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Abstract

An extension of the generalized inverse Gaussian density function is proposed.
Analogous to a recent useful generalization of the incomplete gamma functions, extensions
of the generalized incomplete gamma functions are presented for which the usual
properties and representations are naturally and simply extended. Several classical
functions including, Abramowitz’s functions, Dowson’s integral function, Goodwin and
Stalon’s function, and astrophysical thermonuclear functions are proved to be special cases
of these extensions. In addition, extended MeijerG-functions and Fox’sH -functions are
defined.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Good [44,53] proposed the generalized inverse Gaussian distribution

g(t) : = 1

I (α;a, b) t
α−1e−at−bt−1

(t > 0, a > 0, b > 0,−∞< α <∞),

(1.1)
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that was used by Sichel [68,69] to construct a mixture of Poisson distributions,
I (α;a, b) being the normalizing constant. Wise [76] used the model (1.1) in
biomedicine, and Marcus [53] used it as a unified stochastic model for the power
laws in compartment analysis. Barndorff-Nielson and Halgreen [12] showed that
the density (1.1) is infinitely divisible and Halgreen [53] showed that (1.1) is
self-decomposable (also [49,50]). Chhikara and Folks [32,33] used (1.1) as a
lifetime model and discussed its statistical applications. Jorgensen [53] studied
the density (1.1) systematically and discussed its applications in different fields
like fractures of air-conditioning equipment, traffic data, fracture toughness of
MIG welds, and repair time data. For further applications and properties [5–11,
13,17,20,22,26,28–30,35,39,40,44,47,49,50,52,54,55,57,58,66,67,69,70,73–76].

The density (1.1) can further be generalized in infinitely many ways. However,
a generalization of (1.1) will be useful if the corresponding cumulative density
function and the reliability functions are found to be useful and less cumbersome.
A natural extension of (1.1) is the density

f (t) :=


C(α,a,β, b)tα−1e−at−bt−β

(t > 0, a > 0, b > 0, β > 0,−∞< α <∞),

0 elsewhere,

(1.2)

where

C :=C(α,a,β, b)=
( ∞∫

0

tα−1e−at−bt−β
)−1

, (1.3)

is the normalizing constant.
A number of distributions such as inverse Gaussian distribution, generalized

inverse Gaussian distribution, generalized gamma distribution, Weibull, Raleigh,
folded-normal, and negative exponential are either special cases of (1.2) or can
be obtained by a simple transformation of the variablet . These distributions
are applicable in many problems arising in engineering, physical, social and
biological sciences. The cumulative density function of the density (1.2) is

F(x)= C

x∫
0

tα−1e−at−bt−β dt (x > 0), (1.4)

and its reliability function is given by

R(x)= 1− F(x). (1.5)

It is to be noted that while the study of the functionsF(x) andR(x) is important in
statistics and reliability theory, the functions (1.4) and (1.5) cannot be simplified
in terms of afinite combinationof tabulated special functions. The most general
class of special functions like Fox’sH -functions fail to accommodate the useful
functions (1.4) and (1.5).
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Chaudhry and Zubair [23] introduced the generalized incomplete gamma
functions

γ (α, x;b)=
x∫

0

tα−1e−t−bt−1
dt (1.6)

and

Γ (α,x;b)=
∞∫
x

tα−1e−t−bt−1
dt, (1.7)

found useful in a variety of heat conduction problems [24,78–81]. The decom-
position and extension of these functions were also found to be useful [18,19,27,
80].

Miller and Moskowitz [64] found a representation of the generalized incom-
plete function (1.7) in terms of the Kampé de Fériet (KdF) functions and discussed
its closed form representations. Miller [65] found several reduction formulae of
the KdF functions in terms of the function (1.7) and discussed its relations with
incomplete Weber integrals.

