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1. Introduction

This paper deals with finding nonnegative equilibrium solutions to age and spatially structured
population equations. In an abstract setting the problem reads: find a nontrivial function u : J → E+

0
satisfying the nonlinear problem

∂au + A(u,a)u + μ(u,a)u = 0, a ∈ J \ {0}, (1.1)

u(0) =
am∫

0

β(u,a)u(a)da, (1.2)
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where E0 is an ordered Banach space with positive cone E+
0 and J := [0,am) with am ∈ (0,∞] denotes

the maximal age. Eqs. (1.1), (1.2) arise naturally when considering equilibrium (i.e. time-independent)
solutions to population models, where the function u represents the density of a population of in-
dividuals with age a ∈ J whose evolution is governed by death and birth processes according to the
density-dependent death modulus μ(u,a) and birth modulus β(u,a), respectively. The term A(u,a)

is (for u and a fixed) a linear unbounded operator A(u,a) : E1 ⊂ E0 → E0 defined on some common
subspace E1 of E0 and models spatial movement of individuals. The full non-equilibrium equations
involve an additional time derivative in (1.1), (1.2). Such age-structured equations have been studied
since long ago (see [30,31] and the references therein), in particular in situations where spatial move-
ment is neglected (i.e. A ≡ 0) or when A does not depend on the density u itself (see [7,16,18,23,24]
and the references therein). Less seems to be known about models involving nonlinear age-dependent
diffusion (however, see [6,15,17,26,27]).

To understand the asymptotic behavior of the time evolution of structured populations a precise
knowledge about equilibrium solutions (i.e. solutions to (1.1), (1.2)) is needed. In the present paper we
focus on such solutions for the nonlinear age-dependent case A = A(u,a). Clearly, u ≡ 0 is a solution
to (1.1), (1.2) and thus the aim is to give conditions for the existence of nontrivial solutions. Moreover,
since u in (1.1), (1.2) represents a density, any solution should be nonnegative and thus, in the abstract
setting, belong to the positive cone E+

0 .
To shorten notation we introduce an operator A as

A(u,a) := A(u,a) + μ(u,a). (1.3)

Suppose that for u fixed, the map a �→ A(u,a) generates on the Banach space E0 a parabolic evolution
operator Πu(a, σ ), 0 � σ � a < am . Then an easy – but fundamental – consequence of properties of
evolution operators is that any solution u to (1.1), (1.2) must satisfy the relation

u(a) = Πu(a,0)u(0), a ∈ J , u(0) = Q (u)u(0), (1.4)

where the linear operator Q (u) on E0 is (for u fixed) given by

Q (u) :=
am∫

0

β(u,a)Πu(a,0)da.

Roughly speaking, Q (u) contains information about the spatial distribution of the average number of
offspring per individual over the entire lifespan of the individual. If spatial movement is neglected,
that is, if A ≡ 0 and hence Πu(a, σ ) = e− ∫ a

σ μ(u,r)dr , then Q (u) is simply the net reproduction rate
(see [30]), and for any solution u to (1.1), (1.2) with A ≡ 0 this number Q (u) necessarily equals 1
according to (1.4). If spatial movement is included, then (1.4) implies that u(0) is (if nonzero) an
eigenvector to the eigenvalue 1 of the operator Q (u).

In Section 2 we suggest a bifurcation approach to establish positive solutions emanating from the
trivial solution u ≡ 0. We introduce a bifurcation parameter n, which determines the intensity of the
fertility without changing its structure, by setting

nb(u,a) := β(u,a), (1.5)

where b is normalized such that the spectral radius r(Q 0) of the bounded linear operator

Q 0 :=
am∫

b(0,a)Π0(a,0)da
0
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satisfies r(Q 0) = 1. Hence r(Q (0)) = nr(Q 0) = n and n thus represents the “inherent net reproduction
rate at low densities” (technically when u ≡ 0). If Q 0 is a compact positive operator, then 1 is an
eigenvalue of Q 0 and there is a distribution for which spatial movement, birth, and death processes
balance each other if these processes are governed according to A(0, ·), b(0, ·), and μ(0, ·).

In [28] a set of n-values around the critical value n = 1 was provided for which (1.1), (1.2) subject
to (1.5) possess nontrivial positive solutions. The existence of such a branch of positive equilibrium
solutions was obtained for rather general nonlinear operators A(u,a) modeling quasilinear diffusion.
However, the result of [28] is of purely local character and gives equilibrium solutions merely near
the critical point (n, u) = (1,0). One of the main achievements of this paper is the extension of the
local result of [28], that is, the proof of a global bifurcation phenomenon though for slightly less
general operators. More precisely, if the operator A(u,a) admits a suitable decomposition A(u,a) =
A0(a) + A∗(u,a) with A∗ being of “lower-order” (see Remark 2.1, (2.7), and Example 2.10) we use
Rabinowitz’s alternative [22] to show that there is an unbounded continuum of nontrivial positive
solutions (n, u) to (1.1), (1.2) subject to (1.5). Furthermore, we characterize the set of n-values in
more detail. This enables one to find particular cases where equilibria exist for any value of n � 1 (in
contrast to [28]) and to determine the direction of bifurcation by putting conditions on the birth and
death moduli and on the diffusion part. We also give an example demonstrating that the assumptions
imposed for the main result of Section 2, i.e. for Theorem 2.7, are quite natural.

We shall point out that our results and methods were inspired by [9], where global bifurcation
for population models neglecting spatial structure from the outset were investigated. More results
on bifurcation for age-structured equations with A ≡ 0 can be found in [8–10] and, respectively, in
[12,13] for linear and age-independent A. We also refer to [19–21,30] and the references therein for
equilibrium solutions for age-structured equations in general.

Section 3 is then devoted to a different approach for establishing solutions to the parameter-
independent problem (1.1), (1.2) not assuming a particular decomposition of A. This approach covers
“fully” quasilinear problems and is more or less independent of the previous considerations. Note that
the form of the solution in (1.4) allows one to interpret (u, B) with B := u(0) as a fixed point of the
map

(u, B) �→ (
Πu(·,0)B, Q (u)B

)
.

To prove Theorem 3.1 we extend an argument of [20, Thm. 1] (see also [30, Thm. 4.1]) for non-
diffusive population equations which is based on a fixed point theorem for conical shells [1]. The use
of such a theorem prevents hitting the trivial solution u ≡ 0 (together with B = 0 being obviously
a fixed point of the map above). We thus prove existence of nontrivial positive solutions for (1.1),
(1.2) under fairly general assumptions. Loosely speaking, nontrivial positive solutions exist provided
that the spectral radius of Q (u) for small populations with density u satisfies r(Q (u)) = r(Q (0)) = 1
and is an eigenvalue with a common eigenvector B for all Q (u), and provided that, in addition, for
large populations densities there holds r(Q (u)) � 1. Thus relevant equilibrium solutions exist if small
populations do not affect the spatial distribution of net reproduction rate and large populations have
a spatial net reproduction rate not exceeding 1.

We conclude the introduction with some notation being used in the following. If E and F are
Banach spaces we write L(E, F ) for the set of linear bounded operators from E to F , and we put
L(E) := L(E, E). The subset thereof consisting of compact operators is denoted by K(E, F ) and K(E),
respectively. We write r(A) for the spectral radius of an operator A ∈ L(E). For an ordered Banach
space E we let L+(E) denote the positive linear operators and K+(E) is the set of compact positive

linear operators. Next, Lis(E, F ) stands for the set of topological isomorphisms E → F . By E
d

↪→ F we
mean that E is densely embedded in F and E ↪−↪→ F stands for a compact embedding of E in F .

