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Abstract The apical domain of epithelial cells is composed of
distinct subdomains such as microvilli, primary cilia and a non-
protruding region. Using the cholesterol-binding protein promi-
nin-1 as a specific marker of plasma membrane protrusions we
have previously proposed the co-existence of different choles-
terol-based lipid microdomains (lipid rafts) within the apical do-
main [Röper, K., Corbeil, D. and Huttner, W.B. (2000),
Retention of prominin in microvilli reveals distinct cholesterol-
based lipid microdomains in the apical plasma membrane. Nat.
Cell Biol. 2, 582–592]. To substantiate the hypothesis that the
microvillar plasma membrane subdomains contain a distinct set
of lipids compared to the planar portion we have investigated
the distribution of prominin-1 and two raft-associated ganglio-
sides GM1 and GM3 by fluorescence microscopy. GM1 was
found to co-localize with prominin-1 on microvilli whereas
GM3 was segregated from there suggesting its localization in
the planar region. Regarding the primary cilium, overlapping
fluorescent signals of GM1 or GM3 and prominin-1 were ob-
served. Thus, our data demonstrate that specific ganglioside-en-
riched rafts are found in different apical subdomains and reveal
that two plasma membrane protrusions with different structural
bases (actin for the microvillus and tubulin for the cilium) are
composed of distinct types of lipid.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The apical domain of polarized epithelial cells is composed

of separate subdomains such as plasma membrane protrusions

(microvillus and primary cilium) and a non-protruding region.

It contains a variety of lipid species that have distinct physico-

chemical properties. Using the cholesterol-binding protein

prominin-1 (CD133) as a specific marker of plasma membrane

protrusions [1,2] (for reviews see [3–5]) we have previously pro-

posed the co-existence of different cholesterol-based lipid

microdomains (often referred to as ‘‘lipid- or membrane rafts’’

for an unified definition see Ref. [6]) within the apical plasma

membrane [7]. Membrane rafts are viewed as liquid-ordered

domains that are more tightly packed than the surrounding
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‘‘non-raft’’ phase of the bilayer. They are enriched in sterol

and sphingolipids present in the exoplasmic leaflet membrane

and contain a specific set of membrane and peripheral proteins

[8]. Membrane rafts have been suggested to play a role in var-

ious cellular events including fission and membrane budding

[9,10]. The classical biochemical method to determine the asso-

ciation of a given protein with such membrane rafts is based on

their resistance to extraction with the non-ionic detergent Tri-

ton X-100 in the cold [11]. Proteins associated with Triton X-

100 resistant membranes float in low-density fractions upon

sucrose density gradient in a cholesterol-dependent manner

[12].

How many types of membrane raft co-exist in a given plas-

ma membrane? If they are more than one, how can we define

them? We had previously observed that prominin-1, although

completely soluble in Triton X-100, was insoluble in other

non-ionic detergents (e.g. Lubrol WX, Brij 58) in a choles-

terol-dependent manner [7]. Based in part on these biochemical

features and on its segregation at the cell surface from placen-

tal alkaline phosphate, which in contrast to prominin-1 is en-

riched in Triton X-100 resistant membranes, we had

proposed that distinct types of membrane rafts could co-exist

within the apical plasma membrane domain [7]. However, con-

cerns about the ability of these mild detergents to selectively

solubilize membrane proteins and thus discriminate between

those associated or not with membrane rafts have been raised

[13,14]. Moreover, given that some detergents, e.g. Triton X-

100, might create ordered domains in a homogeneous fluid

membrane, it appeared that detergent-resistant membranes

should not be assumed to resemble to biological membrane

rafts [15].

