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Dominance Orders, Capelli Operators, and Straightening
of Bideterminants

MICHAEL CLAUSEN

The study of the action of Capelli operators on bideterminants leads to a necessary condition­
formulated in terms.of the column dominance order of standard tableaux-for the non-vanishing
of the straightening coefficients.

I. INTRODUCTION

In connection with invariant theoretical studies Rota et al. [5, 6, 12] proved that the
bideterminants (SI T) of standard bitableaux (S, T) form an R-basis of the polynomial ring

R::,:= R[Xij/i= I, ... , m;j= I, .. . , n],

where R is a commutative ring with I R ;i:. O. Thus in particular every bideterminant ( VI V)
is a linear combination of bideterminants of standard bitableaux

(VI V) = L auv,sT(SIT) .
(S, T ) stan da rd

Since bideterminants playa fundamental role in the invariant and representation theory
of classical groups, details about the straightening coefficients aUV.ST would help to
investigate various problems in this field.

Desarmenien has mentioned in the appendix to ref. [12] that in general the number of
standard bideterminants which might lie in the support of ( VI V), i.e. aUV,ST;i:. 0, is very
large . Thus one of the crucial problems is to reduce a priori the number of candidates
(S, T) . We are concerned here with this problem and especially with the question:

what is implied by aUV.ST;i:. O?

As far as we know, the best of the previous answers to this question is due to de Concini,
Eisenbud and Procesi [3]:

aUV,ST;i:. 0 implies V:Q S and V:Q T.
r r

(1.1)

Here ~ denotes a special quasi-order on tableaux, the so-called row dominance.
They derived this result by transferring Hodge's theorem on Pliicker coordinates into

R::,. Hence their methods are quite different from the use of Capelli operators proposed
by Rota et al. As the Capelli operators C(S, T) of standard bitableaux (S, T) are a main
tool for the explicit evaluation of the straightening coefficients, we shall use these operators
to attack our problem.

In Section 4 we prove two fundamental properties of Capelli operators from which we
can derive that

aUV.ST ;i:. 0 implies s V ~ Sand s V ~ T.
c c

(1.2)

(Here s V denotes the standardization of V, see Section 2, and :Q denotes the column
c

dominance quasi-order on tableaux, see Section 3.)
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The proofs of these results turned out to be very elementary and it was natural to ask
how these dominance orders are related. In fact we show in Section 3 that for standard
tableaux A and B with the same content

A~BiffB~A,
r c

(1.3)

hence neither rows nor columns are favoured under dominance!
This yields the following slight improvement of (1.1) which is by (1.3) equivalent to (1.2):

aUV,ST '" 0 implies S V ~ Sand S V ~ T.
r r

(1.4)

As another consequence of the two fundamental properties of Capelli operators we get
the following result of Desarmenien [4, p. 59; 12, p. 78]:

(VI V) '" 0 implies auv,'.u'v = ± 1. (1.5)

Now (1.5) shows that the bounds of the estimates in (1.2) and (1.4) cannot be improved.
In Section 5 we prove a third fundamental property of Capelli operators, which

generalizes a result of Desarmenien [4, theorem 4] to arbitrary shapes.
Combining these results we get an improved algorithm for calculating the straightening

coefficients.

2. STANDARDIZATION OF YOUNG TABLEAUX

A partition A of n E N:= {I, 2, ...} is a sequence A= (At. A2, .•. , Ah ) of positive integers
with

Al+... +Ah = n and AI;;' ••• ;;. Ah > O.

For purely technical reasons A will be identified with all sequences (At. ... , Ah, 0, ... ,0),
and we put Ah +i:= 0 for all i E N. The (Young) diagram of a partition A, also denoted by
A, is formally defined by

h

A:= U {(i, 1), ... ,(i, AJ},
i=l

but we often think of this set as an array of squares arranged as follows:
EXAMPLE.

(4'3'1)~~

The conjugate of a partition A is the partition A'=(A;,Ai,oo.), A;:=I{j/Aj;;.i}j, whose
diagram is the transpose of the diagram A. In the above example (4, 3, 1)' = (3, 2, 2,1).