In this paper we introduce a pair of functions

γ (α, x;b,β)=
x∫

0

tα−1e−t−bt−β dt (x � 0, b > 0;b= 0,Re(α) > 0)

(1.8)

and

Γ (α,x;b,β)=
∞∫
x

tα−1e−t−bt−β dt (x � 0, b� 0), (1.9)

and call them extended incomplete gamma functions. We note that the generalized
incomplete gamma functions (1.6)–(1.7) are special cases of (1.8)–(1.9) when
β = 1,

γ (α, x;b;1)= γ (α, x;b), (1.10)

Γ (α,x;b;1)= Γ (α,x;b). (1.11)

The cumulative density function (1.4) and the reliability function (1.5) can be
simplified in terms of the extended incomplete gamma functions to give

F(x)= Ca−αγ (α, ax;baβ;β), (1.12)

R(x)= Ca−αΓ (α, ax;baβ;β). (1.13)

Anderson et al. [31] have called the following integral functions
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I1(z, ν) :=
∞∫

0

yν exp(−y − zy−1/2) dy, (1.14)

I2(z, d, ν) :=
d∫

0

yν exp(−y − zy−1/2) dy, (1.15)

I3(z, t, ν) :=
∞∫

0

yν exp
(−y − (y + t)−1/2)dy, (1.16)

and

I4(z, δta, b; ν) :=
∞∫

0

yν exp(−y − byδ − zy−1/2) dy, (1.17)

as the astrophysical thermonuclear functions.
These integral functions arise in the study of the thermonuclear reaction rates

[31,61,63] of the stars. The astrophysical thermonuclear functions can be simpli-
fied in terms of the extended incomplete gamma functions to give [16,21]

I1(z, ν)= Γ

(
ν + 1,0; z; 1

2

)
, (1.18)

I2(z, d, ν)= γ

(
ν + 1, d; z; 1

2

)
, (1.19)

I3(z, t, ν)= et
ν∑

r=0

(
ν

r

)
(−t)ν−rΓ

(
r + 1, t; z, 1

2

)
, (1.20)

I4(z, δ, b; ν)=
∞∑
r=0

(−b)r
r! Γ

(
ν + rδ+ 1,0; z; 1

2

)
. (1.21)

Moreover, in view of (1.18)–(1.21), it is evident that the extended gamma func-
tions will provide a solid foundation for the analytic study of the thermonuclear
reaction rates of the stars that are significantly important in astrophysics and space
sciences.

The Abramowitz’s function [2, p. 1003]

fm(z) :=
∞∫

0

tme−t2−zt−1
dt, (1.22)
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has been used in many fields of physics [59,60]. It has several applications in the
field of particle and radiation transform. The function (1.22) can be expressed as
a special case of the extended incomplete gamma function to give

fm(z)= 1

2
Γ

(
m+ 1

2
,0; z; 1

2

)
. (1.23)

Thus the usefulness of the extended incomplete gamma functions in physics,
particle and radiation transform is evident in view of the relation (1.23).

Another integral function considered by Goodwin and Stalon [2,46] is given
by

f (x) :=
∞∫

0

e−t2

t + x
dt. (1.24)

The function in (1.24) is related to the exponential integral function via [2,
p. 1003, (27.6.3)]

f (x)= 1

2
e−x2

Ei(x2)+ √
πe−x2

x∫
0

et
2
dt, (1.25)

where

F(x) := e−x2

x∫
0

et
2
dt (1.26)

is the Dowson integral function. The function (1.24) can be simplified in terms of
the extended incomplete gamma function to give

f (x)= 1

2
e−x2

Γ

(
0, x2;2x;−1

2

)
. (1.27)

For further study of the relatedq-extension of the gamma family, the incomplete
cylindrical functions, their properties and applications, we refer to [1,3,4,14,15,
25,34,36,38,41–43,51,56,71,77].

In this paper we have studied some properties of the extended incomplete
gamma functions. It is anticipated that the present analysis will stimulate
mathematicians and scientists to explore wide applications of these functions.
Lastly we have introduced decomposition of Fox’sH -functions that has unified
all the previous extensions of the incomplete gamma functions.

2. Recurrence formula

The recurrence formula for the extended incomplete gamma function (1.9)
naturally and simply extends the recurrence relation of the classical and gener-
alized incomplete gamma functions.
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Theorem 2.1.