Here, we have re-investigated the issue whether the microvil-

lar plasma membrane contains a distinct set of lipids compared

to the planar, non-protruding portion of the apical domain by

analyzing the distribution of prominin-1 and the raft-associ-

ated gangliosides GM1 and GM3. The fluorescence microscopy

analyses demonstrate that specific ganglioside-enriched rafts

are found in different apical subdomains.
2. Materials and methods

2.1. Cell culture
MDCK cells (strain II) stably transfected with mouse prominin-1

[16] were cultured in a humidified incubator at 37 �C under a 5%
CO2 atmosphere in Minimal Essential Medium supplemented with
10% fetal calf serum, 10 mM HEPES pH 7.2, 1% non-essential amino
acids, 2 mM LL-glutamine, 100 U/ml penicillin and 100 lg/ml strepto-
mycin. For fluorescence microscopy, cells were grown on glass cover-
slips.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Distinct ganglioside-enriched microdomains within the apical
plasma membrane domain. (A) Living prominin-1-transfected MDCK
cells were double-labelled for either GM1 or GM3 (left and right
panels, red) and the microvillar marker prominin-1 (middle and right
panels, green) and observed by confocal laser scanning microscopy.
Cells were first labelled in the cold with anti-GM3 and/or anti-
prominin-1 primary antibodies followed by the appropriate secondary
antibodies or cholera toxin subunit B coupled to fluorescent dyes,
which recognizes GM1, and then 4% PFA fixed. (B) MDCK cells were
fixed prior labelling according to three different protocols. Cells were
fixed either with 4% PFA at room temperature for 30 min following by
a 0.2% saponin/PBS permeabilization treatment (left panels) or
methanol for 2 min followed by acetone for 1 min both at �20 �C
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2.2. Fluorescence and confocal microscopy
2.2.1. Cell-surface fluorescence of living cells. Double labelling cell-

surface fluorescence of prominin-1-transfected MDCK cells was per-
formed as described [16], except that the cells were incubated at 4 �C
first with the primary antibodies, i.e. rat mAb 13A4 against promi-
nin-1 (10 lg ml�1, Ref. [1]) and mouse mAb anti-GM3 (1:100, clone
GMR6, Seikagaku Corporation), for 30 min, and then with the appro-
priate secondary antibodies (Cy5- or Cy2-conjugated goat anti-rat
IgG, Jackson Immuno Research; Alexa488- or Alexa546-conjugated
goat anti-mouse IgM, Molecular Probes) and/or Alexa488- or
Alexa546-coupled cholera toxin B subunit (1:1000, Molecular Probes)
for 30 min. Labelled cells were fixed with 4% paraformaldehyde (PFA)
in PBS for 30 min at room temperature, quenched with 50 mM NH4Cl
in PBS for 10 min and then sequentially washed in PBS and distilled
water, and finally mounted in Mowiol 4.88 (Calbiochem-Behring
GmbH). Cells were observed with a Zeiss 510 Meta confocal laser-
scanning microscope.

2.2.2. Fluorescence of fixed cells. Prior to labelling cells were fixed
according to one of the following three protocols. (i) Cells were fixed
with 4% PFA in PBS for 30 min at room temperature. The fixative
was removed by three washes with PBS, and the residual formaldehyde
was quenched with 50 mM NH4Cl in PBS for 10 min. Fixed cells were
blocked and permeabilized with 0.2% saponin/0.2% gelatin in PBS for
30 min, and then incubated with the appropriate antibodies and when
necessary with cholera toxin B subunit for 30 min at room tempera-
ture. Acetylated tubulin was detected using mouse mAb anti-acety-
lated-tubulin (1:1000, clone 6-11B-1, Sigma) followed by Alexa488-
or Alexa546-conjugated goat anti-mouse IgG2b (1:1000, Molecular
Probes). (ii) Cells were fixed using a PFA/methanol-fixation protocol
as described [7]. Briefly, cells were washed with ice-cold PBS and fixed
for 5 min with 4% PFA in PBS at 4 �C, followed by a 5 min fixation in
methanol at �20 �C. Following quenching with 50 mM NH4Cl, fixed
cells were permeabilized and double-labelled as described above. (iii)
Cells were fixed according to a methanol/acetone-fixation protocol.
Briefly, cells were fixed for 2 min with methanol at �20 �C and then
1 min in acetone at �20 �C prior to labelling. Irrespective of the pro-
tocol used, labelled cells were sequentially washed in PBS containing
0.2% gelatine, PBS and distilled water, mounted in Mowiol 4.88 and
observed with a confocal laser-scanning microscope.

The confocal microscope settings were such that the photomultipli-
ers were within their linear range. The images shown were prepared
from confocal data files using LSM 5 Image Browser software.
(middle panels) or with 4% PFA at 4 �C and methanol at �20 �C for
5 min each (right panels) and then incubated with the above mentioned
antibodies and toxin. Gangliosides are pseudocolored in red whereas
prominin-1 in green. All pictures show a single optical xy-section at the
apex of the cells with a high magnification view in the corresponding
inset (panel A, merge). (See also Fig. 1 in Supplementary materials for
a low magnification of data presented in the panel B.) Irrespective of
the labelling and fixation protocols, GM1 was found in microvilli as
revealed by prominin-1 staining whereas GM3 was segregated from
there. Scale bars, 5 lm.
3. Results and discussion

The ganglioside composition of MDCK cells is known to be

dependent on their state of differentiation, i.e. cell density, and

passage number [17]. In keeping with this report, we have ob-

served, using 5-day-old post-confluent MDCK cells stably

transfected with mouse prominin-1 [16] that GM3 was the ma-

jor ganglioside expressed on their surface whereas GM1 was

present in a low amount and only in a limited number of cells

(data not shown). It was extremely rare to find cells that ex-

press simultaneously both gangliosides on their surface. In

double-positive cells, GM1 was mostly located inside the cells

in contrast to GM3 (data not shown).