Every function T mapping the diagram A into a set M is called a (Young) tableau of
shape ITI:= A or, for short, a A-tableau; such a T will be viewed as a A-shaped matrix
T = (tij), where tij:= T«i,j» is the entry belonging to the ith row and jth column of T.

In this paper the range M of a tableau T: A~ M will always be a totally ordered set,
often M = {l , ... , k}=: fs" for some k.
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The content a = (a I, ... , ak) of a tableau T: A~ Is. defined by

a r := l{(i,j) E ITiltij = r}l,

209

specifies the number of occurrences of any r E ~ in T.
A tableau T is row-injective if no entry is repeated in any of its rows, it is normal if

the entries in each row are increasing from left to right; T is standard if it is normal and
if the entries in each column are nondecreasing from top to bottom.

If T is a tableau, "T (resp."?') denotes the tableau obtained from T by writing the
entries in each column (resp. row) of T in nondecreasing order.

EXAMPLE. Let
642 3

T=3 I 4

4

Then T is a row-injective (4,3, I)-tableau of content (1, 1,2,3,0, 1,0, ... ,0).

is normal;

is not row-injective; but

is standard (see below), while

2 3 4 6
rT= I 3 4

4

3 I 2 3
cT=4 4 4

6

I 3 4 6
C(T)=2 3 4

4

I 2 3 3
r(T)=4 4 4

6
is not standard!

The concepts and operations just defined are combined in the following sorting lemma
[4, pp. 52; 6, pp. 15; 12, pp. 70] for which we shall give a short proof below.

SORTING LEMMA 2.1. Let T be a row-injective tableau. Then the tableau sT:= crT) is
standard.

Here S T is called the standardization of T.

PROOF OF LEMMA 2.1. The proof is by induction on k, k:= max{tij/(i,j) E IT/}. The
case k = I is trivial. So let k> I.

By normality of U:= "T, every k in U is placed at the end of a suitable row. Now
permuting rows of equal length of U (as a whole), one gets another tableau V, where

V is normal, and C U = C V. (2.1)
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In particular the rows of U can be permuted in such a way that all 'k- free' rows of length
1 precede all rows of same length terminating with k:

k.
w

v =

k..
k

k..
k

Let W denote the'k- free ' part of V.
Of course, W is again a normal tableau and, by maximality of k; going from V to C V

the ks will stay at their positions, i.e. V~ C V is essentially described by W~ C w: By
induction, CW is standard, hence, together with (2.1), CV = CU = C(n is standard.

3. DOMINANCE AND TOTAL ORDERS OF PARTITIONS AND TABLEAUX

A partition [diagram] A is dominated by another partition [diagram] p., abbreviated
A~ p., if Al +... + Ai";;; P.I + ... + P.i, for all i.

A short proof of the following well-known result can be found in [10, p.6].

Let A and p. be partitions of n E N. Then A~ P. iffA'~ u', (3.1)

Write A < u, where A and p. are two different partitions, if the first non-vanishing difference
P.i - Ai is positive. This lexicographicorder is known to refine the dominance (partial) order:

A<J P. implies A< u, (3.2)

For the remaining part of this section the entries in every tableau are assumed to be
positive integers.

To a tableau T and p, q E N let

a~q(n:= J{(i,j) E ITil i,,;;; p and tij";;; q}l,

resp.

a~p(T):= 1{(i,j)E ITilj,,;;; p and tij";;; q}l,
denote the number of elements <s in the first prows (resp. columns) of T; similarly we
define

Z~q(n:= {\(i, j) E ITil i ;:,P and tij;:' q}l

and
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The tableau S is row-dominated (resp. column-dominated, reverse row-dominated, reverse
column-dominated) by the tableau T, for short: S ~ T (resp. S ~ T, S!:f T, S ~ T) if for
all p, q E N: a~iS)";;; a~q(n (resp. a~q(S)";;; a~q(T), Z~q(S)";;; z~q(T), Z~q(S)";;; z~q(T».