Γ (α + 1, x;b;β)= αΓ (α,x;b;β)+ bβΓ (α − β,x;b;β)
+ xαe−x−bx−β

. (2.1)

Proof. Let us define

f (t) := e−t−bt−βH(t − x), (2.2)

where

H(t − x) :=
{

1 if t > x,
0 if t < x,

is the Heaviside unit step function. The extended gamma function (1.9) is simply
the Mellin transform of the functionf (t) in α [37, p. 307]

Γ (α,x;b;β)=M
{
f (t); t → α

}
. (2.3)

The differentiation of (2.2) in the sense of distribution yields

d

dt

{
f (t)

}= (−1+ bβt−β−1)f (t)+ e−t−bt−β δ(t − x), (2.4)

where

δ(t − x) := d

dt

(
H(t − x)

)
(2.5)

is the Dirac delta function.
The Mellin transform of a function and its derivative are related via [37, p. 307]

−(α − 1)M
{
f (t); t → α − 1

}=M

{
d

dt

(
f (t)

); t → α

}
. (2.6)

From (2.5) and (2.6) we get

−(α − 1)Γ (α − 1, x;b;β)= −Γ (α,x;b;β)+ bβΓ (α − β − 1;x;b;β)
+ xα−1e−x−bx−β

(2.7)

which simplifies to give

Γ (α,x;b;β)= (α − 1)Γ (α − 1, x;b;β)
+ bβΓ (α− β − 1, x;b;β)+ xα−1e−x−bx−β

. (2.8)

Replacingα by α + 1 in (2.8) yields (2.1). ✷
Corollary [23, (15)].

Γ (α + 1, x;b)= αΓ (α,x;b)+ bΓ (α − 1, x;b)+ xαe−x−bx−1
. (2.9)
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Proof. This follows from (2.1) when we takeβ = 1. ✷
It is to be noted that the substitutionb = 0 in (2.9) yields the recurrence relation

Γ (α + 1, x)= αΓ (α,x)+ xαe−x, (2.10)

for the classical incomplete gamma function [45, p. 951, (8.356)(2)].

3. Decomposition formula

The decomposition formula

γ (α, x)+Γ (α,x)= Γ (α), (3.1)

for the classical incomplete gamma functions was proved to be a special case of
the decomposition formula [23, (12)]

γ (α, x;b)+ Γ (α,x;b)= 2bα/2Kα

(
2
√
b
)
, (3.2)

for the generalized incomplete gamma functions. One could expect to have a
similar formula for the extended incomplete gamma functions. Firstly, we prove
the relation betweenΓ (α,0;b;β) and Fox’sH -functions [61,62].

Theorem 3.1.

Γ (α,0;b;β)=H
2,0
0,2

(
b

∣∣∣∣ − −
(0,1), (α,β)

)
. (3.3)

Proof. Puttingx = 0 in (1.9) we get the complete integral

Γ (α,0;b;β)=
∞∫

0

tα−1e−t−bt−β dt. (3.4)

Multiplying (3.4) bybs−1 and integrating afterward with respect tob from b = 0
to b = ∞, we get

∞∫
0

Γ (α,0;b;β)bs−1db=
∞∫

0

tα−1e−t
( ∞∫

0

bs−1e−bt−β
)
dt. (3.5)

However, the integral
∫∞

0 bs−1e−bt−β db in (3.5) can be simplified in terms of the
gamma function to give [45, p. 942, (8.312)(2)]

∞∫
0

bs−1e−bt−β db = tβsΓ (s) (Re(s) > 0). (3.6)

From (3.5) and (3.6) we get



732 M.A. Chaudhry, S.M. Zubair / J. Math. Anal. Appl. 274 (2002) 725–745

∞∫
0

Γ (α,0;b;β)bs−1db= Γ (s)

∞∫
0

tα+βs−1e−t dt

= Γ (s)Γ (α + βs) (Re(α + βs) > 0). (3.7)

Taking the inverse Mellin transform of both sides in (3.7) we get [37,61]

Γ (α,0;b;β)= (2πi)−1

C+i∞∫
C−i∞

Γ (s)Γ (α+ βs)b−s ds. (3.8)

However, the integral representation (3.8) is the special case of Fox’sH -function
[62]

H
2,0
0,2

(
b

∣∣∣∣ − −
(0,1), (α,β)

)
= (2πi)−1

C+i∞∫
C−i∞

Γ (s)Γ (α + βs)b−s ds

(0< c < 1). (3.9)

From (3.8) and (3.9) we get the proof of (3.3).✷
Corollary.