3.1. GM1, but not GM3, is found in microvilli

The subcellular localization of GM1 and GM3 present at the

apical domain of polarized epithelial cells was then investi-

gated by confocal laser scanning microscopy analysis. Double

cell surface labelling of living 5-day-old post-confluent MDCK

cells with cholera toxin B subunit, which binds GM1, and anti-

prominin-1 antibody showed that within the apical plasma

membrane GM1 was selectively concentrated on microvilli as

revealed by its co-localization with prominin-1 (Fig. 1A, sub-

panel a, see inset in merge). On the other hand GM3 appeared

to be excluded from there (Fig. 1A, subpanel b, inset). The
exclusion of GM3 from the prominin-1-containing microvillus

was also observed when the cells were fixed with paraformalde-

hyde (PFA) after the incubation with the primary antibodies

and prior to the addition of the secondary antibodies (data

not shown).

When MDCK cells were fixed and permeabilized with either

PFA/saponin or methanol/acetone or PFA/methanol before

the entire labelling procedure (for experimental detail see Sec-

tion 2) to preclude potential clustering of the distinct compo-

nents particularly prominin-1 inside a specific membrane raft

due to primary/secondary antibody binding, GM1 also co-

localized with prominin-1 independently of the fixation proto-

col (Fig. 1B, see also Fig. 1 in Supplementary materials).

Double immunofluorescence analysis of GM3 and prominin-

1 confirmed the mosaic staining within the apical surface

(Fig. 1B, Fig. 1 in Supplementary materials). The exclusion

of GM3 from microvillar-associated prominin-1–positive

microdomains particularly upon cell surface staining of living
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cells (Fig. 1A) suggest its localization in the more planar re-

gions of the apical domain. Chigorno et al. have demonstrated

by electron microscopy using immunogold labelling indeed

that GM3 is found in the planar areas of MDCK plasma mem-

brane [18].

3.2. Both gangliosides GM1 and GM3 are associated with the

primary cilium

We extended our analysis to another plasma membrane pro-

trusion emerging from the apical plasma membrane domain,

i.e. the primary cilium, where prominin-1 is concentrated as

well [19,20] (see also Fig. 2, top panels). Surprisingly, both

GM1 and GM3 were detected in the primary cilium as revealed

by their co-localization with acetylated tubulin (Fig. 2, middle

and bottom panels, respectively). [Note that the method of fix-

ation does not interfere with the conclusion (data not shown;

see also Fig. 3; Fig. 2 in Supplementary materials)]. Thus,

GM3 appears to be enriched in the primary cilium (Fig. 3, sec-

tions a and b; see also Fig. 2 in Supplementary materials), but

not in microvilli (Fig. 3, sections b and c; Fig. 2 in Supplemen-

tary materials), although both membrane protrusions contain

prominin-1 (Fig. 3, sections a, b, c; Fig. 2 in Supplementary

materials). In the cilium, GM3 is found at the base up to the

tip (Fig. 3, arrowheads and arrows, respectively; Fig. 2 in Sup-

plementary materials). Together, these observations reveal a

complex distribution of distinct membrane microdomains

within the apical domain of polarized epithelial cells. Interest-

ingly, Vieira and colleagues have drawn recently a similar con-

clusion based on the subcellular localization of various apical

proteins [21] (see also commentary in Ref. [22]).
Fig. 2. Both gangliosides GM1 and GM3 are found in the primary
cilium like prominin-1. Double fluorescence analysis of PFA – (top and
bottom panels) or PFA/methanol – (middle panels) fixed, saponin-
permeabilized prominin-1-transfected MDCK cells shows the presence
of prominin-1, GM1 and GM3 in primary cilium as revealed by their
co-localization with acetylated tubulin (Ac Tub). An optical xy-section
is presented. Scale bars, 2 lm.
The observation that the primary cilium, in contrast to the

microvillus, could host both types of gangliosides is highly

intriguing and might reveal a new complexity of cilium func-

tion(s). Whether both gangliosides reside inside the same

microdomain or are part of two distinct entities needs to be

solved, and novel techniques such as atomic force microscopy

will be needed to investigate this issue.
3.3. Ganglioside distribution in non-epithelial cells