All these dominance relations are quasi-orders on the set of all tableaux (i.e. ~, ... , !;;
r e

are reflexive and transitive but not necessarily antisymmetric). However, when restricted
to the set of standard tableaux these dominance relations become (partial) orders.

To get a connection between dominance of partitions and some of the dominance
relations of tableaux, let q be the maximum of all entries in the A-tableau T. Then by
tij";;; q, for all (i,j) E IT/, a~q(n (resp. a~p(T» is the number of all entries in the first p
rows (resp. columns) of T, i.e, for this q:

a~q(n = Al + ... +Ap and a~p(n=A~ + ... +A~.

Hence for tableaux V and V the following is valid, cf. [3, p. 137]:

V~ Vimplies IVI ~ IVI·
r

V ~ V implies IVI'~ IVI'·
e

(3.3)

(3.4)

The proof of the following theorem indicates that the connection between certain
dominance orders is even more comprehensive.

THEOREM 3.1. Let A, B be two standard tableaux with the same content. Then

A~BiffB~A.
r e

PROOF. If T is a standard tableau and q E N let Tq denote the restriction of the map
T to the domain

ITql:= {(i,j) E ITil tij ,,;;; q}.

EXAMPLE. If -

I 2 4
T=I 3 4,

2
then

I 2 I 2
T( = I, T2= I T3= I 3,

2 2

and Tk = T for all k ~ 4.

Notice that all Tq are standard. This holds in general, as one can easily show.

Let T be a standard tableau. Then all Tq, q E N, are standard. (3.5)

Moreover, a standard tableau T can be uniquely recovered from the sequence
<I TIl, IT2 /, ...) of shapes.

If /Tqli (resp. ITqlJ) denotes the length of the ith row (resp. jth column) of t; then

a~iT)=ITql(+" '+ITqlp' (3.6)

a~p(n=ITql;+" ·+ITq/~. (3.7)
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After these preliminaries we can now finish the proof of (3.1).

~VqIAql~IBql

~VqIAql'"," IBql'
~Vq(Vpa~p(A);" a~p(B))

~A","B.
c

[by (3.6)]

[by (3.1)]

[by (3.7)]

[As A and B are standard tableaux with the same content, the diagrams IAql and IBql
have the same number of squares, so (3.1) is indeed applicable.]

Now let us briefly discuss the reverse dominance orders.

EXAMPLE. The standard tableaux

I 2 3 5
A:= 4

I 2 4
B:=3 5

are both of content (15
) ; A ~ B, but A and B are incomparable with respect to ~.

r c

Nevertheless we have

THEOREM 3.2. Let A and B are standard tableaux of the same content and of the same
shape. Then

A~B~A~B~B~A~B~A.
c c

PROOF. Use (3.1), (3.7), (3.8) and the characterization of dominance of partitions in
[3, Proposition l.l].

In the representation theory of classical groups certain total orders of standard tableaux
have been widely used: lexicographic orders, and, in connection with induction and
subduction of representations, last letter sequences. In the remaining part of this section
we show that all these total orderings are refinements of dominance orders.

First let us recall some definitions.

We write V,;;; V iff IVI < IVI or IVI = IVI and the vector (Ull' UI 2," ., U2h U22,"') of
the associated row sequence of V is lexicographically not smaller than the corresponding
vector of V.Similarly V,;;; V iff IVI' <IVI' or ]VI = IVI and (Ulh U2 .. . . . , UJ2 , U22,·· .) ;" (VIl 'c

V2.. . . . , Vt 2, V22," .). Here ss (resp. ,;;;) is the row- (resp. column-) lexicographic order of
r c

tableaux.
Obviously the following holds.

Let V, V be standard tableaux of the same content. Then

(a)

(b)

V ~ V implies V,;;; V;
r r

V ~ V implies V,;;; V.
c c

(3.8)

If the number x occurs in the standard tableau V exactly s times and if these xs are
placed in rows (resp. columns) with index it> . . . > is (resp.jj > - . . ;" js), then let Px( V) :=
(i .. . . . , is) and 'Yx( V):= (j.. . . . ,js)'
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Now the row- (resp. column-) last letter sequence of standard tableaux of content
a = (alo"" am) can be defined as follows: V <T,IISV (resp. V <c.lIsV) iff there exists an
x E IJl such that pA V) > pA V) [resp. yA V) > yA V)] and for all y > x, piV) = py( V) [resp.
yy( V) = yy( V)].

