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Abstract

Relying on a few lowest order perturbative calculations of anomalous dimensions of gauge invariant operators built from holomorphic scalar
fields and an arbitrary number of covariant derivatives in maximally supersymmetric gauge theory, we propose an all-loop generalization of the
Baxter equation which determines their spectrum. The equation does not take into account wrapping effects and is thus asymptotic in character.
We develop an asymptotic expansion of the deformed Baxter equation for large values of the conformal spin and derive an integral equation for
the cusp anomalous dimension.
© 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction

Four-dimensional non-Abelian gauge theories were found to
possess integrable structures. The latter imply the existence of
hidden symmetries of the dilatation operator whose eigenvalues
determine anomalous dimensions of gauge invariant compos-
ite operators of elementary fields in underlying models. Inte-
grability was revealed in one-loop anomalous dimensions of
twist-L maximal-helicity Wilson operators in QCD by identi-
fying the former with eigenenergies of the L-site XXX Heisen-
berg spin chain [1]. The magnet turns out to be noncompact, for
the spin operators acting on its sites transform in the infinite-
dimensional representation of the collinear subgroup SL(2,R)

of the conformal group SO(4,2). Since the one-loop phenom-
enon is spawned by gluons, invariably present in Yang–Mills
theories—supersymmetric or not—they all necessarily exhibit
the same, universal integrable structures. The differences arise
merely due to distinct particle contents of the models: while
only holomorphic sectors are integrable in QCD and its nearest
supersymmetric N = 1,2 siblings [2], the maximal supersym-
metry of the N = 4 super-Yang–Mills theory extends integra-
bility to all operators [3,5,2]. Recent perturbative studies build
up a growing amount of direct evidence that integrability per-
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sists in certain closed compact [4,5] and noncompact [6–10]
subsectors of gauge theories even in higher orders of perturba-
tion theory. Thus, while ruled out for gauge theories with N < 4
supercharges, it is plausible that the maximally supersymmet-
ric Yang–Mills theory is completely integrable. An additional
confirmation for this conjecture comes from studies of multi-
loop multi-leg scattering amplitudes which display intriguing
iterative structures [11,12]. These arguments suggest that the
spectrum of all-loop anomalous dimensions in N = 4 SYM
theory is determined by a putative long-range integrable spin
chain with the dilatation operator being its Hamiltonian.

In this note we probe the underlying integrable long-range
magnet by proposing its multi-loop perturbative structure
within the framework of the Baxter Q-operator [13]. This
approach is based on the existence of an operator Q(u) de-
pending on a spectral parameter u and acting on the Hilbert
space of the magnet. For different values of u it forms a family
of mutually commuting operators, simultaneously commut-
ing with the spin-chain Hamiltonian as well. Although in the
present circumstances, the formalism is equivalent to the Bethe
Ansatz approach, it possesses certain advantages. First, the
eigenvalue Q(u) of the Baxter operator Q(u) determines the
single-particle wave function of the chain in the representa-
tion of separated variables [14]. Second, the equation for the
Q-operator—known as the Baxter equation—is polynomial, to
be contrasted with a set of coupled transcendental Bethe equa-
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tions. Third, it allows for a straightforward asymptotic analysis
when quantum numbers of the chain are large as will be demon-
strated below.

Currently we restrict our consideration to the closed [15,16]
noncompact SL(2) sector [1,15] of the gauge theory which is
spanned by single-trace maximal R-charge Wilson operators
built from the holomorphic scalar fields X = φ1 + iφ2 and co-
variant derivatives,

On1n2...nL
(0)

(1.1)= tr
{
(iD+)n1X(0)(iD+)n2X(0) · · · (iD+)nLX(0)

}
.

Here D+ = Dμnμ is projected on the light cone with a null vec-
tor nμ, n2 = 0, in order to factor out the maximal Lorentz-spin
component from the operator in question. These Wilson opera-
tors mix with each other under renormalization group evolution
and acquire anomalous dimensions at all orders of perturbative
series in coupling constant1

(1.2)γ (g) =
∞∑

n=1

g2nγ (n).

