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Introduction

Characterizations of semisimple structures prove the equivalence of two kinds
of conditions. Very roughly, one (the null radical) characterizes semisimplicity as
the absence of a certain sort of substructure (e.g. no normal Abelian subgroup);
the other (reducibility) characterizes a semisimple structure as a direct product of
simples. Theorems of this sort require some sort of chain condition on ideals
(normal subgroups) as a hypothesis. In this paper we consider versions of these
results which make some definability hypothesis on the ideas. Not only do these
variations arise naturally in model theory but they direciily generalize the analysis
of semisimple algebraic groups. Section 1 deals with several variations on the ‘null
radical’ formulation and shocws that under appropriate stability hypotheses the
conditions involving definabie subgroups are equivalent to those involving
arbitrary subgroups. Iz Section 2 we prove a weak form of a decomposition into
simple groups. In Seciica 5 we intrcduce the notion of an a-semiregular group.
These refine (for superstable groups) Hrushovski’s notion of a semiregular group.
In Section 4 we prove a theorem decomposing a superstable semisimple group
{with monomial U-rank) as a product of a-semiregular groups. This generalizes
Lascar’s analysis of semisimple groups of finite Morley rank. Finally we show that
any superstable group is an extension of a solvable group by an w-stable group.
We conclude with a list of problems. Some arose here; others seem more pressing
than before in the light of the work here.

For general algebraic background see [18] or [11]. Our model-theoretic
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terminology follows [2] and [14]. For the interaction of group theory and model
theory see [G; and [16].

1. What is a semisimple group?

The first section of this paper concerns a foundational and pedagogical issue.
We consider the specialization to several categories of groups of a natural abstract
definition of ‘semisimplicity’. We show that they in fact reduce to the same
definition which does not depend on the category. At the same time we outline
the properties of semisimplicity and two major results about semisimple groups
which one would like to prove in each category. -

We do not use the word category in the standard technical sense. Rather by a
category K of groups we mean a class of groups and specific notion of ‘subgroup’.
We will consider six such categories. Our results are new only for the last two.
They specialize to yield new proofs of old results for the third and fourth cases.

We need some technical notation to define the categories. We work in a fixed
language L with a distinguished binary operation. A stable group is a stable
structure for this language which is a group with respect to the distinguished
operation.

1.1. DeSnition. A subgroup H of a group G is type-definable or (/\-definatle) if
the universe of H is the intersection of a family of at most |L} definable subsets
$:(G) and the ccajunction of the ¢; define a subgroup in every group
elementarily equivalent to G which contains the parameters of the ¢;.

Poizat proved in [17] the important fact that if G is stable the ¢; in this
definition can be chosen to define subgroups. In fact, most of our type-definable
subgrouvps will arise in this way. On the other hand, Lascar and Berline in [6]
point out that, again wher G is stable, the intersection of any family of defirable
subgroups is equal to the intersection of at most |L| definable subgroups. The
following proposition follows easily from compactness. The saturation hypothesis
on G is necessary to show the minimal subgroup is nontrivial (and in fact infinite).

1.2. Proposition. If G is a |L|"-saturated stable group, then the intersection of any
family of infinite type-definable subgroups of G which is closed under finite
intersection is an infinite type-definable subgroup of G.

One of our principal goals is to examine the common principles behind the
study of semisimple finite groups and the study of semisimple algebraic groups.
Two key factors arise in each case. A ccrtain class of subgroups is considered (all
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in first case; Zariski closed in the second). This class of subgroup satisfies certain
chain conditiozis. In order to treat uniformly these two cases and various model
theoretically defined classes we speak of categories of groups.

1.3. Some categories of groups

Groups. The class of all groups with K-subgroup meaning subgroup.

Finite groups. The class of finite groups with K-subgroup meaning subgroup.

Algebrsic groups. The class of algebraic groups over an algebraically closed field
with K-subgroup meaning closed (in the Zariski topology) connected subgroup.

w-Stable groups. The class of grcups definable in an w-stable structure with

K-subgroup meaning definable connected subgroup.

Superstable groups. The class of groups definable in a superstable structure with

K-subgroup meaning /\-definable connected subgroup.

Stable groups. The class of groups definable in a stable structure with K-
subgroup meaning /\-definable connected subgroup.

A Zariski-closed subgroup of an algebraic group over an algebraically closed
field is definable and every such group is w-stable with finite rank so the fourth
class generalizes the third.

Finite groups of course satisfy the descending chain condition on subgroups.
w-stable groups and a fortiori groups in category 3 satisfy the descending chain
condition on K-subgroups. Proposition 1.2 provides a weaker kind of minimal
condition for familics of K-subgroups in ca:>gories = and 6. While infinite
descending chains of K-subgroups may exist we can still find a K-lower bound. In
this last case we must restrict to saturated models to guarantee that the lower
bound remains infinite. We will be able to transport most of the important results
back to arbitrary models.

It would be plausible in the last four cases to omit the adjective connected in
the definition of ‘subgroup’. There are two reasons for including it. On the one
hand it widens thz applicability of the theory, e.g., since SL(2, €) as well as
PSL(2, €) is now semisimple. On the other hand it yields the maximal (i.e.
ascending chain) condition on normal solvable subgroups which allow us tc prove
the existence of a solvable radical (Proposition 1.7). By requiring K-subgroups to
be connected we obtain the maximal condition for the cases of algebraic groups,
w-stable groups of finite rank, and superstable groups of finite U-rank.

We now outline the general definition and program for discussing semisimple
groups in each of the categories. There are two connotations to the word
semisimple. One is “direct product of simples’; the other is ‘absence of a radical’.
Under certain finiteness conditions precise versions of these notions are proved
equivalent in various contexts. Our intention here is to provide a common
model-theoretic generalization of several of these contexts. We begin with the
‘radical’ version; the ‘product of simples’ version shows up ir: Definition 1.19.
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1.4. Defimitior. (i) The group G is K-simple if it contains no proper normal
K-subgroup.

(ii) The group G is K-semisimple if it contains no nontrivia! normal solvable
K-subgrovp.

(iii) The group K is the solvable K-radical of G if K is a maximal normal
solvable K-subgroup of G.

1.5. Program. Now the general program is .0 prcve two results:

(i) Every group in the class is an extension of a solvable group by a semisimple
group.