It is straightforward to prove the following assertion.

For standard tableaux V and V of the same content

(a)

(b)

V I;; V implies V ";;;;T.lIsV, and
T

V I;; V implies V ";;;;c.lIs V.
c

(3.9)

If further V and V are of the same shape then, by Theorem 3.4, I;; (resp. 1;;) can be
replaced by ~ (resp. ~). r c

T C

4. BIDETERMINANTS AND CAPELLI OPERATORS

Bideterminants are elements of the polynomial ring

R;:':= R[Xij/i= 1, ... , m;j= 1, ... , n]

over the commutative ring R in the m' n indeterminates (ilj):= Xij, where i E IJl is the
letter-index and j E !.l the place-index. This polynomial ring, the so-called letter place algebra
in m letters and n places, turned out to be a very useful tool e.g. in invariant theory and
representation theory, see the references.

A bitableau is a pair (S, T) of tableaux with the same shape A, where all Sjj (resp. tjJ
are, for the present, elements of IJl (resp. !.l). A is the shape of (S, T). A bitableau (S, T)
is called standard (normal, ...) if both Sand T have this property. The content of the
bitableau (S, T) is the pair of vectors (a, {3) where aj (resp. {3j) is the number of occurrences
of i in S (resp. j in T).

To every bitableau (S, T) corresponds the bideterminant

(SI T):= IT det «sjjl t jk)) E R;:'.
i

EXAMPLE.

(

1 3

2 3

4

5 2 4 6) (112) (114)
4 5 =det (312) (314)

5 (512) (514)

(1 16)) 24
(316) . det ( I )
(516) (314)

(215)) . (415)
(315)

is the bideterminant of the standard bitableau

(

1 3 5

2 3

4

From the well-known properties of the determinant one easily deduces that for a bitableau
(V, V)

( VI V) 'f:. 0 iff (V, V) is row-injective.

If (V, V) is row-injective then

('VITV) = ±(VI V)'f:. O.

(4.1)

(4.2)
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In three highly interesting studies, Rota et al. [5, 6, 12] showed:

THEOREM 4.1. The bideterminants of the standard bitableaux form an R-basis of the
polynomial ring R~.

Moreover they proved the following

STRAIGHTENING FORMULA 4.2. Every bideterminant (VI V) is a linear combination,
with integer coefficients, of bideterminants of standard bitableaux (S, T): (VI V) =
I aUV,ST(SIT); furthermore if aUV,ST ,.r:. 0 then V ~ S, V ~ T, and the contents of (V, V)
and (S, T) coincide.

We are now going to improve this straightening formula. This will be done with the
help of various substitution processes. In order to distinguish between letters (resp. places)
changed by substitution from those yet untouched, we extend the previous letter (resp.
place) alphabet by adjoining m coloured letters L ... , '!I (resp. n coloured places L.··, !.l).
Hence the following investigations will be done in the coloured letter place algebra

B~:= R[(AIB)j A = 1, ... , m, L ... , '!I; B = 1, ... " n, L ... ,!.l].

The extensions of the notions of bitableau and bideterminant to these larger alphabets
are obvious.

The letter (resp. place) set polarization operator D~(j, i) (resp. D~(j, i)) is the R-linear
operator B~ ~ B~ mapping every monomial - -

M:= n (A,IB,) E B~,
in which the uncoloured letter (resp. place) i occurs exactly s times onto the sum of the
G) monomials obtained from M by replacing each subset of r letters (resp. places) i by
r coloured letters (resp. places) j.

Consequently, -

if s < r then D~Cj, i)M = 0

and if r = 0 then D1Cj, i) = D~Cj, i) is the identity operator.

EXAMPLE.

