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Pain is typically assessed by patient self-report. Self-reported pain, however, is difficult to interpret and
may be impaired or in some circumstances (i.e., young children and the severely ill) not even possible. To
circumvent these problems behavioral scientists have identified reliable and valid facial indicators of
pain. Hitherto, these methods have required manual measurement by highly skilled human observers.
In this paper we explore an approach for automatically recognizing acute pain without the need for
human observers. Specifically, our study was restricted to automatically detecting pain in adult patients
with rotator cuff injuries. The system employed video input of the patients as they moved their affected
and unaffected shoulder. Two types of ground truth were considered. Sequence-level ground truth con-
sisted of Likert-type ratings by skilled observers. Frame-level ground truth was calculated from presence/
absence and intensity of facial actions previously associated with pain. Active appearance models (AAM)
were used to decouple shape and appearance in the digitized face images. Support vector machines
(SVM) were compared for several representations from the AAM and of ground truth of varying granu-
larity. We explored two questions pertinent to the construction, design and development of automatic
pain detection systems. First, at what level (i.e., sequence- or frame-level) should datasets be labeled
in order to obtain satisfactory automatic pain detection performance? Second, how important is it, at
both levels of labeling, that we non-rigidly register the face?

� 2009 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Pain is difficult to assess and manage. Pain is fundamentally
subjective and is typically measured by patient self-report, either
through clinical interview or visual analog scale (VAS). Using the
VAS, patients indicate the intensity of their pain by marking a line
on a horizontal scale, anchored at each end with words such as ‘‘no
pain” and ‘‘the worst pain imaginable”. This and similar techniques
are popular because they are convenient, simple, satisfy a need to
attach a number to the experience of pain, and often yield data that
confirm expectations. Self-report measures, however, have several
limitations [9,16]. These include idiosyncratic use, inconsistent
metric properties across scale dimensions, reactivity to suggestion,
efforts at impression management or deception, and differences
between clinicians’ and sufferers’ conceptualization of pain [11].
Moreover, self-report measures cannot be used with young chil-
dren, with individuals with certain types of neurological impair-
ment and dementia, with many patients in postoperative care or
transient states of consciousness, and those with severe disorders
requiring assisted breathing, among other conditions.
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Significant efforts have been made to identify reliable and valid
facial indicators of pain [10]. These methods require manual label-
ing of facial action units or other observational measurements by
highly trained observers [6,14]. Most must be performed offline,
which makes them ill-suited for real-time applications in clinical
settings. In the past several years, significant progress has been
made in machine learning to automatically recognize facial expres-
sions related to emotion [20,21]. While much of this effort has used
simulated emotion with little or no head motion, several systems
have reported success in facial action recognition in real-world fa-
cial behavior, such as people lying or telling the truth, watching
movie clips intended to elicit emotion, or engaging in social inter-
action [5,7,22]. In real-world applications and especially in patients
experiencing acute pain, out-of-plane head motion and rapid
changes in head motion and expression are particularly challeng-
ing. Extending the approach of [18], we applied machine learning
to the task of automatic pain detection in a real-world clinical set-
ting involving patients undergoing assessment for pain.

In this paper we will attempt to gain insights into two questions
pertinent to automatic pain recognition: (i) how should we be
labeling datasets for learning to automatically detect pain?, and
(ii) is there an inherent benefit in non-rigidly registering the face
and decoupling the face into shape and appearance components
when recognizing pain?
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1.1. How should we register the face?

Arguably, the current state-of-the-art system for recognizing
expression (specifically for AUs) is a system reported by Bartlett
et al. [1,4,5], which first detects the fully frontal face using a Viola
and Jones face detector [25], and then rigidly registers the face in
2D using a similarly designed eye detector. Visual features are then
extracted using Gabor filters which are selected via an AdaBoost
feature selection process. The final training is performed using a
support vector machine (SVM). As noted above, this system was
adapted recently [2] and applied to the task of detecting ‘‘genuine”
versus ‘‘faked” pain. Tong et al. [33] also reported good AU detec-
tion performance with their system which uses a dynamic Bayes-
ian Network (DBN) to account for the temporal nature of the
signal as well as the relationship with other AUs. Pantic and Rothk-
rantz [26] used a rule-based method for AU recognition. Pantic and
Patras [27] investigated the problem of posed AU recognition on
profile images.