We find it convenient to use the expansion parameter g related
to the ’t Hooft coupling constant λ via

(1.3)g = √
2λ = gYM

√
Nc

2π
.

The anomalous dimension γ (g) depends on parameters char-
acterizing the operator: its twist L, determined by the number
of X-fields, and its Lorentz spin N = n1 + n2 + · · · + nL.
Within the method of the Baxter Q-operator, the eigenspectrum
of one-loop anomalous dimensions γ (0) and the corresponding
quasimomentum θ(0) are determined by the leading order Bax-
ter function Q(0)(u)

γ (0) = i

2

[
lnQ(0)

(
i

2

)]′
− i

2

[
lnQ(0)

(
− i

2

)]′
,

(1.4)θ(0) = lnQ(0)

(
i

2

)
− lnQ(0)

(
− i

2

)
.

Since the Baxter function Q(0)(u) is related to the eigenfunc-
tion of the mixing matrix, it corresponds to a multiplicatively
renormalizable Wilson operator and thus has to be polynomial
in u of order N , Q(0)(u) = (u − u

(0)
1 )(u − u

(0)
2 ) · · · (u − u

(0)
N ).

The zeros of this polynomial are determined by the Bethe
roots u

(0)
n which take only real values for the noncompact

SL(2,R) spin chain [17]. The function Q(0)(u) obeys the finite-
difference Baxter equation [13]

(1.5)uL+Q(0)(u + i) + uL−Q(0)(u − i) = t (0)(u)Q(0)(u),

where the spectral parameter in the dressing factors uL± is
shifted by the conformal spin s = 1

2 of the scalar field X,
u± = u ± i

2 and t (0)(u) is an order-L polynomial in u depend-
ing on the integrals of motion.

1 Their complete two-loop planar mixing matrix has been recently computed
in Ref. [10].
2. Three-loop Baxter equation

Explicit perturbative calculations [6,7,9] of two-loop correc-
tions to the anomalous dimensions of the scalar operators (1.1)
exhibit double degeneracy of energy levels with zero quasi-
momentum. This hints at the existence of nontrivial odd-parity
conserved charges and thus persistence of integrability at higher
orders of perturbation theory.

Beyond one loop, the formalism of the Baxter operator gets
modified accordingly. The Bethe roots acquire corrections in
coupling constant to all orders of perturbation theory,

(2.1)un(g) =
∞∑

k=0

g2ku(k)
n ,

and obey deformed Bethe Ansatz equations [18]. The reality of
Bethe roots uk(g) have to be preserved to all orders since the
eigenvalue Q(u) of Q(u) is a wave function of the chain with
the number of its nodes on the real u-axis coinciding with the
spin N of the operator. The polynomial

(2.2)Q(u) =
N∏

n=1

(
u − un(g)

)
,

fulfills these properties and is real Q∗(u) = Q(u∗) for u∗ = u.
In Ref. [10] we found from available two- [19,20,6,7] and three-
loop [21–23] diagrammatic calculations of anomalous dimen-
sions that the Baxter equation possesses the form

(2.3)xL+eσ+(x+)Q(u + i) + xL−eσ−(x−)Q(u − i) = t (u)Q(u),

with the dressing factors depending on the renormalized spec-
tral parameter [24]

(2.4)x[u] = 1

2

(
u +

√
u2 − g2

)
, x± = x[u±].