1 f J J I

1 2 J I J
D~n, 1): I 3 ~ I + J + J

3 I 3 3 3

4 ~ 4 4 4
while D~(J, 1) maps the same monomial onto O.

(4.3)

It is easy to see that

the polarization operators commute mutually. (4.4)

For bideterminants, the set polarization operators act in the following simple way [5, p. 73].
Let (V, V) be a bitableau, i, j E '!I and r E~. Ifthe letter i occurs in V exactly s times,

let VI, ... , V Z denote the distinct z = G) tableaux obtained from V by replacing each
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subset of r letters i in V by r coloured letters 1- Then

D~(j, i)( VI V) = I (VII V).
- I

An analogous result does hold for the places.

EXAMPLE

D~Q, I) (v I J

~)=(u
J J

~Hu
J J

~)+
I J

~)f 1 f J f 1 f J
I ! I ! J ! J !

(v
I J

~)f J
J 1

[by (4.1)].

215

(4.5)

The Capelli operators are composed of those polarization operators.
To a tableau S let cj(S,j) denote the number of occurrences of i in the jth column

of S:

If (S, T) is an uncoloured bitableau of shape A then [1,5, 12]

CL(S):= Il Il Di(S,j)(j, i)
l~jOS:;AI l~i~m -

is the Capelli letter operator of S,

Cp(T):= n n D~(T,j)(j, i)
l~j=E;;Al l~j~n -

is the Capelli place operator of T, and

is the Capelli operator of the bitableau (S, T).

EXAMPLE. Suppose

3 5
3

Then

C(S, T) = DiO, I)D~O,2)Di(f, 3)D~(J, 5) .

D~O, l)D~O, 3)D~O, 4)D~G, 2)D~G, 4)D~(J, 4).

All non-trivial results about Capelli operators, which we could find in the literature,
are consequences of three fundamental Theorems 4.3, 4.4 and 5.1. [In the sequel fA
denotes the standard A-tableau whose jth column equals (1, ... ,D.]
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THEOREM 4.3. If (S, T)=('V, SX) is the standardization of the normal s-bitableau
(V, X) then

(a) CL(S)(VIX)=(TAIX)~O,

(b) Cp(T)(VIX)=(VITA)~O, and

(c) C(S, T)( VIX) = (TA ITA) ~ O.

This theorem generalizes results in [4,5,6,12].

PROOF. The proof of (a), similar to our proof of the Sorting Lemma 2.1, is by induction
on k, k:= max{uij/(i,j) E IVI}.

The case k = I is trivial. So let k> I.
Permuting simultaneously in V and X rows of equal length, every resulting bitableau

(V, Y) is normal as well. Moreover

and

(VIX) = (VI Y)

("V:X) = (S, T)= ("v, sY).

(4.6)

(4.7)

In particular we can assume that V has the same special form as in the proof of Lemma
2.1; once more, W denotes the 'k-free' part of V.

By (4.7), (4.4), and the definition of W we have

(4.8)

where CL ( V\ W):= Dq Dt
V

, "t« k) is the Capelli letter operator of the skew tableau V\ W
At first let us investigate the action of CL(V\ W) on the bideterminant (VI Y). By (4.5),

CL(V\ W) replaces each k in V by a suitable coloured letter; more precisely just Ck(S, q)
of the ks in V have to be substituted by q, Generally this can be done in several ways.

Since Ck(S, q) = Ck( V, q) there is one distinguished way of colouring: replace each kin
the qth column of V by q and denote the resulting tableau by y', Let V be the set of
all tableaux y. y ~ y\ which result from V by substituting Ck(S, q)-times the letter k in
V by q, l,,;;; «< A I-

For-example, let

I 4 6

2 3 6

V=I 4 5.