A possible limitation of these approaches is that they employ a
rigid rather than non-rigid registration of the face. We refer to non-
rigid registration as any shape variation of an object that cannot be
modeled by a 2D rigid warp (i.e. translation, scale and rotation).
Non-rigid registration of the face may be beneficial from two per-
spectives. One is to normalize unwanted variations in the face due
to out-of-plane head motion. In many real-world settings, such as
clinical pain assessment, out-of-plane head motion may be com-
mon. The other possible advantage is to enable decoupling of the
shape and appearance components of the face, which may be more
perceptually important than rigidly registered pixels. We found in
previous work [18,3] that this type of alternative representation
based on the non-rigid registration of the face was useful for
expression recognition in a deception-interview paradigm. In that
work we employed an active appearance model [8,19] (AAM) to
derive a number of alternative representations based on a non-ri-
gid registration of the face. In the current paper we extend that
work. We explore whether such representations are helpful for
classifiers to learn ‘‘pain”/‘‘no-pain” in clinical pain assessment,
and we compare the relative efficacy of sequence- and frame-level
labeling.

1.2. How should we label data for learning pain?

With near unlimited access to facial video from a multitude of
sources (e.g., movies, Internet, digital TV, laboratories, home video,
etc.) and the low cost of digital video storage, the recording of large
facial video datasets suitable for learning to detect expression is
becoming less of an issue. However, video datasets are essentially
useless unless we have some type of labels (i.e., ‘‘pain”/‘‘no-pain”)
to go with them during learning and testing.

In automatic facial expression recognition applications, the de
facto standard is to label image data at the frame level (i.e., assign-
ing a label to each image frame in a video sequence). The rationale
for this type of labeling stems from the excellent work that has
been conducted with respect to facial action unit (AUs) detection.
AUs are the smallest visibly discriminable changes in facial expres-
sion. Within the FACS (Facial Action Coding System: [13,14])
framework, 44 distinctive AUs are defined. Even though this repre-
sents a rather small lexicon in terms of individual building blocks,
over 7000 different AU combinations have been observed [15].
From these frame-by-frame AU labels, it has been demonstrated
that good frame-by-frame labels of ‘‘pain”/‘‘no-pain” can be in-
ferred by the absence and presence of specific AUs (i.e., brow low-
ering, orbit tightening, levator contraction and eye closing) [10,31].

The cost and effort, however, associated with doing such frame-
by-frame labeling by human experts can be extremely large, which
is a rate limiter in making labeled data available for learning and
testing. If systems could use more coarsely labeled image data, lar-
ger datasets could be labeled without increasing labor costs. In this
paper we present a modest study to investigate the ability of an
automatic system for ‘‘pain”/‘‘no-pain” detection trained from se-
quence- rather than frame-level labels. In sequence-level labeling
one label is given to all the frames in the video sequence (i.e., pain
present or not present), rather than labels for every frame in the se-
quence. We compare the performance of pain/no-pain detectors
trained from both frame- and sequence-level labels. This work dif-
fers considerably from our own previous work in the area [3] in
which only sequence-level labels for learning/evaluation were con-
sidered. To our knowledge no previous study has compared algo-
rithms trained in both ways.

One other study of automatic pain detection can be found in [2].
Littlewort and colleagues pursued an approach based on their pre-
vious work to AU recognition [4,5]. Their interest was specifically
in the detection of ‘‘genuine” versus ‘‘faked” pain. Genuine pain
was elicited by having naïve subjects submerge their arm in ice
water. In the faked-pain condition, the same subjects simulated
pain prior to the ice-water condition. To discriminate between con-
ditions, the authors rigidly registered the face and extracted a vec-
tor of confidence scores corresponding to different AU recognizers
at each frame. These AU recognizers were learnt from frame-based
labels of AU and the corresponding facial image data. Based on
these scores the authors studied which AU outputs contained
information about genuine versus faked-pain conditions. A second-
ary SVM was then learnt to differentiate the binary pain conditions
based on the vector of AU output-scores. Thus, frame-level labels
were used to classify pain- and no-pain conditions, or in our termi-
nology pain- and no-pain sequences.