If E
d

↪→ F we let H(E, F ) denote the set of all negative generators of strongly continuous analytic
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semigroups on F with domain E . Moreover, given ω > 0 and κ � 1 we write A ∈ H(E, F ;κ,ω) if
A ∈ L(E, F ) is such that ω + A ∈ Lis(E, F ) and

1

κ
� ‖(λ + A)u‖F

|λ|‖u‖F + ‖u‖E
� κ, Re λ � ω, u ∈ E \ {0}.

Note that

H(E, F ) =
⋃
κ�1
ω>0

H(E, F ;κ,ω).

We refer to [4] for more details.
Given open subsets X ⊂ E , Y ⊂ F , and another Banach space G we mean by f ∈ C0,ρ(X × Y , G) for

ρ > 0 a continuous map f : X × Y → G such that f (x, ·) is ρ-Hölder continuous for each x ∈ X . Then

[
f (x, ·)]

ρ,Y := sup
y1,y2∈Y
y1 
=y2

‖ f (x, y1) − f (x, y2)‖G

‖y1 − y2‖ρ
F

.

We let Cb(E, F ) denote the continuous functions from E to F being bounded on bounded sets.

1.1. General assumptions

Throughout the paper we assume that E0 is a real Banach space ordered by a closed convex cone

E+
0 and E1

d
↪−↪→ E0 for some Banach space E1. We fix for each θ ∈ (0,1) an admissible interpolation

functor (·,·)θ , that is, an interpolation functor (·,·)θ such that E1
d

↪→ Eθ := (E0, E1)θ . Note that Eθ ↪−↪→
Eϑ for 0 � ϑ < θ � 1 (see [4, I, Thm. 2.11.1]). The interpolation spaces Eθ are given their natural order
induced by the cone E+

θ := Eθ ∩ E+
0 . We fix am ∈ (0,∞] and set J := [0,am). Observe that am = ∞ is

explicitly allowed.

2. Global bifurcation of positive equilibria

We focus our attention on the parameter-dependent problem (1.1), (1.2) subject to (1.5) in a more
general framework. More precisely, we look for solutions (n, u) to problems of the form

∂au + A(u,a)u = 0, a ∈ J ,

u(0) = n
(u). (2.1)

The linear unbounded operator A(u,a) : E1 ⊂ E0 → E0 (for u and a fixed) and the operator 
 with

(u) ∈ E0 and 
(0) = 0 are supposed to satisfy some technical assumptions specified later on. The
main example for the latter we have in mind is, of course,


(u) =
am∫

0

b(u,a)u(a)da. (2.2)

Clearly, the branch (n, u) = (n,0), n ∈ R, consists of (trivial) solutions to (2.1). Our aim is to prove that
another unbounded branch of nontrivial positive solutions (n, u) (i.e. u(a) ∈ E+

0 for a ∈ J and u 
≡ 0)
bifurcates from the trivial branch at some critical value, which we may assume to be n = 1 under a
suitable normalization. Imposing maximal L p-regularity for (a part of) the operator A we will show
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that the nontrivial branch (n, u) is unbounded in R
+ × (L+

p ( J , E1) ∩ W 1
p( J , E0)) for some p ∈ (1,∞)

fixed. The result is inspired by the work of [9] for the non-diffusive case A ≡ 0 and is a consequence of
Rabinowitz’s alternative [22]. The application of this alternative requires some compactness properties
of the operators involved in appropriate spaces, which are guaranteed, for example, by a generalized
Aubin–Dubinskii lemma (see Remark 2.1 and Lemma 2.3).

To state the precise assumptions let us fix p ∈ (1,∞) and introduce the spaces

E0 := Lp( J , E0), E1 := Lp( J , E1) ∩ W 1
p( J , E0).

Recall the embedding

E1 ↪→ BUC( J , Eς ), (2.3)

where BUC stands for bounded and uniformly continuous and Eς := (E0, E1)ς,p with (·,·)ς,p being
the real interpolation functor for ς := ς(p) := 1 − 1/p. The trace γ u := u(0) is thus well defined for
u ∈ E1. We further fix Banach spaces F1, F2, F3, and F4 such that

E1 ↪−↪→ F j, j = 1,2,3,4, (2.4)

and first remark the following:

Remark 2.1. Given α ∈ [0,1) and s ∈ [0,1 − α), Sobolev spaces W s
p( J , Eα) are appropriate choices for

F j to satisfy (2.4) if am < ∞. This follows from the compact embedding E1 ↪−↪→ Eα and a generalized
Aubin–Dubinskii lemma [5, Thm. 1.1].

For the nonlinear operator A in (2.1) we then shall assume a decomposition of the form

A(u,a) = A0(a) + A∗(u,a), (2.5)

where A0 is an age-dependent parabolic operator and the nonlinearity of A in u is contained in a
“lower-order perturbation” A∗ . To be more precise we suppose for the linear part A0 that

A0 ∈ L∞
(

J , L(E1, E0)
)

generates a positive parabolic evolution operator

Π0(a,σ ), 0 � σ � a < am, on E0 with regularity subspace E1 and

possesses maximal Lp-regularity, that is, (∂a + A0, γ ) ∈ Lis(E1,E0 × Eς ), (2.6)

while for the nonlinear part A∗ we assume that

A∗ ∈ C
(
F1, L(F2,E0)

)
with A∗(0, ·) = 0. (2.7)

We also assume 
 in (2.1) admits a decomposition


(u) = 
0(u) + 
∗(u) (2.8)

with linear part


0 ∈ L(E1, Eϑ ) + L(F3, Eς ) for some ϑ ∈ (ς,1], (2.9)

and nonlinear part
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∗ ∈ Cb(E1, Eϑ ) + C(F4, Eς ) with
∥∥
∗(u)

∥∥
Eς

= o
(‖u‖E1

)
as ‖u‖E1 → 0. (2.10)

A consequence of (2.6) is that for each datum (u0, f ) ∈ Eς × E0 the problem

∂au + A0(a)u = f (a), a ∈ J , u(0) = u0

possesses a unique solution u ∈ E1 given by

u(a) = Π0(a,0)u0 + (K0 f )(a), a ∈ J ,

satisfying for some number c0 > 0 independent of f and u0

‖u‖E1 � c0
(∥∥u0

∥∥
Eς

+ ‖ f ‖E0

)
,

where

(K0 f )(a) :=
a∫

0

Π0(a,σ ) f (σ )dσ , a ∈ J , f ∈ E0.

Therefore,

Π0(·,0) ∈ L(Eς ,E1), K0 ∈ L(E0,E1), (2.11)

and (2.4), (2.9) thus imply

[
f �→ 
0(K0 f )

] ∈ L(E0, Eς ). (2.12)

We also note that

Q 0 ∈ K(Eς ) for Q 0 w := 
0
(
Π0(·,0)w

)
, w ∈ Eς , (2.13)

which is a consequence of (2.11) and either Eϑ ↪−↪→ Eς if 
0 ∈ L(E1, Eϑ ) or (2.4) if 
0 ∈ L(F3, Eς ).
Without loss of generality we may assume that 
0 is normalized such that the spectral radius of
Q 0 ∈ K(Eς ) equals 1, that is, r(Q 0) = 1. We first consider the linearization of (2.1) around u ≡ 0.

Lemma 2.2. Suppose (2.4)–(2.10) and let r(Q 0) = 1. Then, for each (h1,h2) ∈ Eς × E0 , the problem

∂au + A0(a)u = h2(a), a ∈ J , u(0) − 1

2

0(u) = h1 (2.14)

admits a unique solution u = S(h1,h2) ∈ E1 given by u = Π0(·,0)w(h1,h2) + K0h2 , where

w(h1,h2) :=
(

1 − 1

2
Q 0

)−1(1

2

0(K0h2) + h1

)
∈ Eς . (2.15)

The solution operator S belongs to L(Eς × E0,E1).
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Proof. By the previous observations problem (2.14) is, for any given (h1,h2) ∈ Eς × E0, equivalent to

u(a) = Π0(a,0)u(0) + (K0h2)(a), a ∈ J ,

u(0) = 1

2
Q 0u(0) + 1

2

0(K0h2) + h1.