I 6

3 5

Then k = 6, and one possible V is

I 4 5

I 4 6

V=2 3 6',

3 5

I 6
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here

1 4 5 I 4 5 1 4 5

I 4 J

r={i
4 J I 4 i]y6 = 2 3 J and 3 f, 2 3

3 5 5 3 5

1 f J 1 J
In general yk and all y E r share the following property:

Restricting the maps yk and all y E r to the domain IWI yields always W (4.9)

But there is one crucial difference between yk and the elements of y. based on the
pigeonhole principle: -

To every y E Ythere exists an index q such that the qth column of y
"contains a coloured letter p, where p < q. (4.10)

Keeping the notation we can write by (4.5)

(4.11)

(4.13)

Now we separate with suitable Laplace's expansions [I, part II, pp . 158] all coloured
letters from all uncoloured ones.

In the above example such an expansion looks as follows (we use the Scottish conven­
tion, cf. [6, pp. 188]):

4 5 4 5

(:
'. )YII Y1 2 Y1 3 Y2 3

4 J 4
"I ", ",
Y21 Y22 Y 33

2 3 f Y 2 3 ", "2 ,,)

= Y31 Y32 YS2

3 5 3 5 Y 4 1 Y 4 1
l-..-Jl-..-J

I J I
,,)

I 1 1/5 1

=y =W =: ~I) =: V\W =: ~2)

If we choose a corresponding notation in the general case, we can reformulate, by (4.9),
the right hand side of (4.11):

CL(V\ W)(VI y)=(WI Y"I!). [(yk\ WI Y " I'» +LYEY(Y\ WIy"(2)] (4.12)

Now we apply CLCw)= CLCw) to (4.12) ; this will leave every term within the square
brackets unchanged. By induction, we can assume that

CLCW)( WI Y " II» = (Iiw,1y " I'».

Together with (4.7, 4.8, 4.12) equation (4.13) yields :

CL(S)( UIX) = (Iiw,1 Y"(l»[(yk\ WI Y"(2» +Lyq(Y\ WIY"(2)] (4.14)

Next reversing all Laplace's expansions we see by (4.10) that all terms in (4.18), which
correspond to an element of y. vanish while the term (TA IY)=(TAIX) is left over. By
(4.2) we have (TAIX) #- O. This -proves (a) .

The other statements can be proved similarly.
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The second fundamental Theorem reads as follows.

THEOREM 4.4. Suppose (S, T) and (V, V) are uncoloured bitableaux. If (S , T) is
standard then

(a) CL(S)( VI V);e 0 implies S ~ s V;
c

(b) Cp( T)( VI V);e 0 implies T ~ s V; and
c

(c) C(S, T)( VI V);e 0 implies S ~ s V and T ~ s U.
c c

PROOF. (a) can be proved as follows. By (4.8) and the assumption one can assume
without loss of generality that (V, V) is normal. To every (q, p) E 1\J2 let

Cqp(S):= Il Il Di(s.j)(j, i)
j~p t-e q -

denote the '(q, p)-part' of CL(S). From (4.4) and the assumption follows

Cqp(S)( VI V);e 0, for all (q, p). (4.15)

According to the action of the letter set polarization operators on bideterminants, see
(4.5), and by the fact that only bideterminants of row-injective bitableaux will contribute
non-zero terms to (4.15), the tableau V has the following property:

It is possible to find simultaneously for all pairs (i,j), i ~ q and j ~ p, c;(S,j)-times the
letter i in V such that, after having replaced these is by js , a row-injective tableau r!qp
results. If r!qp has in its ith row exactly s coloured letters, these s elements are substitutes
of entries uij ~ q. Hence in the ith row of V there are at least s elements ~ q. By normality
of V

(4.16)

Furthermore at most 1, . . . , p can occur as coloured letters in r!qp- Since r!qp is row-injective
the last remark together with (4.16) yields for the ith row of V

s e.p.

Now the total number of coloured elements in r!qp is

L L c;(S,j)=a~p(S).
te q j~p

(4.17)

(4.18)

By (4.16)-(4.18) there are at least a~p(S) elements <« in the first p columns of V, i.e.

a~p(S) ~ a~p( V) . (4.19)

Finally

a~p(V) = a~p(" V) (4.20)

and

cV =s V , (4.21)

hence by (4.19}-(4.21) S is column-dominated by S U. This proves (a). The second statement
follows by symmetry, and (c) is a consequence of (a) and (b).
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We can now prove two fundamental properties of straightening coefficients.
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THEOREM 4.5. If the bideterminant to the bitableau (V, V) is expressed as a linear
combination of standard ones:

(VI V) = 1: auv,sT(SI T),
(S, T) standard

then

(a) aUV,ST '" 0 implies s V ~ Sand s V ~ T; and
c c

(b) (Vi V) '" 0 implies auv,'u'v = ± 1.