To summarize, previous work in pain and related expression
detection has used rigid representation of face appearance and
frame-level labels to train classifiers. We investigated both rigid
and non-rigid registration of appearance and shape and compared
use of both frame- and sequence-level labels. In addition, previous
work in pain detection is limited to sequence-level detection. We
report results for both sequence- and frame-level detection.

2. Image and meta data

2.1. Image data

Image data for our experiments was obtained from the UNBC-
McMaster shoulder pain expression archive. One hundred
twenty-nine subjects with rotator-cuff injury (63 male, 66 fe-
male) were video-recorded in ‘‘active” and ‘‘passive” conditions.
In the active condition, subjects initiated shoulder rotation on
their own; in passive, a physiotherapist was responsible for the
movement. Camera angle for active tests was approximately
frontal to start; camera angle for passive tests was approxi-
mately 70 deg to start. Out-of-plane head motion in both condi-
tions was common. Images were captured at a resolution of
320 � 240 pixels. The face area spanned an average of approxi-
mately 140 � 200 (28,000) pixels. For comparability with previ-
ous literature, in which initial camera orientation has typically
varied from frontal to about 15 deg, we focused on the active
condition in the experiments reported below. Sample pain se-
quences are shown in Fig. 1.
2.2. Meta data

Pain was measured at the sequence- and frame-level.

2.2.1. Sequence-level measures of pain
Pain ratings were collected using subject and observer report.

Subjects completed a 10-cm Visual Analog Scale (VAS) after each



Fig. 1. Examples of temporally subsampled sequences. (a) and (c) illustrate pain and (b) and (d) no pain.
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movement to indicate their level of subjective pain. The VAS was
presented on paper, with anchors of ‘‘no pain” and ‘‘worst pain
imaginable”. Subsequently, observed pain intensity (OPI) rating
was rated from video by an independent observer with consider-
able training in the identification of pain expression. Observer rat-
ings were performed on a 6-point Likert-type scale that ranged
from 0 (no pain) to 5 (strong pain).

To assess inter-observer reliability of the OPI pain ratings, 210
randomly selected trials were independently rated by a second
rater. The Pearson correlation between the observers’ OPI was
0.80, p < 0:001, which represents high inter-observer reliability
[28]. Correlation between the observer’s rating on the OPI and sub-
ject’s self-reported pain on the VAS was 0.74, p < 0:001 for the tri-
als used in the current study. A value of 0.70 is considered a large
effect [29] and is commonly taken as indicating high concurrent
validity. Thus, the inter-method correlation found here suggests
moderate to high concurrent validity for pain intensity.

2.2.2. Frame-level measures of pain
In addition to pain ratings for each sequence, facial actions asso-

ciated with pain were annotated for each video frame using FACS
[14]. Each action was coded on a 6-level intensity dimension
(0 = absent, 1 = trace . . .5 = maximum). Because there is consider-
able literature in which FACS has been applied to pain expression
[10,24,30,31], we restricted our attention to those actions that
have been implicated in previous studies as possibly related to
pain (see [24] for complete list).

To assess inter-observer agreement, 1738 frames selected from
one affected-side trial and one unaffected-side trial of 20 partici-
pants were randomly sampled and independently coded. Inter-co-
der percent agreement as calculated by the Ekman–Friesen
formula [14] was 95%, which compares favourably with other re-
search in the FACS literature. Following previous literature in the
psychology of pain, a composite pain score was calculated for each
frame, representing the accumulated intensity scores of four facial
actions: brow lowering, orbit tightening, levator contraction and
eye closing (see [24] for construction of this index). For the se-
quences evaluated in these experiments, pain scores ranged from
0 to 12.