(ii) Classify the semisimple groups.

Applying this schema in the model-theoretic context we have two possible
definitions.

1.6. Definition. (i) The group G is definably simple if it contains no infinite
normal definable subgroup.

(ii) The group G is /\-definably simple if it contains no infinite normal
/\-definable subgroup.

However, Poizat’s proof [17] that a proper normal /\-definable subgroup of a
saturated group is contained in a proper normal definable subgroup and the fact
[6] that a group is definably simple in the sense of (i) just if every G’ elementarily
equivalent to G is also definably simple shows that the definitions in 1.6 coalesce.
We call the resulting notion definable simplicity.

In pure group theory a simple group is one with no normal subgroups. A slight
generalization, sometimes called almost simple, is to only require that there be no
infinite normal subgroups. In this paper we work entirely in the more general
situation. A second nuance to this problem arises because under certain
definability conditions ‘infinite’ can be replaced by ‘connected’. We discuss this in
Theorem 1.9.

For superstable groups [6] proved a group is simple if and only if it is definably
simple. It remains open whether this can be extended to stable groups. We show
below that the analogous result does held for stable semisimple groups.

The following proposition, which shows the existence of a ‘solvable radical’, is
obvious, noting that the product of twe normal solvable groups is solvable. Note,
however, that it would fail if we attempted to define an ‘abelian radical’ but since
a product of normal nilpotent subgroups is nilpotent a simiiar argument
constructs a ‘nilpctent radical’.

1.7. Proposition. If K satisfies the ascending chain condition on K-subgroups and
the product of tw» K-subgroups is a K-subgroup, then each G € K contains a
unique maximal normal solvable K-subgroup.
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Of course the ascending chain condition fails miserably in the category of all

groups. It succeeds equally trivially for finite groups. It holds for non-trivial
reasons for algebraic groups and certain model-theoretically defined classes. In
particular we have the following corollary which specializes to the categories of
algebraic groups and w-stable groups of finite rank.
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by semisimple.

There are three parameters distinguishing the six conditions in the following
theorem. The subgroup may be definable, /\-definable, or satisfy no definability
condition. It may be solvable or abelian. It may be infinite or connected. The last
two are simply appropriate variants for the category of the same condition. A

definable connected oroun is infinite: a /\.rlpﬁnnhlp connectad group ic infinite if
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the ambient structure is |L|*-saturated.

1.9. Theorem. Let G be a stable group. The first four of the following are
equivalent; if G is |T|*-saturated all six conditions are equivalent.
(1) G has no normal inﬁnite solvable subgroup.

(i3} f‘ bao nn normal infinito doﬁnnh’e cn’ﬂnh'a cnhnrnup

(ii) G has no normal infinite definabl
(iii) G has no normal infinite abelian subgroup.

(iv) G has no normal infinite definable abelian subgroup.

(v) G has no normal connected /\-definable solvable subgroup.
(vi) G has no normal connected /\-definable abelian subgroup.

Proof. The implications (i)— (ii) and (jii)— (iv) are trivial. It is easy to see that
(ii) implies (iii) since if H is a normal infinite abelian subgroup of G then
Z(Cg(H)) is a definable normal infinite abelian subgroup of G. Corollary 1.14
whick we will now prove, shows (ii) implies (i) and (iv) implies (iii). Thus there
are two equivalent conditions for ‘solvable’, two equivalent conditions for
‘abelian’, and the ‘solvable’ conditions easily imply the ‘abelian’ conditions. Since
[5] shows that a solvable stable group has a definable abelian subgroup of the
same cardinality, (iv) implies (ii) and the ‘abelian’ conditions imply the ‘solvable’
conditions. If G is |L|*-saturated condition (v) is ‘sandwiched’ between (i) and
(ii) by taking connected components and similarly for (iii), (vi) and (iv). O

Note that in the case of w-stable groups of finite rank (:nd algebraic groups)
the descending central series is definable and the equivalence of the ‘solvable’ and
‘abelian’ case is much easier.

We say a stable group is semisimple if it satisfies any of the equivalent
conditions of Theorem 1.9. Note that a definably simpie group is semisimple.

1.10. Notation. For any subset X of the group G, let X denote the intersection
of the type-definable subgroups containing X.
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We rely on the following result from [17]. Ng(H) denotes the normalizer of H
in G, the set of elements g of G such that H =gHg™'=H.

i.21. Lemme. If H is a type-definable |T|*-saturated subgroup of a stable group
G, then Ng{H) is also type-definable.

The following facts have long been Lnown when A denotes the definable
closure of : subset of an @-stable group. We extend the result to stable groups.

1.12. Theorem. Suppose G is stable, |T|*-saturated and A<\Bc G. If B/A is
abeliar so i B/A.

Proof. Suppose C and D are type-definable so is each D..

We first observe that A<IB implies B normalizes A. For, if not, for scme
beBANA®isa type-deﬁnable subgroup of G which properly contains A and is
properly contained in A. Thus B c Ng(A) which is type-definable by the previous
lemma. We further deduce: B normalizes A.

Now applying the first paragraph of the proof with B as C and A as D, we see
that for each be B, A, is a type-definable group. Consequently, so is H =
(Mses Ap- Since B/A is abelian, B < H and so B=H. Let H={,c5A,. Since
H2B, [B,B]lcAandso Bc H, i.e. B=H. By the definition of /, [H, B]c A
so [B, B]c A as required. O

A first application of this resuit is the following corollary (wkich also appears in

[16]).

1.13. Corollary. Let H be an n-step solvable subgroup of a stable |T|*-saturated
group G.

(i) H is an n-step solvable type-definable subgroup of G.

(ii) There is a definable n-step solvable subgroup H containing H.

Proof. (i) Induct on n. If n=1, note that H c Z(C;(H)) (which is actually
deﬁnable) Suppose the lemma holds for k<n and H is n-step solvable. By
Theorem 1.12, H/(H') is abelian and by induction (H") is n — 1-step solvable
so we finish.

(i) For any |T|*-saturated G any first order property such as k-step solvability
which holds of a type-definable subgroup of G can be seen by a straightforward
compactness argument to hold of a definable supergroup. O

The following coroliary completes the proof of Theorem 1.9.