The segregation of GM3 from microvillar structures positive

for prominin-1 is not unique to epithelial cells since a similar

result was observed with primary mesenchymal stem cells

transfected with a prominin-1 expression plasmid (data not

shown). This indicates that the microvillar exclusion of this

particular ganglioside is a general phenomenon observed not

only in epithelial cells but also in non-epithelial cells. These

observations are in line with the asymmetrical distribution of

membrane raft markers (lipids and proteins) observed in

migrating lymphocytes [23] and hematopoietic progenitors

[24] where they acquire a polarized cell morphology with the

formation of a leading edge in the front and a uropod at the

rear pole. Membrane microdomains of the leading edge have

been reported as being enriched in GM3 whereas the uropod

contained GM1-enriched microdomain [23]. It is not a coinci-

dence that prominin-1 is concentrated as well in uropods

[24,25].
3.4. Physiological considerations

The molecular mechanism underlying the selective associa-

tion of the pentaspan membrane glycoprotein prominin-1 with

plasma membrane protrusions as well as its incorporation into

specific membrane microdomain are currently unknown. How-

ever, two scenarios, not mutually exclusive, can be envisioned.

First, the prominin-1 transmembrane domains, of which three

are unusually long (26–28 amino acids) might increase by their

interaction with the surrounding lipids, e.g. GM1, the thickness

of the plasma membrane, and consequently modify locally the

general organization of the lipid bilayer. Second, the large

prominin-1 extracellular loops carrying glycan moieties might

induce the self-aggregation of prominin-1 by homotypic inter-

action, which in turn would drive the clustering of small aniso-

tropic membrane inclusions and, hence, potentially change the

membrane curvature. Such theoretical considerations have

been recently postulated [26,27]. Physiologically, the coales-

cence of small membrane inclusions into a large membrane

microdomain [3,10] particularly at the edge of the microvillus,

might create a phase separation with regard to the surrounding

‘‘non-raft’’ microenvironment leading to the budding of small

raft-associated membrane particles [4]. In this particular con-

text, it is important to note that small membrane particles

(50–80 nm) containing prominin-1 are indeed released into

the MDCK culture medium [19] as well as into various physi-

ological extracellular fluids, e.g. urine, tear, saliva and seminal

fluid [20,28]. Remarkably, prominin-1 molecules associated

with these particles exhibited the same detergent solubility/

insolubility and cholesterol dependence (Marzesco A.-M., Wil-

sch-Bräuninger M., Janich P., Huttner W.B. and Corbeil D.,

manuscript in preparation) as those found within the apical

plasma membrane protrusions (see Section 1 Ref.[7]).

Finally, it is important to note that neither prominin-1 nor

any gangliosides studied here are essential for the formation



Fig. 3. Differential subcellular localization of GM3 and prominin-1 within the apical plasma membrane. PFA/methanol-fixed prominin-1-transfected
MDCK cells were double-labelled with anti-GM3 (red) and prominin-1 (green) antibodies and observed by confocal laser scanning microscopy.
Three consecutive single optical x–y-plane sections (1 lm each) at the level of the primary cilium (a,b) and microvilli (b and c), as outlined in the
cartoon, are shown. Note the presence of GM3 in the primary cilium (a,b), but not in microvilli (b, c), although both membrane protrusions contain
prominin-1. Arrows (a) and arrowheads (b, c) indicate the tip and base of cilia, respectively. Asterisks mark an intercellular space artefact created
upon PFA/methanol fixation. TJ, tight junction. Scale bar, 5 lm.
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and/or maintenance of plasma membrane protrusions within

the apical domain given that such membrane structures exist

without them (data not shown). Nevertheless, their presence

might confer some specific properties to these protrusions.

Clearly, further investigations are needed to determine the

complete composition and/or organization of various micro-

domains within the apical plasma membrane of polarized epi-

thelial cells.
4. Conclusions

In conclusion, the present results substantiate the hypothesis

that the microvillar plasma membrane subdomains of the api-

cal domain are composed of lipid microdomains that differ in

composition, e.g. ganglioside species, from those found in the

non-protruding region, and reveal surprisingly that two apical

plasma membrane protrusions with different structural bases

(actin for the microvillus and tubulin for the primary cilium)

contain distinct lipids.
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scher Fond für Regionale Entwicklung (4212/05-16). The authors are
grateful to Dr. C.A. Fargeas for editing the paper.
Appendix A. Supplementary data

Supplementary data associated with this article can be found,

in the online version, at doi:10.1016/j.febslet.2007.03.065.
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