The multi-loop transfer matrix2

(2.5)t (u) = 2uL + q1(g)uL−1 + q2(g)uL−2 + · · · + qL(g)

acquires the “missing” term ∼ uL−1 at g2-order, i.e., q1(g) ∼
O(g2), while the rest of the charges start from O(g0), qk(g) =
q

(0)
k +O(g2). The additional dressing factors σ± obey the com-

plex conjugation condition (σ−(x−))∗ = σ+(x+) for �mu = 0
and encode the renormalization of the noncompact charges
qk(g) at higher orders. An analysis yielded the following re-
sult to three-loop order [10]

σ±(x) = −g2

2x

[
lnQ

(
± i

2

)]′
− g4

16x2

{[
lnQ

(
± i

2

)]′′

(2.6)+ x

[
lnQ

(
± i

2

)]′′′}
+O

(
g6).

2 Note that with this transfer matrix the resulting Baxter equation breaks

down already at order O(g2n) in coupling constant with n = L. It turns out that
one can correctly incorporate order n = L corrections by replacing the leading
term in t (u) with the following combination 2uL → xL+ +xL− −( i

2 )L −(− i
2 )L .

This also allows to set q1(λ) = 0.
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While the anomalous dimension is expressed order-by-order in
coupling constant g in terms of the solution to Eq. (2.3) as [10]

γ (g) = i

{
g2

2

[
lnQ(u)

]′ + g4

16

[
lnQ(u)

]′′′
(2.7)+ g6

384

[
lnQ(u)

](5) +O
(
g8)}u=i/2

u=−i/2
.

The anomalous dimensions found using these equations re-
produced exactly available perturbative predictions. One can
demonstrate that the condition of the pole-free transfer matrix at
Bethe roots un(g), t (un) = 0 immediately produces the three-
loop Bethe Ansatz of Ref. [25].

3. Multi-loop conjecture

The above representation (2.6) of the dressing factors σ± can
be brought to a very suggestive form. Namely, a quick inspec-
tion allows one to rewrite these terms as an expansion in terms
of the Chebyshev polynomials of the second kind Uk ,

σ±(x) = 2g

π

1∫
−1

dt
√

1 − t2

[
lnQ

(
± i

2
− gt

)]′

(3.1)×
nmax∑
n=0

(
− g

2x

)n+1
Un(t)

n + 1
,

with nmax = 2, valid to O(g3) in the approximation of Eq. (2.6).
Having this representation at our disposal, we may naturally ex-
tend the first few terms of the available perturbative series to all
orders in coupling g, by sending nmax → ∞. Using the sum-
mation theorem for Chebyshev polynomials, one can sum the
infinite series up into the function −(arccot t+2x/g√

1−t2
)/

√
1 − t2

and, upon a variable transformation, write σ± in the form (with
z̄ = 1 − z)

σ±(x) = − g2

2πx

1∫
0

dz

1∫
−1

dt√
1 − t2

×
[

lnQ

(
± i

2
− g

√
zt + z̄

g2

4x

)]′

(3.2)= iθ± −
1∫

−1

dt

π

lnQ(± i
2 − gt)√

1 − t2

√
u2 − g2

u + gt
.

Here we integrated by parts in the second line in order to sep-
arate the components θ± of the spin-chain quasimomentum
θ = θ+ − θ−,

(3.3)iθ± =
1∫

−1

dt

π

lnQ(± i
2 − gt)√

1 − t2
.

Notice that θ reduces to the one-loop expression (1.4) upon set-
ting g = 0. While the condition t (un) = 0 yields the all-order
Bethe Ansatz equations suggested in Ref. [18].
The conjectured multi-loop Baxter equation (2.3) with (3.2)
and the known pattern of renormalization of the conformal spin
in field theories can be used to determine the all-loop analytic
expression for the anomalous dimensions in terms of the Baxter
function. To this end, recall that the conformal spin of Wil-
son operators J (0) = N + 1

2L defining the quadratic Casimir

q
(0)
2 = −J (0)(J (0) − 1) − 1

4L gets additive renormalization by
the anomalous dimensions γ (g) of composite Wilson operators
at higher orders in coupling, J (0) → J = N + 1

2L + 1
2γ (g).