1.14. Corollary. Let H be an n-step solvable subgroup of a stable group G. There
is a definable n-step solvable group H containing H.
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Proof. Let G* be a |T|"-saturated clemcntary extension of G. Applying
Corollary 1.13(ii), there is a definable subgroup H, of G* which contains H and is
n-step solvable. But then by stability, H; N G is definable in G and a subgroup of
an n-step solvable group is n-step sclvable. O

We can now establish in our context the standard fact that a normal subgroup

of a semisimple group is semisimple. We need one technical fact which will be
exploited several times later on.

1.15. Proposition. Suppose H and K are normal connected [\-definable sub-
groups of G and H N\ K is finite. Then H and K commute.

Proof. Fix h € H. Note that [h, K]c HN K and so is finite. Thus, 72X is finite.
This implies Cx(#) has finite index in K and so by connectedness equals K. Since
h was arbitrary we finish. O

1.16. Lemma. Let H be a type-definable subgroup of a |T|*-saturated stable
group G. If H is not semisimple, H contains a characteristic infinite abelian

cishornun which ic defnah opsr g mamasasctans sicad sl FPEN
subgroup which is definable from the parameters used in the definition of H.

Proof. Since H is not semisimple, there is a normal type definable abelian
subgroup H, of H. Let K< H, be a minimal normal infinite type-definable
subgroup of H. Necessarily, K is abelian. Then every conjugate of K by an
automorphism of H is also minimal type-definable infinite and abelian. Since K
and each of its conjugates is connected and have finite intersection, Proposition
1.15 implies they commute in pairs. Thus the product K of the conjugates of G is
abelian. So Z(Cy(K)) is characteristic in H and a definabie abelian subgroup of
H. Thus, it is definable from the same parameters as H. 0O

It is now clear that semisimplicity is a property of the theory of a stable group
G rather than just of G. Formally,

1.17. Corollary. Let G Je stable and G* =G. If G is semisimple, so is G*.

Proof. Suppose not; let G be a |T|*-saturated elementary extension of G*.
Theorem 1.9 implies immediately that an elementary extension of a group which
is not semisimple is not semisimple. But if G is not semisimple, Lemma 1.16
implies G contains a @-definable infinite normal abelian subgroup. But ihen so
does G contrary to hypothesis.

1.18. Coroliary. Let G be a stable semisinple group and H an infinite normal
/\-definable subgroup of G. Then H is semisimple.
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Proof. Without loss of generality G is |7|*-saturated. If H is not semisimple,
Lemma 1.16 implies H has a characteristic type-definable abelian subgroup and
thus a normal type-definable abelian subgroup of G, contrary to hypothesis. O

We conclude this section by indicating the general form a characterization of
semisimple groups should take and the various approximations to this form which
have been proved. For this we need the following definition.

1.19. Definition. (i) The group G is centerless completely reducible (ccr) if G is
isomorphic to a direct product of nonabelian simple groups.

(ii) The group G is almost centerless completely reducible (accr) if G/K is
iscmorphic to a direct product of nonabelian simple groups for some finite central
subgroup K of G.

In the second case we say G is an almost direct product of the simple groups.
Viewed internally this means that there exists a family H; of normal subgroups of
G whose product is G, which pairwise commute and such that the intersection of
each H; with the product of the other H; is finite.

Now the ideal formulation of the characterization theorem asserts

1.20. Ideal result. A connected K-semisimple group is accr.

This result in fact holds for the category of algebraic groups. It comes as close
as possible to holding for finite groups (where connectedness makes no sense). If
G is a finite semisimple group, then there is a ccr group G with G = G < Aut(G)
[11]. Here are three model-theoretic analogs of this result. The similarity of the
first with the case of algebraic groups is clearer if one recalls that a simple
w-stable group of finite Morley rank is X,-categorical [15]. The third depends on
the notion of a-semiregularity introduced in Section 3.

1.21. Theorem. Let G be a stable semisimple group.

Lascar [12]. If G is a connected w-stable group with finite rank, then G is an
almost direct product of alinost strongly minimal groups.

Theorem 24. If G is a |T|*-saturated connected stable group, then G is
contained in the algebraic closure of an /\-definable subgroup G of G which is an
almost direct product of finitely many definably simple groups.

Theorem 4.2. If G is a connected superstable group with monomial U-rank
w°k, then G is an almost direct product of a-semiregular groups.
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In the second case we can replace definably simple by simple and /\-definable

by definable if we strengthen the hypothesis to superstable. The last two results
are proved in Sections 2 and 4 respectively of this paper.

We have proved the results of this section for groups which are stable in their
own right. It is not difficult to see that the arguments here generalize to
type-definable subgroups of a stable group and we use this fact in Section 4.

2. Algebraic decomposition theorems

In this section we find in a stable semisimple group G a subgroup G such that
G cacl G and G is a direct product of (definably)-simple groups.

We begin with two model-theoretic facts which are used to prove this resuit.
The first is a slight variant on an old remark [3].

2.1. Lemma. Let {H;:i <I) be a collection of nonabelian subgroups of a group G
which commute in pairs. If I is infinite, then G has the independence property (and
so is unstable).

Proof. We show that for each n<w, each S=n, and each m <n there are
elements c,, and dj such that (c,,, ds] =1 if and only if m € S. Choose, for i <n,
a;, b; € H; which do not commute. Now let c,, = a,, and ds = [1; s b;. This implies
the formula [x, y] =1 has the independence property. O

We again employ the descending condition on centralizers.

2.2. Lemma. Suppose G is a stable group and H is a normal subgroup of G. Then
G/Cg(H) is contained in the definable closure of H.

Proof. Choose a finite subset Hy < H with Cs(H,) = Cg(H). Note that a and b in
G are in the same coset mod gt H) if and only if h° = h® for all k € H if and only
if h*=h" for all h € Hy. Thus the coset & =gCs(H) is defined by the formula
@(x): Ay) y €x A Nnen, B’ = h8. The g" for h € H, form a finite subset of H so
the parame.iers of this formula are from H. 0O

We deduce immediately

2.3. Corollary. If G is stable, H is a normal subgroup of G, and Cg(H) is finite
(trivial), then G < acl(H) (G cdcl(H)).

Here is the first decomposition theorem.
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hd
2.4. Theorem. If G is a |T|"-saturated connected stable semisimple group, then G

is contained in the algebrau: closure of a /\-definable subgroup G which is an
almost direct product of /\-definable definably simple groups.