γ (α, x;b;β)+ Γ (α,x;b;β)=H
2,0
0,2

(
b

∣∣∣∣ − −
(0,1), (α,β)

)
. (3.10)

Proof. This follows from (3.3) and from the fact that

γ (α, x;b;β)+ Γ (α,x;b;β)= Γ (α,0;b;β). ✷ (3.11)

Corollary [23, p. 101, (12)].

Γ (α,x;b)+ γ (α, x;b)= 2bα/2Kα

(
2
√
b
)
. (3.12)

Proof. The proof of this decomposition formula for the generalized incomplete
gamma function follows from (3.10) when we takeβ = 1 and use the relation [62,
p. 145, (A6)]

H
2,0
0,2

(
b

∣∣∣∣ − −
(0,1), (α,1)

)
=G

2,0
0,2

(
b

∣∣∣∣− −
0, α

)
= 2bα/2Kα

(
2
√
b
)
. (3.13)

It is to be noted that lettingb → 0+ in (3.12) and using

Γ (α)= lim
b→0

2bα/2Kα

(
2
√
b
)
, (3.14)

we get the decomposition formula

Γ (α,x)+ γ (α, x)= Γ (α) (3.15)

for the classical incomplete gamma functions.✷
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Theorem 3.2.

Γ

(
α,0;b; 1

n

)
=H

2,0
0,2

[
b

∣∣∣∣ −, −
(0,1), (α,n)

]

= (2π)(1−n)/2√nG
n+1,0
0,n+1

[(
b

n

)n ∣∣∣∣−, −, . . . , −
0, 1

n
, 2
n
, . . . , n−1

n
, α

]
. (3.16)

Proof. Substitutingβ = 1/n in (3.3) and using the transformation relation [62,
p. 142, (3.11.6)], [63, p. 4, (1.2.3)] we arrive at

Γ

(
α,0;b; 1

n

)
= nH

2,0
0,2

[
bn
∣∣∣∣ −, −
(α,1), (0, n)

]

= n
1

2πi

C+i∞∫
C−i∞

Γ (α + s)Γ (ns)b−ns ds. (3.17)

However, the use of the multiplication formula [45, p. 946, (8.335)]

Γ (mz)= (2π)(1−m)/2mmz−1/2
m−1∏
k=0

Γ

(
z+ k

m

)
(3.18)

for the gamma function yields

Γ

(
α,0;b; 1

n

)
= (2π)(1−n)/2√n

1

2πi

×
C+i∞∫

C−i∞
Γ (α + s)

n−1∏
k=0

Γ

(
s + k

n

)
(b/n)−ns ds, (3.19)

which is exactly (3.16). ✷
Corollary.

Γ

(
α,0;b; 1

2

)
= π−1/2G

3,0
0,3

[
b2

4

∣∣∣0, 1
2 ,α

]
. (3.20)

Proof. This is a special cases of (3.16) when we taken= 2. ✷
Remark. The closed form representation (3.20) is important in view of the
relation (1.18) that yields to the representation [16]

I1(z, ν)= Γ

(
ν + 1,0; z; 1

2

)
= π−1/2G

3,0
0,3

[
z2

4

∣∣∣0, 1
2 ,1+ν

]
. (3.21)

In view of (3.3) and the decomposition formula (3.10) it seems natural to regard

Γ (α,0;b;β)=H
2,0
0,2

(
b

∣∣∣∣ ,

(0,1), (α,β)

)
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to be the extended gamma function of the variableb and the parametersα andβ .
We denote this function byΓb(α;β). The functionΓb(α;β) has representation, in
terms of theH -functions, similar to that of the generalized Bessel functionsJ

µ
ν (z)

and the generalized Mittag Leffler functionEα,β(z) and thus merits independent
investigation.

4. Special cases

The relationship between the extended incomplete gamma functions and some
of the known functions including generalized incomplete gamma functions,
astrophysical thermonuclear functions, exponential integral function, Dowson’s
integral function, Abramowitz’s function and Goodwin and Stalon’s function are
exhibited in Section 1. We state some additional special cases that follow from
the results due to Buschman [62, p. 12].