2.2.3. Subject selection
Subjects were included if they had a minimum of one trial with

an OPI rating of 0 (i.e. no pain) and one trial with an OPI rating of 3,
4, or 5 (defined as pain). To maximize experimental variance and
minimize error variance [31,32] movements with intermediate rat-
ings of 1 or 2 were omitted. Forty-four subjects had both pain- and
without-pain rated movements. Of these subjects, 23 were ex-
cluded for technical errors (8), maximum head rotation greater
than about 70 deg (1), and glasses (7) or facial hair (7). The final
sample consisted of 21 subjects with 69 movements, 27 with pain
and 42 without pain.
3. Active appearance models

In machine learning, the choice of representation is known to
influence recognition performance [12]. Active appearance models
(AAMs) provide a compact statistical representation of the shape
and appearance variation of the face as measured in 2D images.
This representation decouples the shape and appearance of a face
image. Given a pre-defined linear shape model with linear appear-
ance variation, AAMs align the shape model to an unseen image
containing the face and facial expression of interest. In general,
AAMs fit their shape and appearance components through a gradi-
ent descent search, although other optimization methods have
been employed with similar results [8]. In our implementation,
keyframes within each video sequence were manually labeled,
while the remaining frames were automatically aligned using a
gradient-descent AAM fit described in [19,23].

3.1. AAM derived representations

The shape s of an AAM [8] is described by a 2D triangulated
mesh. In particular, the coordinates of the mesh vertices define
the shape s (see row 1, column (a), of Fig. 2 for examples of this
mesh). These vertex locations correspond to a source appearance
image, from which the shape is aligned (see row 2, column (a), of
Fig. 2). Since AAMs allow linear shape variation, the shape s can
be expressed as a base shape s0 plus a linear combination of m
shape vectors si:

s ¼ s0 þ
Xm

i¼1

pi si ð1Þ

where the coefficients p ¼ ðp1; . . . ;pmÞ
T are the shape parameters.

These shape parameters are typically divided into similarity param-
eters ps and object-specific parameters po, such that pT ¼ pT

s ;p
T
o

� �
.



Fig. 2. Example of AAM derived representations (a) top row: input shape (s), bottom row: input image, (b) top row: similarity normalized shape ðsnÞ, bottom row: similarity
normalized appearance ðanÞ, (c) top row: base shape ðs0Þ,0 bottom row: shape normalized appearance ða0Þ.

A.B. Ashraf et al. / Image and Vision Computing 27 (2009) 1788–1796 1791
We shall refer to ps and po herein as the rigid and non-rigid shape
vectors of the face, respectively. Rigid parameters are associated
with the geometric similarity transform (i.e., translation, rotation
and scale). Non-rigid parameters are associated with residual shape
variations such as mouth opening, eyes shutting, etc. Procrustes
alignment [8] is employed to estimate the base shape s0. Once we
have estimated the base shape and shape parameters, we can nor-
malize for various variables to achieve different representations as
outlined in the following subsections.

3.1.1. Rigid normalized shape, sn

As the name suggests, this representation gives the vertex loca-
tions after all rigid geometric variation (i.e., translation, rotation
and scale), relative to the base shape, has been removed. The sim-
ilarity normalized shape sn can be obtained by synthesizing a
shape instance of s, using Eq. (1), that ignores the similarity param-
eters of p. An example of this similarity normalized mesh can be
seen in row 1, column (b), of Fig. 2.

3.1.2. Rigid normalized appearance, an

This representation contains appearance from which rigid geo-
metric variation has been removed. Once we have rigid normalized
shape sn, as computed in Section 3.1.1, the rigid normalized
appearance an can be produced by warping the pixels in the source
image with respect to the required translation, rotation, and scale
(see row 2, column (b), of Fig. 2). This representation is similar to
those employed in methods like [4,5] where the face is geometri-
cally normalized with respect to the eye coordinates (i.e., transla-
tion, rotation and scale).
3.1.3. Non-rigid normalized appearance, a0

In this representation we can obtain the appearance of the face
from which the non-rigid geometric variation has been normalized
with respect to the base face shape s0. This is accomplished by
applying a piece-wise affine warp on each triangle patch appear-
ance in the source image so that it aligns with the base face shape.
We shall refer to this representation as the face’s canonical appear-
ance (see row 2, column (c), of Fig. 2 for an example of this canon-
ical appearance image) a0.

If we can remove all shape variation from an appearance, we’ll
get a representation that can be called as shape normalized
appearance, a0:a0 can be synthesized in a similar fashion as an
was computed in Section 3.1.2, but instead ensuring that the
appearance contained within s now aligns with the base shape s0.

3.2. Features

Based on the AAM derived representations in Section 3.1 we de-
fine three types of features:

S-PTS: similarity normalized shape sn representation (see Eq. (1))
of the face and its facial features. There are 68 vertex
points in sn for both x and y coordinates, resulting in a
raw 136 dimensional feature vector.