Taking 2 > r(Q 0) into account, the latter equality entails (2.15), and defining

S(h1,h2) := Π0(·,0)w(h1,h2) + K0h2,

we derive S ∈ L(Eς × E0,E1) from (2.11) and (2.12). �
Lemma 2.2 allows a reformulation of problem (2.1) in terms of the operator S: writing n = λ+1/2,

a function u ∈ E1 solves (2.1) if and only if

u = λLu + H(λ, u), (2.16)

where

Lu := S
(

0(u),0

)
, H(λ, u) := S

(
(λ + 1/2)
∗(u),−A∗(u, ·)u

)
.

The maps L and H enjoy the following properties.

Lemma 2.3. Suppose (2.4)–(2.10) and let r(Q 0) = 1. Then L ∈ K(E1). Moreover, H ∈ C(R × E1,E1) is com-
pact and ‖H(λ, u)‖E1 = o(‖u‖E1 ) as ‖u‖E1 → 0 uniformly on bounded λ intervals.

Proof. Clearly, Lemma 2.2, (2.4), and (2.9) ensure L ∈ L(E1). Using Eϑ ↪−↪→ Eς if 
0 ∈ L(E1, Eϑ ) or
E1 ↪−↪→ F3 if 
0 ∈ L(F3, Eς ), the compactness of L is obvious. Next, Lemma 2.2 together with (2.7) and
(2.10) imply H ∈ C(R × E1,E1). As for its compactness we note that if (u j) is a bounded sequence
in E1, then (
∗(u j)) is relatively compact in Eς either because (
∗(u j)) is bounded in Eϑ ↪−↪→ Eς if

∗ ∈ Cb(E1, Eϑ ) or because E1 ↪−↪→ F4 if 
∗ ∈ C(F4, Eς ). Next, (2.4) and (2.7) ensure that (A∗(u j)u j)

is relatively compact in E0. Hence the compactness of H follows from Lemma 2.2. Finally, the last
assertion is a consequence of (2.7), (2.10), and again Lemma 2.2. �
Remark 2.4. Alternatively to (2.7) we could have assumed A∗ ∈ C(E1, L(E1,E0)) with A∗(0, ·) = 0 is
such that (u �→ A∗(u)u) ∈ C(E1,E0) is compact.

To problem (2.16) we may now apply Rabinowitz’s alternative [22]. Recall that the characteristic
values of a linear operator are the reciprocals of its real nonzero eigenvalues. A continuum in R × E1
is a closed connected subset thereof, and it meets infinity if it is unbounded.

Proposition 2.5. Suppose (2.4)–(2.10) and let r(Q 0) = 1 be a simple eigenvalue of Q 0 ∈ K(Eς ) with eigen-
vector B ∈ Eς . Then there exists a maximal continuum C in R × E1 consisting of solutions (n, u) to (2.1) with
u 
≡ 0 if n 
= 1 and (1,0) ∈ C. For (n, u) ∈ C near (1,0) we have

u = εΠ0(·,0)B + u∗(ε) with
∥∥u∗(ε)

∥∥
E1

= o(ε) as ε → 0. (2.17)

The continuum C satisfies the following alternative: either C meets infinity or it meets a point (n̂,0) with
μ̂ = n̂ − 1/2 being a characteristic value of L.
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Proof. First note that u = μLu with u ∈ E1 and μ ∈ R is equivalent to

u = Π0(·,0)u(0), u(0) = (μ + 1/2)Q 0u(0) (2.18)

owing to Lemma 2.2 and (2.3). Thus, μ + 1/2 is a characteristic value of Q 0 ∈ K(Eς ) if and only if
μ is a characteristic value of L ∈ K(E1). Additionally assuming μ + 1/2 to be a simple characteristic
value of Q 0 we claim that μ is a simple characteristic value of L. For, let u ∈ ker((μL − 1)2) ⊂ E1 and
define v := (μL − 1)u ∈ ker(μL − 1) ⊂ E1. Then (2.18) ensures v = Π0(·,0)v(0) with v(0) belonging
to ker(1 − (μ + 1/2)Q 0). The characteristic value μ + 1/2 of Q 0 being simple, we deduce v(0) = rξ0
for some r ∈ R and ξ0 ∈ Eς with ker(1 − (μ + 1/2)Q 0) = span{ξ0}. Hence

v = rΠ0(·,0)ξ0, (2.19)

and we aim for r = 0. Clearly, from (2.18) we have Π0(·,0)ξ0 ∈ ker(μL − 1), whence from (2.19)
u = L(μu − rμΠ0(·,0)ξ0). Lemma 2.2 then entails

(
1 − (μ + 1/2)Q 0

)
u(0) = −rμQ 0ξ0 = −rμ

μ + 1/2
ξ0.

Consequently,

rμξ0 ∈ rg
(
1 − (μ + 1/2)Q 0

) ∩ ker
(
1 − (μ + 1/2)Q 0

) = {0}

since μ + 1/2 is a simple characteristic value of the compact operator Q 0. We conclude r = 0 as
desired because μ = 0 is impossible owing to the fact that 1/2 is no characteristic value of Q 0 since
r(Q 0) = 1. But then v = 0 by (2.19) and so ker((μL −1)2) ⊂ ker(μL −1). Therefore, μ is indeed simple
for L provided μ + 1/2 is simple for Q 0. In particular, μ = 1/2 is a simple characteristic value of L
due to the assumption on r(Q 0).

Taking Lemma 2.3 into account we may apply Theorem 1.3 from [22] to conclude the existence
of a maximal continuum C in R × E1 with (1,0) ∈ C such that (n, u) ∈ C solves u = λLu + H(λ, u)

with λ = n − 1/2, where u 
≡ 0 if n 
= 1, and C either meets infinity or meets a point (n̂,0) with a
characteristic value μ̂ = n̂ − 1/2 of L different from 1/2. Finally, [22, Lem. 1.24] implies (2.17) and the
statement follows. �

Imposing further conditions on A and 
 we now prove that a global branch of positive solutions
(n, u) to (2.1) exists emanating from the trivial branch (n,0), n ∈ R, at the critical point (1,0). To
prove this result we suppose that

for each u ∈ E1, A(u, ·) generates a positive parabolic evolution operator

Πu(a,σ ), 0 � σ � a < am, on E0 with regularity subspace E1. (2.20)

We also assume that

there is 
̄∗ with 
∗(u) = 
̄∗(u, u) and 
̄∗(0, ·) = 0

such that Q u ∈ K+(Eς ) for each u ∈ E1, where

Q u w := 
0
(
Πu(·,0)w

) + 
̄∗
(
u,Πu(·,0)w

)
, w ∈ Eς . (2.21)

Note that this definition of Q u is consistent with (2.13). Let int(E+
ς ) denote the interior of the positive

cone E+
ς . Then we assume further that
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for each u ∈ E1, any positive eigenvector to a positive eigenvalue of Q u

belongs to int
(

E+
ς

)
. (2.22)

This last assumption is crucial for positivity of solutions but not too restrictive in applications as noted
in the following remark (see also Example 2.10).

Remark 2.6. If int(E+
ς ) 
= ∅ and Q u ∈ K+(Eς ) is irreducible (e.g. if strongly positive), then the Krein–

Rutman theorem [11, Thm. 12.3] ensures that the spectral radius r(Q u) > 0 is a simple eigenvalue of
Q u with an eigenvector belonging to int(E+

ς ), and it is the only eigenvalue with positive eigenvector.
Thus (2.22) holds in this case.

The main result of this section is the following theorem on the existence of an unbounded branch
of positive solutions to (2.1).