Proof. Let {H;:iel} be the set of type-definable minimal infinite normal
subgioups of G. The minimality guarantees that the H; are connected. Since G is
semisimple, the H; are nonabelian. Clearly if i #j, then H; N H; is finite. So by
Proposition 1.15, the H; commute pairwise. Thus by Lemma 2.1, [ is finite. Now
G =1l H; is a connected characteristic subgroup of G which is type-definable.
By Corollary 2.3 to show G c acl G we need only show Cg(G) is finite. But if
not, Cs(G) must contain one of the H; which is therefore abelian. But this

contradicts the semisimplicity of G. 0O

It remains only to note that the following lemma shows each H; is a definably
simple group. The lemma extends a similar observation for w-stable groups that
is made in [16].

2.5. Lemma. Suppose G is a |T|"-saturated connected stable semisimple group
and H is a minimal type-def+.able infinite normal subgroup of G. Then H is
definably simple.

Proof. Suppose for contradiction that H is not definably simple. By Lemma 2.1
there are a finite number K, ..., K, of minimal type-definable (in G) normal
subgroups of H. Conjugation of H by an element of G induces a permutation of
the K;. Since the intersection of any two K; is finite, by compactness there exists
for each i a definable subgroup K of G containing K; such that distinct K}
intersect in a finite set. Let A be a finite collection of formulas such that every
conjugate of any of the K is definable by an instance of a formula in A. Now let
L; be a minimal A-definable subgroup containing K;. An element geG
conjugates K; to K; if and only if it conjugates L; to L;. Thus the action of G by
conjugation on H induces a definable action which permutes the finitely many L;.
Since G is connected, each L; is normal in G. A fortiori, each K; is normal in G.
By the minimality of H, each K; = H. That is, H is definably simple. O

Note that if G is superstatle, the definably simple factors are actually simple.
With the aid of the following lemma we cza remove the saturation hypothesis in
T zorem 2.4 if the group is superstable.

2.6. Lemmz. If H is a type-definable normal simple subgroup of the |T|*-
saturated group G, then H is definable.

Procf. Let ¢,,(x, y) assert that y is a product of at most m corjugates in G of x or
x~. Since H is simple the type asserting that a and b are in H but for every m,
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—1¢n(a, b) is inconsistent. But then, since H<IG, there is an m such that for any
a € H the formula ¢,,(a, b) defines H. O

We can now conclude

2.7. Corollary. If G is a superstable semisimple group, then there is a definable
subgroup G of G which is an almost direct product of simple groups such that
G cacl(G).

Proof. By Theorem 2.4 we find a G in a |T|*-saturated clementary extension of
the given G. By Lemma 2.6 G is definable. But as the product of the minimal
type definable normal subgroups G is characteristic and thus 0-definable. The
conclusion now transfers back to G. 0O

3. Monomisl U rank and a-semiregularity

This section depends on some rudimentary but important consequences of the
Lascar inequalities for U-rank. The first is well known. If U(q) =@k and
U(p) < w® then p 1 q. Note that in fact p is hereditarily orthogonal to g(p L q)
in the sense that every extension of p is orthogonal to g. Secondly, if U(q) = @k
then g can be decomposed as (i.e. is bidominant with) @ p; where each p; is a
regular type of rank w®. (This remark is contained in the proof of Proposition 5
of [13].) Finally, recall the transitivity of ‘U-rank is less than o ®: if U(a; bB) <
o®and U(b; B) < @ “ then U(a; B) < *.

It is easy to find examples of regular types which do not have U-rank «“ or
even monomial U-rank. For the first just take a single equivalence relation with
infinitely many infinite classes. For the second take the theory of w + 1 refining
equivalence relations with finite splitting. Note that in the second case, the type
of rank w + 1 is nonorthogonal in 7°9 to a type of rank 1 but is orthogonal to any
type of rank w.

Recall that a superstable group G is a-connected if G has no proper definable
subgroups K with U(G/K)<w® If G has monomial U-rank @k, then G is
corinected if and only if G is a-connected [6, 1V.4.6]. Corollary IV.2.8 of [6]
asserts that any superstable simple group has monomial U-rank.

3.1. Notation. For any connected stable group G, we denote by g the generic

type of G.

Borrowing from the practice in commutative ring theory of describing a pc-ver
of a prime ideal as primary, we define the concept of a primary type.
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3.2. Defipition. A type q is p-primary if q is bidominant with a power of the
regular type p. The type q is primary if it is p-primary for some regular p.

Note that if g is p-primary then for any regular type r, r X q if and only if r X p.
Thus, q is p-primary is really a property < the nonorthogonality class of p.

Now, we introduce the main notion of this section, an a-semiregular group.
We will decompose a superstable group with monomial U-rank as an almost
direct preduct of a-semiregular groups. This decomposition generalizes the kinds
of decomposition we have described above (Theorem 1.21) since a group which is
almost strongly minimal or simple (see Corollary 3.16) is a-semiregular.

3.3. Definition. (i) The type q is a-vemi-egular with respect to p where
U(p) = o*if for some &, U(q) = ok and q Op~.

(ii) The connected saperstable group G is a-semireguler with respect to p if q5
is.

The demand of a-semiregularity exceeds p-primacy by demanding that the &
with g O p* is the coefficient of the U-rank. We see below that this imposes the
ostensibly stronger requirement that g is p-simple.

We wik apply the following technical remark on several occasions.

3.4. Proposition. Suppose l{(a;M)= 0%, b=(b,,...,b) is an independent
sequence over M, and a Uy b where for each i, U(b;; M) = w® Then U(a; bM) <
«@%if and only if = k.
Proof. By the Lascar inequality we have

U(a; bM) + U(E; M) < U(b; aM) ® U(a; M).
From this inequality and the hypotheses we have

U(a; bM) + 0 1< U(b;aP) <, ... -

Since each b; depends on « .. & (by bidomination), U(b;aM)< w®
Examining the last ineq:alit ¢ see that / <k (always). On the other hand, we
have

U(b; aM) + U(a; M) < U((a; bM) ® U(b; M).
Again since U(b; aM) < w*®, this implies

0%k < U(a; bM) ® 0.
So U(a; bM) < 0* implies k<! and so k=/. Conversely, if k=1 the last
inequality implies U(2; bM) < @* and we finish. O

a-semiregularity is a refinement of the notions of semiregularity and p-
simplicity introduced by Shelah [19] and Hrushovski [9].
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3.5. Definition. (i) A stationary type q is hereditarily orthogonal to a type p
(written g L p) if every extension of g is orthogonal to p.