S-APP: similarity normalized appearance an representation. Due to
the number of pixels in an varying from image to image,
we apply a mask based on s0 so that the same number
of pixels (approximately 27,000) are in an for each image.

C-APP: canonical appearance a0 representation where all shape
variation has been removed from the source appearance
except the base shape s0. This results in an approximately
27,000 dimensional raw feature vector based on the pixel
values within s0.

The naming convention S-PTS, S-APP, and C-APP will be em-
ployed throughout the rest of this paper.

One might reasonably ask, why should C-APP be used as a fea-
ture as most of the expression information has been removed
through the removal of the non-rigid geometrical variation?
Inspecting Fig. 2 one can see an example of why C-APP might
be useful. The subject is tightly closing his right eye. Even after
the application of the non-rigid normalization procedure one
can see there are noticeable visual artifacts (e.g., wrinkles) left
that could be considered important in recognizing the presence/
absence of pain. These appearance features may be critical in dis-
tinguishing between similar action units. Eye closure (AU 43), for
instance, results primarily from relaxation of the levator palpe-
brae superioris muscle, which in itself produces no wrinkling.
The wrinkling shown in Fig. 2 is produced by contraction of the
orbicularis oculi (AU 6). The joint occurrence of these two actions,
AU 6+43, is a reliable indicator of pain [10,31]. If AU 6 were ig-
nored, pain detection would be less reliable. For any individual fa-
cial action, shape or appearance may be more or less important
[6]. Thus, the value of appearance features will vary for different
facial actions.
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In the AAM, appearance can be represented as either S-APP or
C-APP. They differ with respect to representation (rigid vs. non-ri-
gid alignment, respectively) and whether shape and appearance
are coupled (S-APP) or decoupled (C-APP). In training a classifier,
the joint C-APP and S-PTS feature could perhaps offer improved
performance over S-APP as it can treat the shape and appearance
representations separately and linearly (unlike S-APP).

4. SVM classifiers

Support vector machines (SVMs) have proven useful in many
pattern recognition tasks including face and facial action recogni-
tion. Because they are binary classifiers, they are well suited to
the task of ‘‘pain” vs. ‘‘no-pain” classification. SVMs attempt to find
the hyper-plane that maximizes the margin between positive and
negative observations for a specified class. A linear SVM classifica-
tion decision is made for an unlabeled test observation x� by,

wT x� ?
true

false
b ð2Þ

where w is the vector normal to the separating hyperplane and b is
the bias. Both w and b are estimated so that they minimize the
structural risk of a train-set, thus avoiding the possibility of overfit-
ting the training data. Typically, w is not defined explicitly, but
through a linear sum of support vectors. As a result SVMs offer addi-
tional appeal as they allow for the employment of non-linear com-
bination functions through the use of kernel functions, such as the
radial basis function (RBF) and polynomial and sigmoid kernels. A lin-
ear kernel was used in our experiments due to its ability to gener-
alize well to unseen data in many pattern recognition tasks [17].
Please refer to [17] for additional information on SVM estimation
and kernel selection.

5. Experiments

5.1. Pain model learning

To ascertain the utility of various AAM representations, differ-
ent classifiers were trained by using features of Section 3.2 in the
following combinations:

S-PTS : similarity normalized shape sn

S-APP : similarity normalized appearance an

C-APP + S-PTS : canonical appearance a0 combined with the sim-
ilarity normalized shape sn.

To check for subject generalization, a leave-one-subject-out
strategy was employed for cross validation. Thus, there was no
overlap of subjects between the training and testing set. The num-
ber of training frames from all the video sequences was prohibi-
tively large to train an SVM, as the training time complexity for a
SVM is Oðm3Þ, where m is the number of training examples. In or-
der to make the step of model learning practical, while making the
best use of training data, each video sequence was first clustered
into a preset number of clusters. Standard k-means clustering
was employed, with k set to a value that reduces the training set
to a manageable size. The value of k was chosen to be a function
of the sequence length, such that the shortest sequence in the data-
set had at least 20 clusters. Clustering was used only in the learn-
ing phase. Testing was carried out without clustering as described
in the following sections.