Theorem 2.7. Suppose (2.4)–(2.10) and (2.20)–(2.22). Further let r(Q 0) = 1 be a simple eigenvalue of Q 0 ∈
K+(Eς ) with eigenvector B ∈ int(E+

ς ) and suppose Q 0 has no other eigenvalue with positive eigenvector. Then

there is a continuum C+ in R
+ × E

+
1 of positive solutions to (2.1) connecting (1,0) with infinity.

Proof. Let C denote the maximal continuum of solutions to (2.1) provided by Proposition 2.5. Clearly,
if (n, u) ∈ C, then u = Πu(·,0)u(0) by (2.1), (2.16), and (2.20). Thus u ∈ E

+
1 provided u(0) ∈ E+

ς . Also
note that (0, u) ∈ C would imply u ≡ 0 and is thus impossible. Due to B ∈ int(E+

ς ) it follows from (2.3)
and (2.17) that for (n, u) ∈ C near (1,0) we have for sufficiently small ε > 0

1

ε
u(0) = B + 1

ε
γ u∗(ε) ∈ E+

ς .

Since μ = 1/2 is a simple characteristic value of L, we may refer to [22, Thm. 1.40] to deduce that
C is the union of two subcontinua C± , where C+ consists of positive solutions near (1,0), and C+
(and also C−) meets (1,0) and either meets infinity in R × E1 or a point (μ̂ + 1/2,0) with μ̂ being
a characteristic value of L different from 1/2. Consequently, C+ ∩ (R+ × E

+
1 ) 
= ∅, and we now show

that C+ leaves R
+ × E

+
1 only at the bifurcation point (n, u) = (1,0). For, suppose the continuum C+

leaves R
+ × E

+
1 at some point (n∗, u∗). Then there are (n j, u j) ∈ C+ ∩ (R+ × E

+
1 ) with

(n j, u j) → (n∗, u∗) in R × E1. (2.23)

In particular, writing n j = λ j + 1/2 we have u j = λ j Lu j + H(λ j, u j), j ∈ N, and letting j → ∞ we
obtain from Lemma 2.3 that u∗ = λ∗Lu∗ + H(λ∗, u∗) for λ∗ := n∗ − 1/2. Hence

∂au∗ + A(u∗,a)u∗ = 0, u∗(0) = n∗
(u∗)

from which

u∗ = Πu∗(·,0)u∗(0), u∗(0) = n∗ Q u∗ u∗(0)

by (2.20). Therefore, either u∗(0) = 0 and then u∗ ≡ 0 or u∗(0) ∈ E+
ς \{0} by (2.3) in which case n∗ > 0

must be a characteristic value of Q u∗ with a positive eigenvector. Thanks to (2.22) we derive

u∗ ≡ 0 or u∗(0) ∈ int
(

E+
ς

)
. (2.24)
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First suppose that u∗ ≡ 0. Then (n j, u j) → (n∗,0) in R
+ × E

+
1 , and we claim that λ∗ = n∗ − 1/2 is a

characteristic value of L. Indeed, putting v j := ‖u j‖−1
E1

u j and taking into account (2.16), the compact-
ness of the operator L, and the fact that ‖H(λ, u)‖E1 = o(‖u‖E1) as ‖u‖E1 → 0 we realize that we
may extract a subsequence of (v j) converging in E1 toward some v ∈ E

+
1 \ {0} with v = λ∗Lv . Thus

λ∗ is indeed a characteristic value of L. As in (2.18) this implies that n∗ = λ∗ + 1/2 is a characteris-
tic value of Q 0 with a positive eigenvector v(0) ∈ E+

ς , whence n∗ = 1 by assumption. Therefore, C+

leaves R
+ × E

+
1 at the bifurcation point (n∗, u∗) = (1,0). Now suppose that u∗(0) ∈ int(E+

ς ). Since C+

is connected and leaves R
+ × E

+
1 at (n∗, u∗), there is a sequence (n̄ j, ū j) ∈ C+ with ū j /∈ E

+
1 and

(n̄ j, ū j) → (n∗, u∗) in R × E1. According to (2.3) we find m ∈ N with ūm(0) ∈ E+
ς . But (n̄m, ūm) ∈ C+

and thus

∂aūm + A(ūm,a)ūm = 0, ūm(0) = n̄m
(ūm),

that is, ūm = Πūm (·,0)ūm(0) ∈ E
+
1 due to (2.20) contradicting the choice of the sequence (ū j). There-

fore, u∗(0) ∈ int(E+
ς ) is impossible. We have thus shown that C+ leaves R

+ × E
+
1 only at the bifurca-

tion point (n∗, u∗) = (1,0).
It remains to prove that C+ does not meet a point (μ̂+1/2,0) with μ̂ 
= 1/2 being a characteristic

value of L. For, suppose C+ meets such a point. Then we find (n j, u j) ∈ C+ ⊂ R
+ ×E

+
1 with (n j, u j) →

(μ̂ + 1/2,0) in R
+ × E

+
1 . Exactly as above one shows that then μ̂ = 1/2 which is ruled out by

assumption. This proves the theorem. �
If the interior of the positive cone E+

ς is empty, one can prove another result if we put some

symmetry conditions on A and 
. For the eigenvector B of Q 0 we only assume that B ∈ E+
0 .

Theorem 2.8. Suppose (2.4)–(2.10), (2.20), and (2.21). Moreover, suppose that for each u ∈ E1 , any positive
eigenvalue of Q u has geometric multiplicity 1 and possesses a positive eigenvector Bu ∈ E+

0 . In addition, let
A∗(−u, ·) = A∗(u, ·) and 
̄∗(−u, ·) = 
̄∗(u, ·) for u ∈ E1 . If r(Q 0) = 1 is a simple eigenvalue of Q 0 ∈ K+(Eς )

with an eigenvector B ∈ E+
0 , and if there is no other eigenvalue of Q 0 with positive eigenvector, then

C+ := {
(n, u) ∈ C; u(0) ∈ E+

0

} ∪ {
(n,−u); (n, u) ∈ C, u(0) /∈ E+

0 , n > 0
}

is an unbounded closed subset of R×E
+
1 such that C+ \{(1,0)} consists of positive nontrivial solutions to (2.1),

where C is the maximal continuum from Proposition 2.5.

Proof. As in the proof of Theorem 2.7 we have u ∈ E
+
1 for (n, u) ∈ C provided u(0) ∈ E+

0 . If (n, u) ∈
C is such that u(0) /∈ E+

0 and n > 0, then u = Πu(·,0)u(0) and u(0) = nQ uu(0). Hence n > 0 is a
characteristic value of Q u and by assumption there is a corresponding eigenvector Bu ∈ E+

0 such that
u(0) = ru Bu for some ru < 0. Due to the symmetry conditions put on A∗ and 
∗ it is easily seen
that v := −u satisfies v = Πv(·,0)v(0) and v(0) = nQ v v(0) with v(0) = −ru Bu ∈ E+

0 . Consequently,
(n, v) ∈ R

+ × E
+
1 solves (2.1). Hence C+ consists of nonnegative solutions only. To show that C is

unbounded assume to the contrary that C meets a point (μ̂ + 1/2,0) with a characteristic value μ̂ of
L different from 1/2. Let (λ j + 1/2, u j) ∈ C be such that (λ j, u j) → (μ̂,0) in R × E1. Recall (2.3) and
set ū j := u j if u j(0) ∈ E+

0 and ū j := −u j if u j(0) /∈ E+
0 . Then ū j ∈ E

+
1 and (λ j, ū j) → (μ̂,0) in R × E1.