(ii) The stationary type q is p-simple (where p is regular) if there exist B, c,
and I such that c realizes q | B, I is a set of independent realizations of p | B and
stp(c; BUI) L p. The minimal cardinality of such an / is the p-weight of q,

wt,(9). We sometimes shorten wt,(¢(a; B)) to wt,(a/B).

(iii) The group G is p-semiregular (of weight n) if G is connected, g is
p-simple, and g O p".

3.6. Lemma. If G is a-semiregular with respect to p, then G is p-semiregular.

Proof. We must show g =g is p-simple. Since ¢ O p*, there is a very saturated
model M, a realizing g™ and I realising the nonforking extension of p* to M such
that @ and I are bidominant over M. It suffices to show that t(e; MUI) is
hereditarily orthogonal to p. Noting U(q) = @®|I|, this now follows immediately
from Proposition 3.4 (using I for b) and the observation which opened the
section. O

When a is 0 we get a more familiar notion.
3.7. Theorem. An w-stable O-semiregular group is almost strongly minimal.

Proof. By assumption, ¢ is bidominant with p* for some type p {without loss of
generality stationary) which has U-rank 1. We show in the next paragraph that p
is nontrivial; by [8], p has Morley rank 1. As in the previous argument we can find
a saturated model M, a realizing g™, and I realising the nonforking extension of
p* to M such that a and [ are bidominant over M. Again, by Proposition 3.4,
U(a; IM)< ©®=1. Thus G is contained in the algebraic closure of a strongly
minimal set. ‘

Since G is a group g is nontrivial. Over some quite saturated model M choose
a triple {«;, a;, a;) to witness the nontriviality and for each i a sequence
b;=1(»%, ..., b%) which is bidominant with @, Let / be minimal so that
b3, ..., bi4u bi"b,. Three elements from b, Ub, U (b, .. ., b} form a triangie
over the rest so p is nontrivial. O

3.8. Proposition. Suppose U(a; M) = w“k and X is a set of realizations of regular
types over M, which have rank w*®, such that a{y X but a|y Y for any proper
subset Y of X. Then X is an independex: set over M.

Proof. For any x € X, let X, =X — {x}. Then a |y X,. If U{x/X,M)<w“ then
the initial observation of this section: again yields #(x; X,M) L q. But, a {x ux so
for each xeX, U(x;X,M)=w"“ and so since U(p;)=w® we conclude
X lM Xx. [
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There are two quite distinct possible meanings for the assertion ¢ L H where H
is a group. One might mean g is orthogonal to the generic type of H; we adopt a
much stronger convention.

3.9. Definition. We write g L H if for any sequence ¢ € H, q is orthogonal to
#(E; B).

In general a group K may be contained in the algebraic closure of a group H
and yet the generic of K is orthogonal to the generic of H. (See e.g., Exercise 17
of [1].) However, gy is certainly nonorthogonal to H in the sense defined here.

We are most interested in products of a-semiregular groups.

3.10. Notation. The subgroup H of a group G is centerless a-completely reducible

ymttan v _onr) if IF ic o finite almact diract nrnduct of cunhoranne H. caticfuine thae
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following conditions. Each H; is normal in G and /\-definable over acl(@). For
each i, the generic p; of H; is a-semiregular with respect to p; for a regular type p;
with U-rank “ and the j; are pairwise orthogonal.

Whenever we deal with an a-ccr group we will assume that the associated
subgroups and types are denoted p;, j; and H..

3.11. Lemma. Suppose q ¥ H, H is a-ccr, and U(q) = w®k. If q is primary, then
q is p;-primary for some i.

Proof. Let M be a large saturated model and a realize g". Since q X H, for some
finite X ¢ H(IM), a {4 X. Since every element of H is a product of generics and
every realization of g, is a product of realizations of the p;, we may assume that
each member of X realizes pM for some i. Since each realization of p; is
bidominant with a sequence of realizations of p;, we may assume X is a set of
realizations of the p¥. If X has minimal cardinality, by Proposition 3.8, X is
independent over M. But q Y t(x; MX,) so q X jp; for some i. Since q is primary
the i :u -t be unique and q is domination equivalent to a power of p;. [

The following technical property of U-rank plays a crucial role in later
arguments.

3.12. Lemma. Let q =tp(c; M) and suppose U(q)= w®. Suppose further that
U(c; IM) < o™ and each x € I realizes a type 7, over M with U-rank o®.

(i) If I' is a basis for 1 over M, then U(c;I'M)< w® Thus t(c; M) X p, for
some x € 1.

(ii) If for some k, U(q) w°k and all x €I realize the same type p € S(M)
where the U-rank of p = w*, then q is p-primary
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Proaf. (1) Let I’ be a basis for 7. Then llll...l' I’\/f\“ en hy “4ranci v
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U-rank less than w®, U(c; I'M)<w® By the mvnahty of nonorthogonality
t(c; M) X p, for some x € I' which is more than required.

(ii) We may choose a representative, r, of the nonorthogonality class of any
regular type nonorthogonal to g, with U(r) = * Thus, if dEr™ and d{yc,
U(d;cM) < @“. By ‘transitivity of U-rank less than 0, U(d; IM) <o By (i),

r X p. We have shown every reguiar type nonorthogonal to g is nonorthogonal to
D SO q is p-primary. O

The class of a-semiregular type satisfies the following important closure
condition.

313, Lemma, Supnose that for i<r (h ‘4) 7

i\ e 2O R SUPPOS Jo! ~ 7 “g agomrranu’nr u):f’q rocononrt f[l

ToLF LA VY EEIE TLUpULE V

p,ce€acl(by, ..., b,_,), and U(c; A)=w (for some k). Then t(c;A) is
a-semiregular with respect to p.