Linear SVM training models were learned by iteratively leaving
one subject out, which gives rise to N number of models, where N
is the number of subjects. SVMs were trained at both the sequence-
and frame-levels. At the sequence-level, a frame was labeled as pain
if the sequence in which it occurred met criteria by the OPI (see
Section 2.2.3). At the frame-level, following [10], a frame was la-
beled pain if its FACS-based pain intensity was equal to 1 or higher.

5.2. How important is registration?

At the sequence-level, each sequence was classified as pain pres-
ent or pain absent. Pain present was indicated if the observer rating
was 3 or greater. Pain absent was indicated if observer rating was
0. Learning was performed on clustered video frames; testing was
carried out on individual frames. The output for every frame was a
score proportional to the distance of the test-observation from the
separating hyperplane. The predicted pain scores for individual
frames across all the test sequences ranged from �2.35 to 3.21.
The output scores for a sample sequence are shown in Fig. 3. For
the specific sequence shown in Fig. 3, the predicted scores ranged
from 0.48 to 1.13. The score values track the pain expression, with
a peak response corresponding to frame 29 shown in Fig. 3.

To predict whether a sequence was labeled as ‘‘pain” the output
scores of individual frames were summed together to give a cumu-
lative score (normalized for the duration of the sequence) for the
entire sequence,

Dsequence ¼
1
T

XT

i¼1

di ð3Þ

where di is the output score for the ith frame and T is the total num-
ber of frames in the sequence.

Having computed the sequence-level cumulative score in Eq.
(3), we seek a decision rule of the form:

Dsequence ?
pain

nopain
Threshold ð4Þ

By varying the threshold in the decision rule of Eq. (4) one can
generate the Receiver Operating Characteristic (ROC) of the classi-
fier, which is a plot of the relation between the false acceptance
rate and the hit rate. The false acceptance rate represents the pro-
portion of no-pain video sequences that are predicted as pain con-
taining sequences. The hit rate represents the detection of true
pain. Often, a detection system is gauged in terms of the Equal Er-
ror Rate (EER). The EER is determined by finding the threshold at
which the two errors, the false acceptance rate, and the false rejec-
tion rate, are equal.

In Fig. 4, we present the ROC curves for each of the representa-
tions discussed in Section 3.2. The EER point is indicated by a cross
on the respective curves. The best results (EER = 15.7%) are for
canonical appearance combined with similarity normalized shape
(C-APP + S-PTS). This result is consistent with our previous work
[18], in which we used AAMs for facial action unit recognition.

The similarity normalized appearance features (S-APP) per-
formed at close-to-chance levels despite the fact that this repre-
sentation can be fully derived from canonical appearance and
similarity normalized shape.

5.3. How should we label data for learning pain?

A limitation of the approach described in Section 5.2 is that the
ground truth was considered only at the video sequence level. In
any given sequence the number of individual frames actually
showing pain could be quite few. A coarse level of ground truth
is common in clinical settings. We were fortunate, however, to
have frame-level ground truth available as well, in the form of
FACS annotated action units for each video frame. Following [24],
as described in Section 2.2.2, a composite pain score was calculated
for each frame. Composite pain scores ranged from 0 to 12.

Following [24], for the binary ground truth labels, we consid-
ered a pain score greater than zero to represent pain, and a score



Fig. 3. Example of video sequence prediction. The x-axis in the above plot represents the frame index in the video, while the y-axis represents the predicted pain score. The
dotted arrows show the correspondence between the image frames (top-row) and their predicted pain scores. For instance, Frame 29 in the top row shows an intense pain
and corresponds to the peak in the plot.
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Fig. 4. Sequence-level pain detection results for experiments performed in Section
5.2, showing the ROC for classifiers based on three different representations. The
crosses indicate the EER point. The best results (EER: 15.7%) are achieved by using a
combination of canonical-appearance and similarity normalized shape (C-APP + S-
PTS).
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of zero to represent no-pain. For model learning, the previous clus-
tering strategy was altered. Instead of clustering the video se-
quences as a whole, positive and negative frames were clustered
individually prior to inputting them into the SVM. As before, clus-
tering was not performed in the testing phase. As a comparison, we
present results for frame-level prediction using an SVM trained on
sequence level labels. In both cases, results are for S-PTS + C-APP
features and leave-one-out cross-validation. They differ only in
whether sequence-level or frame-level labels were provided to
the SVM. The SVM based on frame-level ground truth improved
the frame-level hit rate from 77.9% to 82.4%, and reduced False
Acceptance Rate (FAR) by about a third, from 44% to 30.1% (see
Fig. 5).