Theorem 4.1.

Γ (α,0;b;−1)= Γ (α)(1 + b)−α (Re(1+ b) > 0), (4.1)

Γ

(
α,0;b;−1

2

)
= 21−αΓ (2α)exp

(
b2

8

)
D−2α

(
b√
2

)
, (4.2)

Γ (α,0;b;−2)= Γ (α)(2b)−α/2 exp

(
− 1

αb

)
D−α

(
1√
2b

)
, (4.3)

whereD−α are the parabolic cylindrical functions[62, p. 139].

Theorem 4.2 (Series representation).

Γ (α,x;b;β)=
∞∑
n=0

Γ (α − nβ,x)
(−b)n
n! (x > 0). (4.4)

Proof. Replacinge−bt−β in (1.9) by its series representation yields the series

Γ (α,x;b;β)=
∞∑
n=0

(−b)n
n!

∞∫
x

tα−nβ−1e−t dt, (4.5)

which is exactly (4.4). ✷
Remark. It seems interesting to explore a uniform asymptotic expansion of the
extended incomplete gamma function (1.9). Forx = 0, the function coincides
with the FoxH -function. Thus forx = 0, the known results for the asymptotic
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expansion of the Fox’sH -functions could be utilized. In fact we have (see [62,
pp. 9–10] and [75, pp. 147–148])

Γ (α,0;b;β)∼



Γ (α)+ 1

β
Γ
(− α

β

)
bα/β + o(b)

(for smallb, α 
= 0),

− 1
β

lnb (for smallb, α = 0),

(4.6)

and

Γ (α,0;b;β)∼ 1

β

(
2πβ

1+ β

)1/2

β(2α+β)/2(1+β)b(2α−1)/2(β+1)

× exp
[−(1+ β)β/(1+β)b1/(1+β)] (for largeb). (4.7)

5. Laplace transform representations

The utility of a function is increased when it provides a closed form represen-
tation of the Laplace transform of a class of functions. This fact is demonstrated
in the following theorem.

Theorem 5.1. LetL be the Laplace transform operator. Then

Γ (νβ,x−β;b;β)= 1

β
L

{
t−ν−1 exp

(
− 1

t1/β

)
H(x − t); t → b

}
(b > 0, β > 0). (5.1)

Proof. According to the definition (1.9)

Γ (νβ,x−β;b;β)=
∞∫

x−β

tνβ−1 exp(−t − bt−β) dt. (5.2)

The substitutions

t = τ
− 1

β , dt = − 1

β
τ

− 1
β
−1
dτ (5.3)

in (5.2) lead to

Γ (νβ,x−β;b;β)= 1

β

x∫
0

τ−ν−1 exp

(
− 1

τ1/β
− bτ

)
dτ (5.4)

which is exactly (5.1). ✷
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Corollary.

Γ (νβ,0;b;β)= 1

β
L

{
t−ν−1 exp

(
− 1

t1/β

)
; t → b

}
. (5.5)

Proof. Lettingx → ∞ in (5.1) and usingH(∞ − t)≡ 1, we reach (5.5). ✷
Corollary [37, p. 146, (29)].

Γ (ν,0;b;1)= L

{
t−ν−1 exp

(
−1

t

)
; t → b

}
= 2bν/2Kν

(
2
√
b
)
. (5.6)

Remark. From (3.3) and (5.4) we have the representation

L

{
t−ν−1 exp

(
− 1

t1/β

)
; t → b

}
= βH

2,0
0,2

(
b

∣∣∣∣ − −
(0,1), (νβ,β)

)
. (5.7)

Several special cases of (5.1) and (5.6) can be written for various values of the
parametersν andβ . Forβ = 1, we have

Γ (ν, x−1;b;1)= Γ (ν, x−1;b).
Thus we get the identities [18, (23) and (29)]

L

{
t−

3
2 exp

(
−1

t

)
H(t)H(x − t); t → b

}

= π

2

[
e−2

√
bErfc

(
1√
x

− √
bx

)
+ e2

√
bErfc

(
1√
x

+ √
bx

)]
(5.8)

and

L

{
t−

1
2 exp

(
−1

t

)
H(t)H(x − t); t → b

}

= π

2
√
b

[
e−2

√
bErfc

(
1√
x

− √
bx

)
− e2

√
bErfc

(
1√
x

+ √
bx

)]
. (5.9)

6. Log-convex property

A real valued functionf on (a, b) is convex if

f
(
λx + (1− λ)y

)
� λf (x)+ (1− λ)f (y) (0< λ< 1, x, y ∈ (a, b)).