Proof. Without loss of generality, A is the universe of an extremely saturated
model M. For i <r, let I; be an independent sequence of realizations of p™ which
is bidominant with b; and let 7 denote the union of the I,.

We note first that U(c; IM) < o*. Since each p; is a-semiregular with respect to
p, Proposition 3.4 implies U(b;; IM)<w® so U(b,, ..., b,_,; IM)<w® By
‘transitivity of U-rank less than o ®, U(c; IM) < w® Lemma 3.12(ii) shows that
g =t(c; M) is p-primary.

Since ¢q is p-primary, we can choose J so that cOyJ and JDycJ (i.e. Jis a
p-basis of Mjc]). Extend J to J' a basis for JI over M. We have U(c;JIM) < 0*.
Applying Lemma 3.12(i) to J’ and JI we see U(c;J'M)< w® Now (J' =J) | pJ
so, by our special choice of J, (J'—J)|ycJ and thus c |, (J' —J). Hence
U(c;JM) < w® By 3.4, |J| = k and we finish. O

Now we see that a-sciuizgular groups exist. We begin with a model-theoretic
version and then translate to the group theoretic situation. We are just squeezing
a little more information from the existence arguments of Hrushovski for
p-simple types and p-semiregular groups.

We need one moic property relating the U-rank of a type g with the U-rank of
regular types nonorthogonal (0 g. If U(q) = 0*'n; + - - - + @™n, with ;> -+ - >
@, then there is a regular type r which is not orthogonal to g with U(r) = o™
[16, Lemma 7.5].

3.14. Lemma. Let q =tp(a/A) where A is algebraically closed. If p is a regular
type of least U-rank (necessarily of the form w®) which is nonorthogonal to q there
is an e e dcl(aA) such that t(e; A) is a-semiregular with respect to p.
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Proof. Let p be based on Y, where without loss of generality a}, Y. Choose ¢
realizing p¥ such that c{ys. We will show that e, the canonical base of
stp(cY; Aa), is a-semiregular with respect to p. By rudimentary properties of a
canonical base e €acl(ad). A slight modification of e will find the appropriate
member of dcl(aAd). Let Yicy, . . ., Y,c,. . . be an independent sequence based on
stp(cY;aA). Now a |, Y implies @ |4 (Y}, ..., ¥,...) and thus since e € acl(4a)
ve conclude e |4 (Yy, ..., Y,...). A second basic property of canonical types
yields that eedc(Yicy,..., Y,Cs...). So, for some n, eedc(AU
Yic1s- .., Yaca). Since e |4 (1), - . ., ¥y), it suffices to show t(e; /. U {Y},..., ¥,})
is p-semiregular.

Let U(a; A) = @™n,- - - + ©™n; with @,>---> a;. By the minimality of «
and the remark before the theorem «; =a. On the other hand since ee
d(Yicy, ..., Y,C)and el (Yy, ..., ),

o Ule;AU{Y,, ..., Y.})<o®n, and
o every regular type mot orthogonal to tp(e; AU{Y,,..., Y,}) is not or-
thogonal to tp(Yicy, . . . , Yaca3 A) and so to #{c; Y).

From the remark preczding this lemma we see
U(e; A)=U(e; AL{Yh, ..., )=

for some m <n. Now by Lemma 3.12, tp(e; A) is p-primary and then by Lemma
3.13, tp(e; A) is a-semiregular with respect to p.

To get e € dcl(aA) replace it by an element e’ of M*? that is equidefinable with
the finite set of its conjugates over Aa. Each conjugate is a-semiregular and is in
acl(Aa) so e’ € acl(Aa). Applying again the remark before this lemma U(e’; A) =
@°m for some m. Now Lemmas 3.12 and 3.13 yield that ¢(e'; A) is a-semiregular
and we finish. O

3.15. Theorem. Suppose G is a connected superstable group which is normal in a
group G* end p is a regular type of at least U-rank, ©“>0, which is
nonorthcgonal to the generic q of G. Then there is a definable K<IG which is
normal in G* such that G/K is infinite and a-semiregulcr with respect to p.

Prooi. Since q is over the empty set, Lemma 3.14 implies there is an
acl(p)-definable function f such that if e realizes g, then r=tp(f(a);0) is
a-semiregular with respect to p. For each b € G let f, be the germ of a map from

G* X G into r defined generically as follows. For {a,, 0,) a generic of G* X G
over b, let

fo(61, 0)) =f(010,b07").
Note that as an element of 6°9, f, € dcl(b). Let
K= {beG:f,(0,, 05) =f.(0y, 7))}
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where {g. o) is seneric over b and ¢ is the identitv of . Now. if 2 is 2 sanaric
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of G, we show f; is interdefinable with the coset a/K. For this we need to show
that for any @, a,€G, aa;'€K if and only if f, =f,,. Suppose first that
aya;' € K. Let {0y, 0,) be generic for G* X G over {a,, a,}. Then (0,45, a,0,)
is generic for G* X G over {a,a5'}. But

So by the definition of f, ,;» and since 2,45 € K,

f((01a3")(a,0:)(a1a7 Ya01)) =f ((01a3")(a202)e(a01 ) = = fa)(01, 02).

Reversing the steps of this argument shows that f, =f,, implies 2, and a, are
congruent mod K. A similar computation with generics shows that K is normal in
G*.

We now need Fact 2.3 of [10]: If f is the germ of a map with domain g and
range r, then there is a B which is indepencient from f and a set I of realizations
of r| B such that f is definable over B U l. This result implies that for some B
independent from f,, f, is definable over BiJI where I is a set of realizations of
r|B. Since U(r) = 0% we conclude U(f;; B)=w% + y for some k and some
y<o® If y+#0, the remark before Lemma 3.14 implies there is an r’ X ¢(f,; B)
with U(r') < w“ Since f, is definable from a, r' X.q which contradicts the choice
of a. Thus U(t(f,; B)) = w°k. By Lemma 3.13, ¢(f,; B) is a-semiregular. As f is
interdefinable with a generic of G/K we finish. O

Now we can slightly improve Hrushovski’s observation that a simple super-
stable group is semiregular. (He actually states a version for stable groups.)