Exactly as in the proof of Theorem 2.7 we deduce that μ̂ + 1/2 is a characteristic value of Q 0 with
an eigenvector in E+

ς , whence μ̂ + 1/2 = r(Q 0) = 1 by assumption contradicting μ̂ 
= 1/2. Therefore,
C is unbounded according to Proposition 2.5 and so is C+ . That the latter is closed in R × E1 is a
consequence of the continuity of L and H . This concludes the proof. �
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Let us consider the set of possible parameter values in more detail. For, suppose the conditions
of Theorem 2.7, let C+ denote the unbounded continuum in R

+ × E
+
1 consisting of positive solution

to (2.1), and recall that Q u ∈ K+(Eς ) for u ∈ E1 was defined by

Q u w := 
0
(
Πu(·,0)w

) + 
̄∗
(
u,Πu(·,0)w

)
, w ∈ Eς , u ∈ E1.

Observe that for (n, u) ∈ C+ we have u = Πu(·,0)u(0) with u(0) = nQ uu(0), whence nr(Q u) � 1 for
(n, u) ∈ C+ . In addition, if

for each u ∈ E
+
1 , Q u ∈ K+(Eς ) has only r(Q u) > 0

as eigenvalue with positive eigenvector, (2.25)

which holds e.g. if the Krein–Rutman theorem applies to Q u , then necessarily

nr(Q u) = 1, (n, u) ∈ C+. (2.26)

This observation guarantees a more precise characterization of the spectrum

σ := {
n; there is u ∈ E

+
1 with (n, u) ∈ C+ \ {

(1,0)
}}

as well as of the solution set

Γ := {
u; there is n ∈ R with (n, u) ∈ C+ \ {

(1,0)
}}

.

The next proposition is in the spirit of [9] for the spatially homogeneous case A ≡ 0 in (1.3) and
the easy proofs carry over to the present situation almost verbatim. We nevertheless include them
here for the reader’s ease.

Proposition 2.9. Suppose the conditions of Theorem 2.7 and (2.25). Setting

σi := infσ , σs := supσ , Ni := inf
u∈Γ

r(Q u), Ns := sup
u∈Γ

r(Q u),

we have:

(i) 0 /∈ σ ⊂ R
+ and Γ ⊂ E

+
1 .

(ii) 0 � σi � 1 � σs � ∞.
(iii) Ni = 0 iff σs = ∞, and if Ni > 0, then σs = 1/Ni < ∞.
(iv) Ns = ∞ iff σi = 0, and if Ns < ∞, then σi = 1/Ns > 0.
(v) If r(Q u) → 0 as ‖u‖E1 → ∞, then σs = ∞.

(vi) If r(Q u) � ξ for some ξ > 0 and every solution (n, u) ∈ R
+ × E

+
1 to (2.1), then σi � 1/ξ . In particular,

if r(Q u) � 1 for every solution (n, u) ∈ R
+ × E

+
1 to (2.1), then σi = 1 corresponding to supercritical

bifurcation.

Proof. (i) We note that, according to (2.20), any solution (n, u) to (2.1) satisfies u = Πu(·,0)u(0) with
u(0) = 0 if n = 0, whence u ≡ 0 in this case. Hence 0 /∈ σ .

(ii) Since (1,0) ∈ C+ this is immediate.
(iii) Let Ni = 0. Then there is a sequence ((n j, u j)) in C+ with u j 
≡ 0 and r(Q u j ) ↘ 0. From (2.26)

we obtain n j ↗ ∞, whence σs = ∞. Conversely, let σs = ∞. Then there is a sequence ((n j, u j)) in
C+ with n j ↗ ∞ and (2.26) ensures r(Q u j ) ↘ 0, whence Ni = 0. Let now Ni > 0. On the one hand,
we necessarily have 1 = nr(Q u) � nNi for all (n, u) ∈ C+ . Consequently, n � 1/Ni for n ∈ σ so that
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σs � 1/Ni . On the other hand, since 1 = nr(Q u) � σsr(Q u) for (n, u) ∈ C+ we have r(Q u) � 1/σs for
u ∈ Γ and thus Ni � 1/σs .

(iv) The same as in (iii).
(v) Theorem 2.7 implies that σs = ∞ or there are u j ∈ Γ with ‖u j‖E1 → ∞. Then σs = ∞ or

r(Q u) → 0 by assumption, hence σs = ∞ in both cases according to (iii).
(vi) From (iv) we obtain σi = 1/Ns � 1/ξ if Ns � ξ . In particular, if ξ = 1, then σi = 1 due

to (ii). �
Of course, particularly interesting is the case σs = ∞ when there is for each parameter value n � 1

a positive solution to (1.4). As in [9, Cor. 3] one can easily impose conditions on A = A + μ and on b
in (3.1) guaranteeing r(Q u) → 0 as ‖u‖E1 → 0, whence σs = ∞ by (v) of the above proposition.

A simple situation where this occurs is if there are a function λ : E1 × J → R and some ϕ ∈ E+
ς \{0}

such that

−A(u,a)ϕ = λ(u,a)ϕ, u ∈ E1, a ∈ J , (2.27)

with

am∫
0

b(u,a)e
∫ a

0 λ(u,σ ) dσ da → 0 as ‖u‖E1 → ∞,

where 
 in (2.1) is given as in (2.2) with b ∈ Cb(E1, L p′ ( J )) for 1/p + 1/p′ = 1. Then, supposing the
conditions of Theorem 2.7 and (2.25) we have

Q uϕ =
am∫

0

b(u,a)Πu(a,0)ϕ da =
am∫

0

b(u,a)e
∫ a

0 λ(u,σ ) dσ da ϕ

by (2.27) and thus, from (2.25),

r(Q u) =
am∫

0

b(u,a)e
∫ a

0 λ(u,σ ) dσ da → 0 as ‖u‖E1 → ∞.

As in [28, Ex. 3.3] one can also put conditions on A = A + μ and on b in (3.1) leading to r(Q u) � 1,
that is, to supercritical bifurcation in view of (vi).

As pointed out in Remark 2.6 the assumptions on the spectral radii and the properties of the
eigenvalues of the operators Q u in Theorem 2.7 or Theorem 2.8 are not too restrictive but rather
natural in applications due to the fact that these operators are compact and strongly positive in
many cases. In general, we refer to [28, Thm. 3.1, Ex. 3.1, Ex. 3.2, Ex. 3.3] for other examples of
diffusion operators A, birth moduli b, and death moduli μ satisfying the assumptions of Theorem 2.7
or Theorem 2.8 and provide here just one example.

Example 2.10. Let Ω ⊂ R
N , N � 1, be a bounded and smooth domain lying locally on one side of ∂Ω .

Let the boundary ∂Ω be the distinct union of two sets Γ0 and Γ1 both of which are open and closed
in ∂Ω . For simplicity we assume am ∈ (0,∞) and consider a second-order differential operator of the
form

A(u,a, x)w := −∇x · (D(a, x)∇x w
) + g

(
u(a),∇xu(a)

) · ∇x w + h
(
u(a),∇xu(a)

)
w, (2.28)

where
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D : J → C1(Ω̄) is bounded and uniformly Hölder

continuous with D(a, x) > 0, (a, x) ∈ J × Ω̄, (2.29)

and

g ∈ C3(
R × R

N ,R
N)

with g(0,0) = 0 and h ∈ C3(
R × R

N ,R
)
. (2.30)

Let

ν0 ∈ C1(Γ1), ν0(x) � 0, x ∈ Γ1, (2.31)

and let ν denote the outward unit normal to Γ1. Let

B(x)w :=
{

w, on Γ0,
∂
∂ν w + ν0(x)w, on Γ1.