This conclusion arises from considerations of conformal Ward
identities for Green functions with conformal operator insertion
[26,7]. Then a short inspection of the Baxter equation (2.3) with
the dressing factors σ± in the form (3.1) demonstrates that the
first term in the series of σ±(x) = iγ±(g)/x + · · · induces the
shift of the conformal spin,

(3.4)J (0) = N + 1

2
L → J = N + 1

2
L + 1

2

(
γ+(g) − γ−(g)

)
.

Consequently, we may naturally identify the addendum with
the anomalous dimensions of a multiplicatively renormalizable
composite operators, γ (g) = γ+(g)−γ−(g). Making use of the
explicit form of the dressing factors σ±, we find the integral
representation of γ (g) in terms of the solution to the Baxter
equation,

γ (g) = i
g2

π

1∫
−1

dt
√

1 − t2

[
lnQ

(
i

2
− gt

)

(3.5)− lnQ

(
− i

2
− gt

)]′
.

The Taylor expansion shows that the lowest three orders in g2

coincide with Eq. (2.7).
The Baxter equation (2.3) can be solved analytically order-

by-order in coupling constant for specific values of L and N ,
e.g., for L = 4, N = 2 eigenvalue with zero quasimomentum
reads,3

γ (g) = 5 ± √
5

2
g2 − 17 ± 5

√
5

8
g4 + 585 ± 207

√
5

160
g6

(3.6)− 5185 ± 2039
√

5

640
g8 +O

(
g10).

However, it has a limited range of applicability being asymp-
totic in character: it allows to find the anomalous dimensions
up to order O(g2n) only for operators of length L � n. This
restriction arises from the breaking of its polynomiality above
a boundary value of n, i.e., for L � n. Analogous limitations
apply to the Bethe Ansatz equations of Ref. [24]. A generic de-
pendence of γ (g) on the parameters L and N is not known
however and below we will develop an asymptotic scheme to
find it in the large spin limit.

3 This anomalous dimension, when related to Berenstein–Maldacena–
Nastase operators [27], agrees with previous one-, two- and five-loop analyses
of Refs. [28], [4] and [24], respectively.
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4. Asymptotic expansion

The large-N behavior of anomalous dimension is of special
interest in its own right since it governs the Sudakov asymptot-
ics of scattering amplitudes [29,30], and in light of gauge/string
duality, for it can be compared (at strong coupling) to energies
of quasiclassical strings [31–35]. Recall at first that the anom-
alous dimensions of twist-L operators occupy a band of width
L − 2, with the upper and lower boundaries scaling like [1,15]

γlower(g) = 2Γcusp(g) lnN,

(4.1)γupper(g) = LΓcusp(g) lnN,

and the coefficient Γcusp(g) being the cusp anomalous di-
mension [36,37], known to one- [36], two- [37,19,20,15] and
three-loop orders [22,23,12]. The minimal anomalous dimen-
sion γlower(g) of high-twist operators develops the asymptotic
behavior identical to the one of twist-two operators [1,34,9].
Since the single-logarithmic regime is realized for LeL 	 N

with L,N → ∞ [34], this allows one to evade the limitation of
the asymptotic character of the Baxter equation and to derive an
all-loop equation for the cusp anomaly Γcusp.

Notice that although we have to solve the problem with large
quantum numbers, we cannot apply traditional WKB expansion
for Q(u) (see, e.g., Ref. [1]) since the latter is valid for the spec-
tral parameter which scales as u ∼ N1 while the energy is deter-
mined by the Baxter function Q(u) evaluated at the argument
u = ± i

2 − gt which behaves as u ∼ N0. Therefore, we have to
resort to other techniques. To this end, we will use in the follow-
ing the approach developed in Refs. [38,34] for one-loop anom-
alous dimensions and which, as we will see momentarily, is eas-
ily generalizable beyond leading order of perturbation theory.