(6.1)

A positive functionf on(a, b) is log-convex if lnf is convex. It is to be noted that
the gamma functionΓ : (0,∞) → (0,∞) is log-convex [72, p. 42]. One would
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like to see if the extended complete gamma function

Γb(α;β) := Γ (α,0;b,β)=H
2,0
0,2

(
b

∣∣∣∣ ,

(0,1), (α,β)

)
(6.2)

is log-convex or not. This is proved in the following theorem.

Theorem 6.1. Let 1<p <∞ and(1/p)+ (1/q)= 1. Then

Γb

(
x

p
+ y

q
;β
)

�
(
Γb(x;β)

)1/p(
Γb(y;β)

)1/q
(b� 0, x > 0, y > 0).

(6.3)

Proof. Takingα = x/p+ y/q in (3.4), we find

Γb

(
x

p
+ y

q
;β
)

=
∞∫

0

(
tx−1e−t−b/tβ )1/p(ty−1e−t−b/tβ )1/q dt. (6.4)

Using the Hölder inequality [45, p. 1131, (12.312)], we find

Γb

(
x

p
+ y

q
;β
)

�
( ∞∫

0

tx−1e−t−b/tβ dt
)1/p( ∞∫

0

ty−1e−t−b/tβ dt
)1/q

,

(6.5)

which is exactly (6.3). ✷
Corollary 6.1.

Γb

(
x + y

2
;β
)

�
√
Γb(x;β)Γb(y;β) (x > 0, y > 0, b� 0, β > 0). (6.6)

Proof. This is a special case of (6.3) whenp = q = 2. ✷
Corollary 6.2.

Γb

(
1

2
;β
)

�
√
Γb(x;β)Γb(y;β) (0< x < 1, b� 0, β > 0). (6.7)

Proof. This follows from (6.6) when we takey = 1− x (0< x < 1). ✷
Remark. As the arithmetic mean of two positive numbers is greater or equal to
their geometric mean, it follows from (6.6) that

Γb

(
x + y

2
;β
)

�
√
Γb(x;β)Γb(y;β)� 1

2

(
Γb(x;β)+ Γb(y;β)

)
. (6.8)
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Forβ = 1 in (6.8), we find the inequalities

Kx
2 + y

2

(
2
√
b
)
�
√
Kx(2

√
b )Ky(2

√
b )

� 1

2

(
b
x−y

2 Kx

(
2
√
b
)+ b

y−x
4 Ky

(
2
√
b
))

(x > 0, y > 0, b > 0), (6.9)

satisfied by the Macdonald function.

7. Incomplete Fox’s H -functions

Chaudhry and Zubair introduced the generalized incomplete gamma func-
tions (1.6) and (1.7) that were found to be useful in a variety of heat conduction
problems [24,78–81]. These functions have the inverse Mellin transform repre-
sentations given by

γ (α, x;b)= 1

2πi

C+i∞∫
C−i∞

Γ (s)γ (α + s, x)b−s ds (7.1)

and

Γ (α,x;b)= 1

2πi

C+i∞∫
C−i∞

Γ (s)Γ (α + s, x)b−s ds, (7.2)

where γ (α, x) and Γ (α,x) are the classical incomplete gamma functions.
Chaudhry and Zubair introduced the extensions of the generalized incomplete
gamma functions [18,19]

γν(α, x;b) :=
(

2b

π

)1/2 x∫
0

tα− 3
2 exp(−t)K

ν+ 1
2
(b/t) dt, (7.3)