Fix

p ∈ (2 + N,∞) (2.32)

and let E0 := L p := L p(Ω) be ordered by its positive cone of functions that are nonnegative almost
everywhere. Observe that

E1 := W 2
p,B := W 2

p,B(Ω) := {
u ∈ W 2

p; Bu = 0
}

↪−↪→ Lp = E0

and, up to equivalent norms, the interpolation spaces are subspaces of the Sobolev–Slobodeckii spaces
W 2ξ

p := W 2ξ
p (Ω), that is,

Eξ := (
Lp, W 2

p,B
)
ξ,p

.= W 2ξ
p,B :=

⎧⎪⎪⎨
⎪⎪⎩

W 2ξ
p , 0 < 2ξ < 1/p,

{w ∈ W 2ξ
p ; u|Γ0 = 0}, 1/p < 2ξ < 1 + 1/p, 2ξ 
= 1,

{w ∈ W 2ξ
p ; Bu = 0}, 1 + 1/p < 2ξ < 2

(see, e.g., [25]). In particular, since 2 − 2/p > N/p + 1, we have Eς
.= W 2−2/p

p,B ↪→ C1(Ω̄) for ς =
1 − 1/p and thus int(E+

ς ) 
= ∅. Assume then further that

μ : R × J → [0,∞) is uniformly Lipschitz continuous on bounded sets (2.33)

and that, for θ(a) := μ(0,a) + h(0,0),

θ : J → (0,∞) is bounded and uniformly Hölder continuous. (2.34)

Finally, let b be such that

b ∈ C0,4([0,am] × R, (0,∞)
)
. (2.35)

Consider

A(u,a)w := A(u,a, ·)w, w ∈ E1, u ∈ E1,
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and define A(u,a) := A(u,a) + μ(u(a),a) for u ∈ E1 and a ∈ J . Then

A0(a)w := A(0,a)w = −∇x · (D(a, ·)∇x w
) + θ(a)w

defines a bounded and uniformly Hölder continuous map A0 : J → L(W 2
p,B, L p) by (2.29) and (2.34).

Moreover, from [2, Sect. 7, Thm. 11.1] it follows that for a ∈ J fixed, −A0(a) is resolvent positive,
generates a contraction semigroup of negative type on each Lr(Ω), r ∈ (1,∞), and is self-adjoint
on L2(Ω). Hence A0 generates a positive parabolic evolution operator with regularity subspace
E1 = W 2

p,B by [4, II, Cor. 4.4.2] and possesses maximal L p-regularity according to [4, III, Ex. 4.7.3,
III, Thm. 4.10.10], whence (2.6). Owing to (2.32) we may choose numbers s, ᾱ, and α such that

1

p
< s < 1 − α < 1 − ᾱ <

1

2
− N

2p
. (2.36)

Then, as in Remark 2.1, we have

E1 := Lp
(

J , W 2
p,B

) ∩ W 1
p( J , Lp) ↪−↪→ W s

p

(
J , W 2α

p,B
) =: F j, j = 1,2,

and from [26, Lem. 2.7] we obtain that

[
u �→ g(u,∇xu)

]
: W 2α

p,B → W 2ᾱ−1
p,B ↪→ C(Ω̄)

is Lipschitz continuous since 2α > 1 + N/p. In particular, since s > 1/p we deduce for u ∈ E1 that

[
a �→ g

(
u(a),∇xu(a)

)]
: J → C(Ω̄)

is Hölder continuous. Clearly, the same holds true for h(u,∇xu). Similarly we obtain from (2.33) and
the embedding E1 ↪→ Cς−υ( J , Eυ), υ � ς (being due to the interpolation inequality
[4, I, Thm. 2.11.1]) that [a �→ μ(u(a),a)] : J → C(Ω̄) is Hölder continuous. Gathering these information
and invoking [4, II, Cor. 4.4.2] we deduce that A(u, ·) generates for each u ∈ E1 a positive parabolic
evolution operator Πu(a, σ ), 0 � σ � a < am , on E0 = Lq , whence (2.20). Obviously, (2.7) holds for

A∗(u,a) := A(u,a) − A0(a).

Choose 1 > β > β̄ > 1 − 1/p > N/2p. Then pointwise multiplication

W 2β̄
p,B · W 2β̄

p,B ↪→ W 2(1−1/p)
p,B

.= Eς (2.37)

is continuous according to [3, Thm. 4.1]. Let s̄ ∈ (0,1 − β) so that

E1 ↪−↪→ W s̄
p

(
J , W 2β

p,B
) =: F3 ↪→ L1

(
J , W 2β

p,B
)
.

From [29, Prop. 4.1] it follows that

[
U �→ b(U , ·)] : W 2β

p,B → L∞
(

J , W 2β̄
p,B

)

is Lipschitz continuous. Thus, writing U := ∫ am
0 u(a)da ∈ W 2β

p,B for u ∈ F3 = W s̄
p( J , W 2β

p,B), we obtain
from (2.37) that 
0 ∈ L(F3, Eς ) and 
∗ ∈ C(F3, Eς ), where


0(u) :=
am∫

b(0,a)u(a)da and 
∗(u) :=
am∫ [

b(U ,a) − b(0,a)
]
u(a)da.
0 0
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Furthermore,

∥∥
∗(u)
∥∥

Eς
� c

∥∥b(U , ·) − b(0, ·)∥∥
L∞( J ,W 2β̄

p,B )
‖u‖

W s̄
p( J ,W 2β

p,B )
,

whence (2.9) and (2.10). Defining

Q u :=
am∫

0

b(U ,a)Πu(a,0)da, u ∈ E1,

it is immediate that Q u ∈ K+(Eς ) due to [4, II, Lem. 5.1.3] and the compact embedding E1 ↪−↪→ Eς

since am < ∞. Moreover, Q u is strongly positive since Πu(a,0) is strongly positive on E+
ς for a ∈

J \ {0} (see [11, Thm. 13.6]). In particular, Q u is irreducible and so, by [11, Thm. 12.3], r(Q u) > 0 is
simple and the only eigenvalue of Q u with a positive eigenfunction since int(E+

ς ) 
= ∅ as observed
above. This ensures (2.21) and (2.22). Therefore, if b is normalized such that r(Q 0) = 1, we conclude
thanks to Theorem 2.7:

Proposition 2.11. Suppose (2.28)–(2.35) and let r(Q 0) = 1. Then the problem

∂au + A(u,a, x)u + μ
(
u(a),a

)
u = 0, a ∈ J , x ∈ Ω,

u(0, x) = n

am∫
0

b
(
U (x),a

)
u(a, x)da, x ∈ Ω,

B(x)u(a, x) = 0, a > 0, x ∈ ∂Ω,

U (x) =
am∫

0

u(a, x)da, x ∈ Ω,

admits an unbounded continuum C+ of positive nontrivial solutions (n, u) in

R
+ × (

L+
p

(
J , W 2

p,B
) ∩ W 1

p( J , Lp)
)
.

A noteworthy variant of Proposition 2.11 is to consider a functional (instead of a local) dependence
of A or μ on u with respect to age. For details we refer to [28, Ex. 3.2, Ex. 3.3].