In Fig. 6 we show an example of how the respective SVM out-
puts compare with one another for a representative subject. The
SVM trained on sequence level ground truth has consistently high-
er output in regions in which pain is absent. The SVM trained on
frame level ground truth gives a lower score for the portion of
the video sequence in which pain is absent. Previously, many no-
pain frames that were part of pain video sequences were all forced
to have a ground-truth label of ‘pain’. This suggests why the previ-
ous SVM model has much higher FAR and lower correlation with
frame-level ground truth. The present scheme precisely addresses
the issue by employing frame-level ground truth and thus leads to
better performance. The range of predicted pain scores for SVMs
trained on frame-level ground truth was �2.45 to 3.29 across all
the video sequences, while the range for the video sequence shown
in Fig. 6 was �0.33 to 0.78.

Across all subjects, the improvement in performance should not
come as a surprise, as the frame-level approach trains the classifier
directly for the task at hand (i.e., frame-level detection). Whereas
the sequence-level SVM was trained for the indirect task of se-
quence classification. More interestingly, the classifier trained with
coarser (sequence-level) labels performs significantly better than
‘‘random chance” when tested on individual frames. In Fig. 7 we
present the ROC curve for frame-level pain detection for classifiers
trained with different ground-truth granularity and the ROC of a
random classifier (i.e., applying an unbiased coin–toss to each
frame). As one can see the ROC of the sequence-trained classifier
lies significantly above that of the ‘‘random chance” classifier.

This result is especially interesting from a machine learning
perspective. Hitherto, a fundamental barrier in learning and evalu-
ating pain recognition systems is the significant cost and time
associated with frame-based labeling. An interesting question for
future research could be posed if one used the same labeling time
and resources at the sequence-level. For same level of effort, one
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Fig. 5. Frame-level performance based on experiments performed in Section 5.3. (a)
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Fig. 6. Comparison between the SVM scores for sequence-level ground truth and frame-
indices, (b) scores for individual frames for the two SVM training strategies. Points corresp
on frame-level groundtruth remains lower for frames without pain, and hence leads to
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could ground-truth a much larger sequence-level dataset, in com-
parison with frame-level labeling, and as a result employ that lar-
ger dataset during learning. One is then left with the question of
which system would do better. Is it advantageous to have large se-
quence-level labeled datasets or smaller frame-level labeled data-
sets? Or more interestingly, what learning methods could be
developed to leverage a hybrid of the two?

Because different kinds of expressions involve activities of dif-
ferent facial muscles we wished to visualize what regions of the
face contribute towards effective pain detection. To accomplish
this we formed an intensity image from the weighted combination
of the learned support vectors for pain and no pain classes using
their support weights (Fig. 8). For pain, the brighter regions repre-
sent more contribution, while for no pain, the darker regions rep-
resent less contribution. These plots highlight that regions
around the eyes, eyebrows, and lips contribute significantly to-
wards pain vs. no pain detection. These are same regions identified
in previous literature as indicative of pain by observers.

6. Discussion

In this paper we explored various face representations derived
from AAMs for detecting pain from the face. We explored two
important questions with respect to automatic pain detection.
First, how should one represent the face given that a non-rigid reg-
istration of the face is available? Second, at what level (i.e., se-
quence- or frame-based) should one label datasets for learning
an automatic pain detector?

With respect to the first question we demonstrated that consid-
erable benefit can be attained from non-rigid rather than rigid reg-
istrations of the face. In particular, we demonstrated that
decoupling a face into separate non-rigid shape and appearance
components offers significant performance improvement over
those that just normalize for rigid variation in the appearance
(e.g., just locating the eyes and then normalizing for translation,
level ground truth. (a) Sample frames from a pain-video sequence with their frame
onding to the frames shown in (a) are highlighted as crossed. Output of SVM trained

a lower false acceptance rate.
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Fig. 7. Comparison of ROCs for SVMs trained on sequence- and frame-level labels.
To demonstrate the efficacy of the sequence-level trained SVM on the frame-level
detection task the ROC for a ‘‘random-chance” classifier is also included. One can
see that although the sequence-level SVM behaves worse than the frame-level SVM
it is significantly better than random-chance demonstrating that coarse-level
labeling strategies are effective and useful in automatic pain recognition tasks.