Γν(α, x;b) :=
(

2b

π

)1/2 ∞∫
x

tα− 3
2 exp(−t)K

ν+ 1
2
(b/t) dt, (7.4)

in connection with the extension of the generalized inverse Gaussian distribution
[53]. These functions can also be represented as the inverse Mellin transform to
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give

γν(α, x;b)= 1√
4π

(
1

2πi

C+i∞∫
C−i∞

Γ

(
s − ν

2

)
Γ

(
s + ν + 1

2

)

× γ (α + s, x)(b/2)−s ds
)

(7.5)

and

Γν(α, x;b)= 1√
4π

(
1

2πi

C+i∞∫
C−i∞

Γ

(
s − ν

2

)
Γ

(
s + ν + 1

2

)

× Γ (α + s, x)(b/2)−s ds
)
. (7.6)

The extended incomplete gamma functions (1.8) and (1.9) introduced in this paper
have the inverse Mellin transform representations given by

γ (α, x;b;β)= 1

2πi

C+i∞∫
C−i∞

Γ (s)γ (α + βs, x)b−s ds (7.7)

and

Γ (α,x;b;β)= 1

2πi

C+i∞∫
C−i∞

Γ (s)Γ (α + βs, x)b−s ds (0< c < 1). (7.8)

It follows from (7.1) to (7.8) that none of these incomplete extended functions can
be expressed in terms of a finite combination of the MeijerG-functions or the Fox
H -functions. However, these functions are found to be useful in a variety of fields
of engineering, statistics, astrophysics and applied mathematics. In order to have
a uniform approach to these functions we propose to introduce the incomplete
FoxH -functionsγm,np,q ((z, x)) andΓ m,n

p,q ((z, x)) as follows:

γm,np,q

(
(z, x)

) := γm,np,q

(
(z, x)

∣∣∣∣∣
(
(ap,αp)

)
(
(bq,βq)

)
)

:= γm,np,q

(
(z, x)

∣∣∣∣∣
(
(a1, α1), (a2, α2), . . . , (ap,αp)

)
(
(b1, β1), (b2, β2), . . . , (bq,βq)

)
)

:= 1

2πi

∫
L

g(s, x)z−s ds, (7.9)
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where

g(s, x) :=
∏m−1

j=1 Γ (bj + βj s)
∏n

j=1Γ (1− aj − αj s)∏q
j=m+1Γ (1− bj − βj s)

∏p
j=n+1Γ (aj + αj s)

× γ (bm + βms, x), (7.10)

andL is the same contour as described in [61, pp. 140–141], [62, pp. 2–3].
Similarly, we define

Γ m,n
p,q

(
(z, x)

) := Γ m,n
p,q

(
(z, x)

∣∣∣∣∣
(
(ap,αp)

)
(
(bq,βq)

)
)

:= Γ m,n
p,q

(
(z, x)

∣∣∣∣∣
(
(a1, α1), (a2, α2), . . . , (ap,αp)

)
(
(b1, β1), (b2, β2), . . . , (bq,βq)

)
)

:= 1

2πi

∫
L

G(s, x)z−s ds, (7.11)

where

G(s, x) :=
∏m−1

j=1 Γ (bj + βj s)
∏n

j=1Γ (1− aj − αj s)∏q

j=m+1Γ (1− bj − βj s)
∏p

j=n+1Γ (aj + αj s)

× Γ (bm + βms, x), (7.12)

andL is the same contour as described in [61, pp. 140–141], [62, pp. 2–3].
The functions (7.9) and (7.11) exist for allx � 0 under the same conditions as
stated in [61, pp. 141–142]. It is to be noted that unlike Fox’sH -functions the or-
der of (a1, α1), (a2, α2), . . . , (ap,αp) and(b1, β1), (b2, β2), . . . , (bq,βq) in (7.9)
and (7.11) is important forx > 0.

The functions

γm,np,q

(
(z, x)

∣∣∣∣∣
(
(ap)

)
(
(bq)

)
)

:= γm,np,q

(
(z, x)

∣∣∣∣∣
(
(ap,1)

)
(
(bq,1)

)
)

(7.13)

and

Γ m,n
p,q

(
(z, x)

∣∣∣∣∣
(
(ap)

)
(
(bq)

)
)

:= Γ m,n
p,q

(
(z, x)

∣∣∣∣∣
(
(ap,1)

)
(
(bq,1)

)
)

(7.14)

can be regarded as incompleteG-functions [45,61,62].