3. Positive solutions via a fixed point argument

The aim of this section is to give sufficient conditions for the existence of nontrivial nonnegative
solutions to the (parameter-independent) problem

∂au + A(u,a)u = 0, a ∈ J ,

u(0) =
am∫

0

b(u,a)u(a)da, (3.1)

in E0 without assuming a decomposition (2.5)–(2.7). Due to the quasilinear structure of the first
equation we require some assumptions that can considerably be weaken if one restricts to linear
problems. For θ ∈ (0,1) we put Xθ := L1( J , Eθ ) and X+

θ := L+
1 ( J , Eθ ). Let



C. Walker / J. Differential Equations 248 (2010) 1756–1776 1771
0 < α < β < 1. (3.2)

We suppose that, given any R > 0, there are ρ,ω,η > 0, σ ∈ R, and κ � 1 depending possibly on R
such that for Φα := BXα (0, R) ∩ X+

α we have

A ∈ C0,ρ
(
Φα × J , L(E1, E0)

)
with

[
A(u, ·)]

ρ, J � η,

for each u ∈ Φα and a ∈ J , σ + A(u,a) ∈ H(E1, E0;κ,ω)

and A(u,a) is resolvent positive. (3.3)

Observe that (3.3) and [4, II, Cor. 4.4] ensure that for each u ∈ Φα there is a unique positive parabolic
evolution operator Πu(a, σ ), 0 � σ � a < am , on E0 corresponding to A(u, ·). The evolution operator
satisfies according to [4, II, Lem. 5.1.3] the estimates

∥∥Πu(a,σ )
∥∥

L(Eξ )
+ (a − σ)ξ−ζ/2

∥∥Πu(a,σ )
∥∥

L(Eζ ,Eξ )
� c0eν(a−σ ), 0 � σ � a < am, (3.4)

for 0 � ζ � ξ � 1 and some constants c0 = c0(R, ξ, ζ ) > 0 and ν = ν(R) ∈ R (independent of u ∈ Φα ).
We assume that

ν < 0 if am = ∞. (3.5)

To control the dependence of the evolution operator Πu on u ∈ Φα we require for each u ∈ Φα the
existence of ε = ε(u) > 0 and a measurable function g : (0, ε) × J → R

+ (depending possibly on u)
with

lim
r→0+

am∫
0

g(r,a)da = 0,

max
0�σ�a

∥∥A(u,σ ) − A(ū,σ )
∥∥

L(E1,E0)
� g

(‖u − ū‖X+
α
,a

)
, a ∈ J , ‖u − ū‖X+

α
� ε. (3.6)

As for b appearing in (3.1) we suppose that

b ∈ L+∞(Φα × J , F ),

e−νa
∥∥b(u,a) − b(ū,a)

∥∥
F � g

(‖u − ū‖X+
α
,a

)
, a ∈ J , ‖u − ū‖X+

α
� ε. (3.7)

Here F is assumed to be a Banach space ordered by a convex cone F + such that a (bilinear) multipli-
cation m := [( f , e) �→ f e] is induced which is continuous considered as a mapping

m : F × Eβ → Eβ and m : F × E1 → Eδ for some δ ∈ (β,1] (3.8)

and such that m( f , e) = f e ∈ E+
β for f ∈ F + and e ∈ E+

β . Note that F = R is appropriate with δ = 1.

As a consequence of (3.4), (3.5), (3.7), and the compact embedding Eδ ↪−↪→ Eβ we have

Q (u) =
am∫

b(u,a)Πu(a,0)da ∈ L+(Eβ, Eδ) ∩ K+(Eβ), u ∈ Φα. (3.9)
0
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Solutions to (3.1) are, as noted in the introduction, fixed points of the map

(u, B) �→ (
Πu(·,0)B, Q (u)B

)

with B = u(0). Clearly, (3.2)–(3.8) are technical but not restrictive assumptions for applications (see
[28, Sect. 3]). However, since the main task is to single out nontrivial solutions we also have to impose
structural and thus more restrictive assumptions in order to apply a fixed point theorem for conical
shells [1]. The assumptions read:

there are τ0 > 0 and ψ ∈ E+
β with ψ /∈

⋃
u∈X+

1 \{0}
‖u‖Xα <τ0

rg+
(
1 − Q (u)

)
, (3.10)

where rg+(1 − Q (u)) := {(1 − Q (u))B; B ∈ E+
β }, and

there is τ1 > 0 such that
(

Q (u)
)
� 1 for u ∈ X+

1 with ‖u‖Xβ � τ1, (3.11)

where r(Q (u)) denotes the spectral radius of the positive operator Q (u) ∈ L(Eβ).
We comment in more detail on the structural requirements (3.10), (3.11) after the proof of the

following result, which is in the spirit of [20, Thm. 1]:

Theorem 3.1. Suppose (3.2), (3.3), (3.5)–(3.8), (3.10), and (3.11). Then (3.1) has at least one nontrivial non-
negative solution

u ∈ L1( J , E1) ∩ C1( J \ {0}, E0
) ∩ C( J , Eδ).

Proof. We shall employ [1, Thm. 12.3] in proving the statement. Let X := X+
α × E+

β and XR := BX(0, R)

with

R := τ1
(‖i‖L(Eβ ,Eα) + ‖b‖L∞(B

X+
β

(0,τ1)× J ,F )

)
> 0,

where i is the natural injection Eβ ↪→ Eα . We put

f (u, B) := (
Πu(·,0)B, Q (u)B

)

and first claim that f : XR → X is continuous and f (XR) is relatively compact in X. Indeed, given
(u, B), (ū, B̄) ∈ XR we note that

am∫
0

∥∥Πu(a,0)B − Πū(a,0)B̄
∥∥

Eα
da �

am∫
0

∥∥Πu(a,0) − Πū(a,0)
∥∥

L(Eα)
da ‖B‖Eα

+
am∫

0

∥∥Πū(a,0)
∥∥

L(Eα)
da ‖B − B̄‖Eα

� c(R)

am∫
g
(‖u − ū‖X+

α
,a

)
da + c(R)‖B − B̄‖Eα ,
0
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where we invoked (3.4)–(3.6), and [4, II, Lem. 5.1.4]. Thus Πū(a,0)B̄ → Πu(a,0)B in Xα as (ū, B̄) ap-
proaches (u, B) in XR by (3.6). Similarly we deduce Q (ū)B̄ → Q (u)B in Eβ as (ū, B̄) → (u, B) in XR ,
whence the continuity of f . Next, we use the characterization for compact sets in Xα = L1( J , Eα) due
to [14]. We may assume am = ∞ since the case am < ∞ is similar but easier. The previous argument
entails

sup
(u,B)∈XR

∥∥Πu(·,0)B
∥∥

Xα
< ∞.

Moreover,

∞∫
N

∥∥Πu(a,0)B
∥∥

Eα
da � c(R)

∞∫
N

eνa da → 0 as N → ∞

uniformly with respect to (u, B) ∈ XR by (3.4) and (3.5). Let h > 0. Then, from (3.4), (3.5), and
Eq. (II.5.3.8) in [4] we deduce

∞∫
0

∥∥Πu(a + h,0)B − Πu(a,0)B
∥∥

Eα
da �

∞∫
0

∥∥Πu(a + h,0) − Πu(a,0)
∥∥

L(Eβ ,Eα)
da ‖B‖Eβ

� c(R)hβ−α

and the right-hand side tends to 0 as h → 0 uniformly with respect to (u, B) ∈ XR in view of (3.2).
Furthermore, since (3.4), (3.5) ensure

∥∥Πu(a,0)B
∥∥

Eβ
� c(R), a ∈ (0,∞), (u, B) ∈ XR ,

we obtain from the compact embedding Eβ ↪−↪→ Eα that Πu(a,0)B belongs to a fixed compact subset
of Eα . Applying now [14, Thm. A.1] we derive the relative compactness of the set {Πu(·,0)B; (u, B) ∈
XR} in Xα . Next, observing that

∥∥Q (u)B
∥∥

Eδ
�

am∫
0

∥∥b(u,a)
∥∥

F

∥∥Πu(a,0)
∥∥

L(Eβ ,E1)
da ‖B‖Eβ � c(R)

for (u, B) ∈ XR according to (3.4), (3.7), and (3.8) we may use the compact embedding Eδ ↪−↪→ Eβ

and also obtain the relative compactness of the set {Q (u)B; (u, B) ∈ XR} in Eβ . Therefore, f (XR) is
relatively compact in X. It remains to check the crucial conditions (i) and (ii) from [1, Thm. 12.3].
For (i) suppose there exist λ > 1 and (u, B) ∈ XR for which

‖u‖Xα + ‖B‖Eβ = ∥∥(u, B)
∥∥

XR
= R and f (u, B) = λ(u, B),

that is,

λu(a) = Πu(a,0)B, a ∈ J ,

λB = Q (u)B. (3.12)

Since λ > 1 we have B 
= 0 (otherwise u ≡ 0 contradicting R > 0). From (3.2), (3.4), (3.5), (3.9) we de-
duce, on the one hand, that B ∈ E+

δ is an eigenvector for Q (u) corresponding to the eigenvalue λ > 1
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and, on the other hand, that u ∈ X+
1 . Invoking (3.11) we see that this is only possible if ‖u‖Xβ < τ1.