3.16. Corollary. If G is a simple superstable group, then G is a-semiregular for
some ¢.

The next lemma allows us to assume that any product of a-semiregular groups
satisfies the orthogonality conditions in the definition of a-crr.

3.17. Lemma. If H, and H, are connected subgroups of a superstable group G
which are a-semiregular with respect to a type p and H, N\ H, is finite, then HyH, is.
a-semiregular.

Proof. Let a, and a, be independent realizations of the generic types of H; and
H, respectively. It is easy to see that a,”a, is a-semiregular with respect to p.
Note that since H, N E, is finite and H; commutes with H,, H,H, is isomorphic to
(H, X Hb)/H, N H,. Thus the pair a,"a, is interalgebraic with the generic a,a, of
H,H, and we finish. 0O
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Since H, and H, are connected we could (with some furtker argument) replace
the hypothesis H, N H, is finite by the hypothesis UH, N H,) < 0 *

3.18. Lemma. Suppose G is a conne.’ed supersiable group such that U'(G) =
0%, LG, and U(LY< 0® Then G is a-semiregular if and only if G/L is
a-semiregular.

Proof. From the rank hypotheses and Corollary 8.2 of {6] it is easy to see that
U(G) = U(G/L) = k. Let g realize the generic type of G and g, the canonical
image of g, realize the generic type of G/L. Fix a large saturated model M and
choose I and J to be independent realizations of regular types over M which are
bidominant with g and g respectively. As not~d at the beginning of the section we
can assume that each member of I or J realises a type of rank w“ Note that
U(L) < o implies U(g; Mg) < o* while U(g; gM) = 0. Moreover, each x € I (J)
has rank < @ over g (g). By the ‘transitivity of U-rank less than w*, we conclude
that each x € J (I) depends on g (g). Siiice g7 and g OJ, we conclud: that each
x €I (J) depends on J (I). Thus [J|=wtJ=wtI=|I| and {[|=wtI=wtJ = ]|
So |I| ={Jj. Suppose G is a-semiregular. Then |I| =k and consequently |J| =k.
Moreover, since / can then be taken to realize some p* and each x € J depends on
I, J can be taken as an independent sequence realizing some regular type
nonorthogonal to p. So G/L is also a-semiregular. Reveising the roles of G and
G/L we finish. O

3.19. Corollary. Let G <G* be a semisimple connected superstable group with
monomial U-rank @°k. If G is not a-semiregular, then G has a proper definable
subgroup K of rank = w®. Mcreover, K is acl(@)-definable and normal in G*.

Proof. By Theorem 3.15, there is a definable, normal in G*, and acl(@)-definable
subgroup L of G such that G/L is a-semiregular and infinite. By Lemma 3.18, if
U(L)< o®, then G is a-semiregular. O

We conclude this section by characterizing semisimple groups of monomial
U-rank with ‘small’ coefficient.

3.20. Theorem. Let G be a connected semisimple group with U(G) = w°k. Then
k=3. If k =3, G is a-semiregular.

Proof. Superstable groups with U rank @ and k at most 2 are solvable [4].
When & =3, we finish by Corollary 3.19 unless G has proper definable normal
subgroup K with U(K)= w®. Without loss of generality (by Corollary 1.17) we
may assume G is |T|*-saturated. But the a-connected component of K cannot
have rank strictiy less than *3 by the first part of this proof. But UK*)=w*3is
impossible since K is proper and G is connected. O
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4. Model-theoretic decomposition
We need the following proposition.

4.1. Lemma. Suppose G is superstable and a-connected. If H is a normal
definable subgroup of G with rank less than ©*, then H c Z(G).

Proof. By Lemma 2.2, G/Cgs(H) c dcl(H) and thus has rank less than @® So
Cg(H) = G (by a-connectedness) as required.

Here is the main result of this section.

4.2. Theorem. Let G be a semisimple connected superstable group with monomial
U-rank o*k. Then G is a finite almost direct product of definable normal
semiregular groups.

Proof. We first assume G is |L|"-saturated and then eliminate that assumption.
We must work through a rather arcane induction hypothesis. That is, we work
with a subgroup K of G and show that K can be written as a product of groups
which are normal in G. In the end we take K = G to conclude the resuit. But we
need to consider subgroups K of G since finding subgroups normal in K would
not suffice.

Now we will prove by induction on n:

(*) Let G be a semisimple connected superstable group. Let K<IG be
/\-definable over acl(f) and have monomial U-rank @ “n. Then K is a-ccr.

By Theorem 3.20 we know the resuit holds trivially for n <3. Suppose (*)
holds for k <n.

We deduce from Corollary 3.19 that there is a /\-definable over acl(f) proper
subgroup H of K which is normal in G with U(H)=w* By taking the
a-connected component we can choose H so that U(H) = w % and k is maximal
for any such H that is a proper subgroup of K. Since the a-connected component
of a group is invariant in that group, this requirement leaves H /\-definable over
acl(#). By induction H is a-ccr. By Lemma 3.17 we may assume the factors H; of
H are pairwise orthogonal. We first show Cx(H) is finite.

Suppose for contradiction that U(Cx(H))=«” and let L denote the a-
connected component of Cx(H). Then L N H is normal and abelian so, G being
semisimple, L N H is finite. Therefore U(LH) > U(H) so by the maximality of k,
LH =K. Now U(L)<U(K) so by induction L is a-ccr and so LH, i.e. K, is
a-ccr and we finish. Thus we may assume U(Cx(H))<w® By Lemma 4.1,
Cx(H) < Z(G) and so Cx(H) is finite.

If H is a-semiregular, we finish by Lemmas 3.13 and 2.3. Thus we can assume
that H is a product of at least two a-semiregular factors.
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In order to be sure ‘quotients are safe’ we replace the /\-definabie subgroup H
by a definable H*. More precisely, choose H<IG with H c H* and U(H*) =
U(H)=o%. Let H*=KNHA. Then K/H*<G/H*; K/H*~KH/H which is
type-definable; and so K/H* is /\-definable. (K/H might fail the last condition.)

We claim K/H*® is a-semiregular. Applying Theorem 3.15 to X/H* there is a
K,<K/H* with (K/H*)/K, a-semiregular. Then there is an H with H*< A<K
such that H/H*=K,. if U(H)= 0k +1), the connected comporent of H
contradicts the maximality of k. Thus U(H)= w° + y for some y<w® and
UH/H*) <0 But K/H=(K/H*)/(H/H*). By Lemma 3.18, since K/H is
a-semiregular so is K/H*.