Fig. 8. Weighted combination of support vectors to visualize contribution of
different face regions for pain recognition. (a) For pain, (b) For no pain. For pain, the
brighter regions represent more weightage. For no pain, the darker regions
represent more weightage.
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rotation and scale). This result is significant as most leading tech-
niques for action unit [4,5] and pain [2] detection tasks are
employing rigid rather than non-rigid registrations of the face.

We did not explore differences among possible appearance fea-
tures. Relative strengths and weaknesses among various appear-
ance features is an active area of ongoing research (see, for
instance, [33]). Our findings have implications for work on this to-
pic. Previous studies with Gabor filter responses, for instance, use
rigid registration [2,33]. While rigid registration may be adequate
for some applications (e.g., posed behavior or spontaneous behav-
ior with little out-of-plane head motion), for others it appears not.
We found that rigid registration of appearance had little informa-
tion value in video from clinical pain assessments. Out-of-plane
head motion was common in this context. Non-rigid registration
of appearance greatly improved classifier performance. Our find-
ings suggest that type of registration (rigid vs. non-rigid) may
influence the information value and robustness of appearance fea-
tures. When evaluating features, it is essential to consider the is-
sues of out-of-plane rotation and types of registration.
We also did not consider the relative advantages of first- versus
second-order classifiers. That is, is it better to detect pain directly
or to detect action units first and then use the resulting action unit
outputs to detect pain (or other expression of interest). This is an
important topic in its own respect. Littlewort [2], for instance, first
detected action units and then used the (predicted) action units in
a classifier to detect pain. In the current study and in our own pre-
vious work [3] we detected pain directly from shape and appear-
ance features without going through action unit detection first.
Research on this topic is just beginning. Most previous studies in
expression detection or recognition have been limited to posed
behavior and descriptions of facial expression (e.g., action units
or emotion-specific expressions, such as happy or sad). The field
is just now beginning to address the more challenging question
of detecting subjective states, such as clinical or induced pain.
Our concern with second-order classifiers is that they are vulnera-
ble to error at the initial step of action unit detection. Human
observers have difficulty achieving high levels of reliability [6];
and classifiers trained on human-observer labeled data will be af-
fected by that source of error variance. Alternatively, to the extent
that specific facial actions are revealing [34,35], second-order clas-
sifiers may have an advantage. We are pursuing these questions in
our current research.

Our results for the second question demonstrate that unsurpris-
ingly, frame-level labels in learning are best for frame-level detec-
tion of pain. However, sequence-level trained classifiers do
substantially better than chance even though they are being eval-
uated on a task they have not been directly trained for. This result
raises the interesting question over how researchers in the auto-
matic pain detection community should be using their resources
when labeling future datasets. Should we still be labeling at the
frame-level, ensuring that the datasets we learn from are modestly
sized. Or, should we be employing hybrid labeling strategies where
we label some portions at the frame- and some portions at the se-
quence-level allowing for learning from much larger datasets. The
answer to these questions shall be the topic of our continuing
research.

In summary, in a study of clinical pain detection, we found that
the combination of non-rigidly registered appearance and similar-
ity normalized shape maximized pain detection at both the se-
quence and frame levels. By contrast, rigidly registered
appearance was of little value in sequence- or frame-level pain
detection. With respect to granularity of training data, for frame-
level pain detection, use of frame-level labels resulted in hit rate
of 82% and false positive rate of 30%; the corresponding rates for
sequence-level labels were 77% and 44%, respectively. These find-
ings have implications for pain detection and machine learning
more generally. Because sequence-level labeling affords collection
of larger data sets, future work might consider hybrid strategies
that combine sequence- and frame-level labels to further improve
pain and expression detection. The current findings in clinical pain
subjects suggest the feasibility of automatic pain detection in med-
ical settings.
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