PROOF. (a) is proved as follows. According to the Straightening Formula (4.2) we can
write

(VIV)=A+B,

where A =1: l:rsT(SI T) (resp. B =1: ~sT(SI T» is a linear combination of bideterminants
of standard bitableaux (S, T) of the same content and satisfying (resp. not satisfying)
(S, T) ~ CV,'V).

c

We have to show that B = O.
Assume B '" O. Let (l¥, Z) be any ~ -maximal element of the non-empty set {(S, T)/~ST '"

O}. We apply the Capelli operator C(l¥, Z) to the identity

(VI V)-A= B.

By Theorems 4.3 and 4.4 and the ~ -maximality of ( l¥, Z)
c

where A is the shape of ( l¥, Z). Moreover,

the coefficient of the monomial

Hence

(4.22)

(4.23)

is not the zero polynomial.
On the other hand, C( w Z) annihilates (VI V) by Theorem 4.4, and maps A onto 0;

the last statement is true for C( l¥, Z)(SI T) '" 0 and l:rST '" 0 would imply (l¥, Z) ~ (S, T),c

by Theorem 4.4, and (S, T) ~ CV, s V), be definition of A, and this would give
c

( l¥, Z) ~ CV, S V), contrary to the constructions of Band (l¥, Z).
c

Hence C ( l¥, Z) annihilates the left hand side of (4.22) and maps the right hand side
onto a non-zero polynomial. This contradiction yields B =0 and the proof of (a) is done.

(b) is proved as follows. By (4.1) and (4.2), we can assume without loss of generality
that (V, V) is a normal bitableau of shape u, say. According to (a), Theorems 4.3 and 4.4

(TILl TIL) = C(s V, sV)( VI V) = a uv,'u'v(TIL ! TIL)'

hence, by (4.23), a uv,'u'v = IR'
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5. How TO CALCULATE THE STRAIGHTENING COEFFICIENTS?

Let (V, V) be a row-injective bitableau of content (a, f3). By Theorem 4.5,
h

(VI V) =L auv.sT(SI T) = L xi(Sil Ti),
i~l

(5.1)

where the summation is over all h standard bitableau is', Ti) of content (a, f3) which
satisfy S V ~ Si and S V ~ r '. We can assume that

c c

(Sl, T I
) ,,;; ••• ,,;; is'; T h

) = CV, S V). (5.2)
c c

Let Ai denote the shape of is '. T i
) . With these notations and by (4.23), parts of Theorem

4.4 and Theorem 4.3 can be reformulated as follows:

Ifi> j then C(Si, Ti)(SiITi)=O;

C(Si, Ti)(Sil T i)
= (TA'ITA') = lR' {TA 'ITA '} +.. '.

(5.3)

(5.4)

Applying the h Capelli operators C(Si, T i
) to (5.1) we get the following matrix equation

over 8;:':
(5.5)

By (5.3), the h x h matrix on the left hand side of (5.5) has upper triangular form.
Considering in the ith row of equation (5.5) the coefficient of the monomial {TA 'ITA j

} , we
get by (5.3)-(5.4) the following matrix equation over R, from which we can calculate the
straightening coefficients X i = a UV.S 'T':

(5.6)

here gii [resp. bi(V, V)] is the coefficient of {TA 'ITA'} in C(Si, Ti)(SiITi) [resp.
C(Si, T i)( V IV)].

To formulate the third fundamental Theorem about Capelli operators, which describes
the coefficients gij and bi( V, V), we have to introduce further notations.