Theorem 7.1.

γm,np,q

(
(z, x)

)+ Γ m,n
p,q

(
(z, x)

)=Hm,n
p,q (z). (7.15)

Proof. This is a direct consequence of the definitions (7.9)–(7.12).✷
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Remark. In view of the decomposition formula (7.15), we note that the Fox’s
H -functions are recovered simply by substitutingx = 0:

Γ m,n
p,q

(
(z,0)

∣∣∣∣∣
(
(ap,αp)

)
(
(bq,βq)

)
)∣∣∣∣∣=Hm,n

p,q

(
z

∣∣∣∣ (ap,αp)(bq,βq)

)
. (7.16)

Thus the study of the incomplete FoxH -functions will provide a uniform
approach to the study of a variety of incomplete functions useful in various
branches of science and engineering. In particular, the functions (7.1)–(7.8) can
be simplified in terms of the incomplete FoxH -functions to give

γ (α, x;b)= γ
2,0
0,2

(
(b, x)

∣∣∣∣ − −(
(0,1), (α,1)

) ) , (7.17)

Γ (α,x;b)= Γ
2,0
0,2

(
(b, x)

∣∣∣∣ − −(
(0,1), (α,1)

) ) , (7.18)

γν(α, x;b)= 1√
4π

γ
3,0
0,3

(
(b, x)

∣∣∣∣
((

−ν

2
,

1

2

)
,

(
ν + 1

2
,

1

2

)
, (α,1)

))
,

(7.19)

Γν(α, x;b)= 1√
4π

Γ
3,0
0,3

(
(b, x)

∣∣∣∣
((

−ν

2
,

1

2

)
,

(
ν + 1

2
,

1

2

)
, (α,1)

))
,

(7.20)

γ (α, x;b;β)= γ
2,0
0,2

(
(b, x)

∣∣∣∣ − −(
(0,1), (α,β)

) ) , (7.21)

Γ (α,x;b;β)= Γ
2,0
0,2

(
(b, x)

∣∣∣∣ − −(
(0,1), (α,β)

) ) . (7.22)

We have just given the basic definition of these functions besides demonstrat-
ing the fact that the generalized and extended incomplete gamma functions have
been found useful in various branches of science and engineering. However, the
basic properties of theH -functions are carried over naturally and simply to the
incompleteH -functions. For example, we have

Γ m,n
p,q

[
(x, z)

∣∣∣∣∣
(
(a1, α1), . . . , (ap,αp)

)
(
(b1, β1), . . . , (bp,βp)

)
]

= kΓ m,n
p,q

[
(zk;x)

∣∣∣∣∣
(
(a1, kα1), . . . , (ap, kαp)

)
(
(b1, kβ1), . . . , (bq, kbq)

)
]
, (7.23)
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zm,np,q

[
(z, x)

∣∣∣∣∣
(
(a1, α1), . . . , (ap,αp)

)
(
(b1, β1), . . . , (bp,βp)

)
]

= 1

zσ
Γ m,n
p,q

[
(z;x)

∣∣∣∣∣
(
(a1 + σα1, α1), . . . , (ap + σαp,αp)

)
(
(b1 + σβ1, β1), . . . , (bp + σβq,βq)

)
]
. (7.24)

It is important to note that several properties of the incomplete FoxH -func-
tions including asymptotic representations, transform representations, differential
equations, special cases, and recurrence relations are yet to be explored.

8. Graphical and tabular representation of Γ (α,x;b;β)

For numerical and scientific computations, the extended incomplete gamma
function can easily be tabulated by using IMSL FORTRAN subroutines for math-
ematical applications [48]. In this regard, the values of the function are calculated
by using the numerical integration subroutine QDAGI [83]. Forβ = 1, the ex-
tended incomplete gamma function coincides with the generalized incomplete
gamma function (Eq. (1.11)), whose tabular and graphical representations are
given in Tables 1–9 and Figs. 1–9 in [23]. For other values ofβ , the function
can be evaluated similarly.
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