, and hence there exists g E A such that 
Tfg = f * g =,ug. Then it is easy to show that ,U E u(f ). Conversely let 
0 #p E u(f ). Then the map g --) f * g being a compact operator on A. there 
exists a minimal idempotent e of A with f * e =,~e [3. Section 33. 
Proposition 71. Hence p is the eigenvalue of T, and e is the corresponding 
eigenvector. This proves the proposition. 

PROPOSITION 10. Let x Bkei”‘k’ be the Fourier series of f E A. Then 
u(f) = (O} U (Bk}. Moreover, for each k > 1 df* e”“‘)(x) = B,ei-lk’. 

Proof: By Proposition 9, it is enough to show that u(T,) = {O} U (Bk}. 
Since 0 E u(T,) and for every k > 1, (T,e’““)(x) = a(&, f) eiAkx = Bkei-lkx, 
{O 1 U (Bk} c u(T,). To prove the equality of these sets, let us assume on the 
contrary that there exists a nonzero ,u in u(T,) such that ,D # B, for any 
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k > 1. Then there exists a nonzero g E A such that T,g = f * g =pg. Let (aj} 
be the sequence of Fourier exponents of g. Then for any j > 1, (f* g) * 
ein+ =pg * @iv = pa(aj, g) einjx. Also (f* g) * eiajx = a(aj.f) a(aj. g) eiap. 
Hence a(aj, g)[a(aj,f) -y] = 0 for each j > 1. Since a(aj, g) # 0 for each 
j > 1. we get that a(aj,f) = p for each j 2 1. Since ,u is nonzero, this means 
that (aj} c {,I,}, the exponents of J This contradicts the assumption that 
,D # Bj = a(dj,f) for any j > 1. This proves that a(Tf) = a(f) = (O} U (B,,). 

THEOREM 3. Let f E A with Fourier series x B,ei.‘h’. Then each B, can 
be approximated by the eigenvalues of Fredholm operators S,: C[O. n] + 
C[O, n ] defined by (S, g)(x) = (l/n) j,” f(?c - t) g(t) dt, 0 < x < n. 

Before going to the proof of this theorem. we prove the following lemma. 

LEMMA 3. Let fEA and n> 1. DeJine K:C[O,n]+C[O,n] by the 
equation (Kg)(x) = (l/n) J’tf f(x - t) g(t) dt, 0 < x < n. Let ,u be an eigen- 
value of K with g as corresponding.eigenvector. Then p is also the eigenvalue 
of the operator K’: A -+ A defined by (K’h)(x) = (l/n) ]lf f(x - t) h(t) dt. 
Moreover, the function g’ defined by g’(x) = l/n j: f(x - t) g(t) dt, x E iFr‘. 
belongs to A and is the eigenvector corresponding to the eigenvalue of K’. 
Conversely each eigenvalue of K’ is also an eigenvalue of K. 

ProoJ For each s, u E Ii. we have 1 g’(s + u) - g’(u)1 = I( l/n) 
1; f (s + u - t) g(t) dt - (l/n) .I‘: f(u - t) g(t) dtl < M 11 f, -f 11. where M = 
sup { 1 g(t)J: 0 < t < n }. Therefore. the almost periodicity of f implies the 
almost periodicity of g’. We also have (l/n) !‘I( f(x - t) g(t) dt =,ug(x). 
0 < .Y < II. Hence g’(x) = pug(x). 0 < .K < n. Then 

(K/g’)(x) = il.” f(x -t) g’(t) dt 
0 

= +J.” f(x - t)pg(t) dt 
0 

= ,u + _!)I f (x - t) g(t) dt 
0 

= iug’ (-xl, x E lb. 

This shows that p is the eigenvalue of K’ with corresponding eigenvector g’. 
The converse is obvious. 

Proof of Theorem 3. We know by Proposition 3 that the operators 
T,, : A + A defined by (T,,h)(x) = (l/n) 1: f (x - t) h(t) dt converge to Tr 
pointwise and {T,} is collectively compact. Hence we apply Theorem 4.8 [ 11 
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to conclude that for every open set R 2 a(T,), there exists N such that 
Q 1 a( r,) for n > N. Now by Lemma 3, we see that R 3 a(S,) for n > N. 

Remark 4. It may be observed that the last theorem gives information 
about the Fourier coefficients B, without the knowledge of the corresponding 
Fourier exponents Ak. 

Remark 5. In Proposition 3, we have seen that T,, + T, pointwise and 
(T,,} is collectively compact. Under such assumptions, Osborn 18. 
Theorem 2 ] obtained the estimates for the approximations of the eigenvalues 
of Tf in terms of the averages of the eigenvalues of T,l. Hence by using these 
results, we can obtain estimates for approximations of Fourier coefficients of 
f in terms of the averages of the eigenvalues of Fredholm type operators S,, 
defined in Theorem 3. 
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