If D is a finite subset of N x N, every function T : D ~ N will be called a (generalized)
tableau of shape D. The extensions of the notions of bitableau and bideterminant, as well
as the extensions of the operations T~rT and T~cT to these more general shapes are
obvious. If (V, V) is a row-injective bitableau of shape D, then we call the quotient

2

I 5

6 7 2

3 I 3 4

T=

sgn( V, V):= (' Vir V) : ( VI V),

which is by (4.2) equal to ± I, the sign of (V, V).
To every tableau T of shape D we can associate two further generalized tableaux: the

left-shifted tableau ~ T, and the top-shifted tableau iT; their definitions will become clear
by the following

EXAMPLE. Suppose

Then

+-T=

2

I 5

6 7 2

3 I :3 4

fT=

3 2 6 5 :3 2

I 7 4

I
and r(fT)=

2 2 :3 3 5 6

r 4 7

I
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With these notations, the coefficients tij and bi ( V, V) can be characterized as follows .

THEOREM 5.1. Let (V, V) be a normal bitableau, and let (S, T) be a standard s-bitableau
of the same content. Then the coefficient of the monomial {TA ITA} in C(S, T)( VI V) equals

L(x.Y ) sgn(X, Y),

where the summation is over all generalized bitableaux (X, Y) such that

(I)

(2)

(V, V) = ((~X), r(~ Y» , and

(S, T) =ce(tX) , en Y» .
[As usual, the empty sum is defined to be 0.]

PROOF. By (4.5) we have C(S, T)( viV) =L 4( viY), where the summation is over all
bitableaux (V, Y) of shape IVI such that
(a) (V, Y) is row-injective, and
(b) V= (Yij) [jresp. Y= (Pij» can be obtained from V (resp . V) by substituting ci(S,j)­
(resp. cj(T,j)] times the number i by j.

The monomial {TAITA} occurs in the bideterminant of such a bitableau (V, Y) iff for
all i
(c) the ith row of V equals up to a permutation of its elements the ith row of y.

Now suppose the bitableau ({J, Y) satisfies (a)-{c). Then the elements of (V, Y) tell us
how to rearrange and to shift the elements of (V, V) to get a generalized bitableau (X, Y)
satisfying (I) and (2): If Yij = ~ (resp. Pij = Q) then one has to shift uij (resp. vij) to the
position (i, a) [resp. (i, b)], i.e.: Xia := uij resp. Yib :=vij'

EXAMPLE. If

(U, ~~ (i 4 6 I 2 5) (5, 1)~(~ 2 4 6 I 2 3 4), and ,
4 I 4 4 I 4

4 3 6 6

then one possible (V, Y) is

m~~(~
f 4 ! f

~)! ! f
J J !

Here

[184 6

X= 4 2
2 4

•

2 4

and y= I 4

6 3

It is straightforward to show that by (V, Y)~ (X, Y) the set of all bitableaux (V, Y)
satisfying (a)-{c) is mapped bijectively onto the set of all bitableaux (X, Y) satisfying (I)
and (2).

Using this interpretation of (V, Y), our assertion follows immediately.

We would like to mention two special cases of Theorem 5.1. If the bitableaux in the
theorem are both of content ((I "), (I "» ,then one easily shows that in the theorem there
is at most one generalized bitableau (X, Y) satisfying (I) and (2). Hence , using the notation
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of (5.6), we have the following

M. Clausen

COROLLARY 5.2. If (V, V) is injective then gij, b;(V, V) E {O, 1, -I}.

The second corollary is a reformulation of a result of Desarmenien [4, theorem 4].

COROLLARY. 5.3. Suppose the bitableaux in Theorem 5.1 are both ofshape A. Then all
generalized bitableaux (X, Y) which occur in Theorem 5.1 are of shape A. In particular
conditions (1) and (2) in Theorem 5.1 can be replaced by

(1)'

(2)'

respectively.

(V, V) = ("X, r Y) and

(S, T) = (CX, cY),

PROOF. If the shape D of a generalized tableau W is not a Young diagram, then one
easily shows that ~ Wand i W have different shapes. This remark together with /SI = IVI
proves our statement.
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