Now let g be the generic of K/H*. Then q is primary. By Corollary 2.3,
K/H* caclH and so g ¥ H. Thus, by Lemma 3.11, q is p;-primary for some i,
say 1. Now let H=11;>, 4;. If ¢ X H, applying Lemma 3.11 agaia (this time with
H piaying the role of H) we find q is p,-primary for some i >2. Since the p; are
pairwise orthogonal this is clearly impossible so ¢ 1 .

Now consider the normal subgroup C = Cx(H) of G. As usual, Corollary 2.3
implies that K/C cdcl(H). Since the H; commute in pairs, H,c C; the
semisimplicity of G implies that CNH is finite. Let N be the a-connected
component of C and let U(N) = @ “,. Observe that N is a proper subgroup of K
which is normal in G and contains H,. By induction each factor of H is
acl(@)-definable. Thus both C and N are acl(fl)-definable.

The crucial remark is that N properly contains H,. If not, we can replace the
/\-definable N = H, by a definable N* with N<N*<C, N*<IG, N*<H*, and
UN*)=U(H,) (= ©%,, say). Now we will see that for every ae K/H*,
U(e. H)< ©* Thers is a natural map from K/N* onto K/C with kernel C/N.
Since U(C/N*)<w®, U(a; @) < o” if a realizes the generic of K/N* and 4 is its
image under this map. But @ € dcl(H) and so by transitivity of U rank less than
o Ua; ﬁ) < @". But this contradicts the observation above that the generic of
K/H* is orthogonal to every sequence from H. We conclude that N properly
contains H,.

So we have U(N) = w%,> 0%, = U(H,). Moreover, NN H is finite and N
commutes with . So NH is /\-definable connected and has U-rank greater than
H. By the maximality of H, NH=K. N is a normal subgroup of K with
rank @ %, < w°. So by induction N, as well as N, is a-ccr so their product K is
a-ccr as required.

In order to remove the saturation hypothesis on G we want to show that the H,
are in fact definable almost over the empty set. We know that each H,=
(Me<ry Hf and if i £, H; N H; is finite. By compactness we conclude that for each
i and j there exist H}' and H}' containing H; and H, respectively that are definable
over acl@ and such that H{' N H}" is finite. Taking the intersection of the H% for
all i #j we obtain a group H; which is definable (over acl 8) and such that G is an
almost direct product of the H;. In fact Hf = H;. O
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We saw in Section 1 that a semisimple group is one in which every normal
abelian subgroup is ‘small’. The arguments of this section suggest a difierent
approach to small—replacing ‘finite’ by ‘U-rank less than @ .

4.3. Definition. If G has no normal definable abelian subgroup with U rank
greater than or equal @, then G is a-semisimple.

This idea leads to the following theorem which can be proved along the same
line as Theorem 4.2.

4.4. Theorem. Let G be a cennected superstable group with monomial U-
rank o°k. If G is a-semisimple, then G is a finite product of definable normal
a-semiregular groups H; such that if i #j, UH;, N H) < w“.

We combine this fact with an important result of Hrushovski to get a
model-theoretic condition for a-semisimplicity.

4.5. Corollary. Let G be a superstable group with mcnomial U-rank w°k. If a
locally modular regular type p is nonorthogonal to the generic of G, then G is not
a-semisimple.

Proof. We may assume G is connected. If G is a-semisimple, Theorem 4.4
allows us to write G as [ H; where the H; are a-semiregular and have ‘small’
intersection. But then p must be nonorthogonal to g = g, for some i. As g is p
semiregular and p is lecally modular, by Corollary 5.4 of [10], H; is abelian. Since
each H; has U-rank greater than or equal w® we have a contradiction. 0O

Note that if G ha: finite U-rank O-semisimple coincides with the notions of
semisimple studied in Section 1. Now we use Buechler’s dichotomy between local
modularity and w-stability.

4.6. Theorem. If G is a superstable semisimple group of finitc U-rank, then G is
w-stable.

Proof. By Theorem 4.2, we can write H as [I H; where each H, is p;-semiregular
for some regular type p;, which since G has finite U-rank, has U-rank 1. By [8], p;
has o-rank 1. So by [7], each p; either has Morley rank i or is locally modular. If
any p; is locally modular, we contradict the semisimplicity of G by Corollary 4.5.
But if each p;, has Morley rank 1, it is easy to see that G ic w-stable as
required. O

Combining this analysis with Section 1 we obtain
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4.7. Theorem. Let G be a superstable group of finite U-rank. Then there is a
definable normal subgroup H of G such that H is solvable and G/H is w-stable.

Proof. Corollary 1.8 asserts that G is solvable by semisimple; by Corollary 1.14
the solvable subgroup is definable; and Theorem 4.6 asserts that the semisimple
part is w-stable. O

S. Problems

In this section we discuss some problems which arise from or are exacerbated
by the results above.

Question 1. Is a stable definably simply group simpie? Is simplicity preserved by
elementary equivalence between stable groups?

Question 2. Can one characterize those properties which hold for stable groups if
and only if they hold for type-definable subgroups of |T|*-saturated stable
groups?

This is relevant to a most vexing problem.
Question 3. Can the saturation hypothesis be eliminated from Theorem 2.4?

A pure group is a structure (G, -) with no further basic relations. The next
question is the semisimple vcision of similar problem raised for simple w-stable
groups by Lascar [12].

Question 4. Is a connected semisimple stable pure group an almost direct product
of simple groups? An attempt to answer this question affirmatively on the model
of algebraic groups leads to the following question. Let G be semisimple
|T|*-saturated and stable (or even w-stable of finite rank). Does the group of

inner automorphisms of G have finite index in the group of definable automorph-
isms of G?

Question S. Any group has a unique maximal centerless completely reducible
subgroup G. Can one show that if G is semisimple and stable then G # 1?

For superstable groups a positive result holds by Corollary 2.7 and the same
kind of argument would extend the result to stable groups if Question 1 were

answered positively. But a positive answer to the following question would
provide a more direct approach.
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Question 6. Can a stable group be both residually finite and semisimple?
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