Consequently, recalling (3.8) and (3.12) we derive the contradiction

R = ‖u‖Xα + ‖B‖Eβ =
am∫

0

∥∥u(a)
∥∥

Eα
da + 1

λ

∥∥∥∥∥
am∫

0

b(u,a)Πu(a,0)B da

∥∥∥∥∥
Eβ

< τ1‖i‖L(Eβ ,Eα) +
∥∥∥∥∥

am∫
0

b(u,a)u(a)da

∥∥∥∥∥
Eβ

� τ1‖i‖L(Eβ ,Eα) + ‖b‖L∞(B
X+
β

(0,τ1)× J ,F )‖u‖Xβ < R.

This ensures f (u, B) 
= λ(u, B) for all λ > 1 and all (u, B) ∈ XR with ‖(u, B)‖XR = R , whence (i) from
[1, Thm. 12.3]. Finally, let ψ be as in (3.10) with τ0 < R and assume there exist λ > 0 and (u, B) ∈ XR

with ‖(u, B)‖XR = τ0 and (u, B) − f (u, B) = λ(0,ψ). Then u = Πu(·,0)B , hence u ∈ X1 by (3.4), (3.5)
with ‖u‖Xα < τ0, and B = Q (u)B + λψ . The latter implies ψ ∈ rg+(1 − Q (u)) contradicting (3.10).
Thus (ii) from [1, Thm. 12.3] is verified, too, and we conclude a fixed point (u, B) ∈ XR \ {(0,0)} of
the map f , that is, a nontrivial positive solution to (3.1). As for the additional regularity stated in the
theorem we observe that necessarily u(a) = Πu(a,0)B for a ∈ J with B = Q (u)B ∈ Eδ . It thus suffices
to refer to the regularity theory of Chapter II in [4]. �

Example 2.10 or the examples in [28, Sect. 3] apply with minor modifications to the situation of
Theorem 3.1. We note that the special assumptions (3.5), (3.10), and (3.11) are also not too hard to
verify in certain applications in view of the following remark.

Remarks 3.2. (a) Let A(u,a) be of the form (1.3) with μ being a nonnegative and real-valued function
so that its evolution operator is given by

Πu(a,σ ) = e− ∫ a
σ μ(u,r) dr U A(u,·)(a,σ ),

where U A(u,·) denotes the parabolic evolution operator corresponding to A(u, ·). Then (3.5) holds
provided that there is μ0 > s(−A(u,a)) such that lim a→∞μ(u,a) � μ0 uniformly with respect to
u ∈ Φα for u ∈ Φα and a ∈ (0,∞) with s(−A(u,a)) being the spectral bound of the operator −A(u,a)

considered as a linear operator in E0 (see [4, Sect. I.1, Sect. II.5]).

(b) Suppose (3.9). Then condition (3.11) is equivalent to assume that ker(λ − Q (u)) ∩ E+
β = {0} for

all λ > 1 and u ∈ X+
1 with ‖u‖Xβ � τ1.

Proof. This follows from (3.9) and the Krein–Rutman theorem which states that r(Q (u)) > 0 is an
eigenvalue of Q (u) ∈ K+(Eβ) with a positive eigenvector. �

(c) Suppose (3.9). Then condition (3.11) holds if ‖Q (u)‖L(Eθ ) � 1 for some θ ∈ [0, δ] and all u ∈ X+
1

with ‖u‖Xβ � τ1.

Proof. This is a consequence of (b) and (3.9). �
(d) Suppose (3.9). Then condition (3.10) is satisfied provided

Q (u) − 1 ∈ L+(Eβ) for u ∈ X+
1 \ {0} with ‖u‖Xα < τ0.
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Note that the latter condition corresponds in the non-diffusive case A ≡ 0 to assuming the scalar
inequality Q (u) � 1 for |u| small as in [20, Thm. 1] and [30, Thm. 4.1].

Proof. Since the assumptions imply rg+(1− Q (u)) ⊂ −E+
β we may choose ψ ∈ E+

β \{0} arbitrarily. �
(e) Suppose (3.9). Then condition (3.10) holds provided there is ψ ∈ ker(1 − Q (u)) ∩ E+

β \ {0} such

that Q (u) ∈ K+(Eβ) is irreducible for each u ∈ X+
1 \ {0} with ‖u‖Xα < τ0 and, e.g., the interior of E+

β

is nonempty.

Proof. If ψ is as in the statement, then the Krein–Rutman theorem (e.g. see [11, Thm. 12.3]) warrants
that r(Q (u)) = 1 is a simple eigenvalue of Q (u), hence

ker
(
1 − Q (u)

) ∩ rg
(
1 − Q (u)

) = {0},

from which we conclude ψ /∈ rg+(1 − Q (u)) for each u. �
(f) If effects of small populations are negligible, then (3.10) holds. More precisely, let Q (u) = Q (0)

for small u ∈ X+
1 and let Q (0) ∈ K+(Eβ) be irreducible, r(Q (0)) = 1, and int(E+

β ) 
= ∅. Then there

is ψ ∈ E+
β \ {0} with ψ ∈ ker(1 − Q (0)) according to the Krein–Rutman theorem [11, Thm. 12.3],

and (3.10) follows from (e).

(g) Suppose (3.9). Then condition (3.10) is satisfied if there are τ0 > 0 and ψ ∈ int(E+
β ) such that,

given any u ∈ X+
1 \ {0} with ‖u‖Xα < τ0, Q (u) is irreducible and there exists α(u, ·) ∈ L1,loc(0,am)

with

−A(u,a)ψ = α(u,a)ψ, a ∈ J , and

am∫
0

b(u,a)e
∫ a

0 α(u,r) dr da = 1.

It is worthwhile to remark, however, that in this case a nontrivial solution to (3.1) can be found also
in the form u(a) = φ(a)ψ , where the existence of a nonnegative nontrivial φ follows from [20].

Proof. The assumptions imply Πu(a,0)ψ = e
∫ a

0 α(u,r)drψ , a ∈ J , for u ∈ X+
1 \ {0} with ‖u‖Xα < τ0,

whence ψ ∈ ker(1 − Q (u)), and we may apply (e). �
(h) Clearly, Theorem 3.1 applies to models involving several species, say with densities u j ,

1 � j � N , and u = (u1, . . . , uN ). If A and b in (3.1) have “diagonal form”, that is, if each u j satis-
fies (3.1) with A(u,a) and b(u,a) replaced by A j(u,a) and b j(u,a), respectively, then it suffices to
assume (3.10) and (3.11) for some component. More precisely, the assertion of Theorem 3.1 holds true
provided there are j ∈ {1, . . . , N} (at least one) and (3.10) is replaced by

there are τ0 > 0 and ψ j ∈ E+
β with ψ j /∈

⋃
u∈(X+

1 )N

‖u‖
(Xα)N <τ0

rg+
(
1 − Q j(u)

)

while (3.11) is replaced by

there is τ1 > 0 such that r
(

Q j(u)
)
� 1 for u ∈ (

X+
1

)N
with ‖u‖(Xβ )N � τ1,

where
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Q j(u) :=
am∫

0

b j(u,a)Πu, j(a,0)da

with Πu, j denoting the parabolic evolution operator corresponding to A j(u, ·).

Proof. Looking for solutions u = (u1, . . . , uN ), where only the j-components are non-vanishing with j
as above, this follows by an obvious modification of the proof of Theorem 3.1. �
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