4.1. One-loop Baxter equation

Let us briefly review the formalism of Refs. [38,34] applied
to the one-loop Baxter equation (1.5). Though we are interested
only in the lowest energy curve, at the beginning we will be
general enough to discuss subleading trajectories as well in or-
der to point out approximations which have to be imposed to
separate the lowest anomalous dimension only. In the regime in
question, the conserved charges are large q

(0)
k ∼ Nk and, there-

fore, the transfer matrix is large |t (0)(u)| 
 1. Introducing a
new function

(4.2)φ(0)(u) = Q(0)(u + i)

Q(0)(u)
,

we can rewrite the Baxter equation in the form

(4.3)uL+φ(0)(u) + uL−
φ(0)(u − i)

= t (0)(u).

The solution to it is based upon different scaling behavior of the
right- and left-hand sides with N . For the spectral parameter
u ∼ N0, the solution is given by an infinite fraction. Keeping
the leading terms only we come to two difference equations

uL+Q
(0)
+ (u + i) = t (0)(u)Q

(0)
+ (u),

(4.4)uL−Q
(0)
− (u − i) = t (0)(u)Q

(0)
− (u).
The additive corrections to their right-hand sides go as O(1/

q
(0)
n ), where q

(0)
n is a conserved charge which scales with the

maximal power of N . For cyclically symmetric states θ = 0,
the asymptotic solution to (1.5) reads

(4.5)Q(0)(u) = Q
(0)
+ (u)Q

(0)
−

(
− i

2

)
+ Q

(0)
− (u)Q

(0)
+

(
i

2

)
,

in terms of the solution to the two-term recursion relations (4.4)
written with the help of the roots δk of the transfer matrix
t (0)(u) = 2(u − δ1)(u − δ2) · · · (u − δL) [34],

(4.6)Q
(0)
∓ (u) = 2±iu

L∏
k=1

Γ (±iu + iδk)

Γ (±iu + 1
2 )

.

Now recall that we are interested only in the trajectory with the
lowest energy only. The latter does not depend on the twist of
the operator, i.e., it is L-independent. The reason for this being
that for the corresponding state only the quadratic Casimir q

(0)
2

is large while all other integrals of motion become anomalously
small. For the roots of the transfer matrix this is translated into
the statement that just two roots δ1 = δL are much larger than
the rest of δ’s which are negligible [34], yielding the relation

(4.7)δ2
1 � −q

(0)
2 /2.

In this case the genus-(L − 2) hyperelliptic Riemann surface
parameterizing the magnet, with its moduli determined by the
conserved charges q

(0)

k , degenerates into a sphere, i.e., the spec-
tral curve of twist-two operators [34]. This implies that all zones
but one of allowed classical motion in separated variables col-
lapse into points. In this limit the transfer matrix reduces to
t (0)(u) � uLτ (0)(u) = uL(2 − N2/u2) and the solutions to the
recursion relations (4.4) becomes symmetric under the inter-
change u → −u and equal, Q

(0)
+ (u) = Q

(0)
− (u). In the infinite-

spin limit, we then find that the leading behavior of the Baxter
function is(
i lnQ

(0)
± (u)

)′ = ψ(−iu + iδ1) + ψ(−iu − iδ1) + · · ·
(4.8)� 2 lnN + · · · ,

where in the last step we imposed the condition that the evalu-
ation of the anomalous dimensions (1.4) requires u ∼ N0 and
thus it can be neglected compared to N . This consideration im-
mediately suggests that for the minimal-energy trajectory in the
single-logarithmic asymptotics the dressing factors uL± in the
left-hand side of Eq. (4.4) are irrelevant. Thus they can be re-
duced to uL± → uL and canceled with the factor extracted from
the transfer matrix t (0)(u), making the equation L-independent,
as expected. The latter is clearly seen in the quasiclassical ap-
proach when one assumes the spectral parameter to scale with
N , i.e., u = Nû and û ∼ 1. We will use the same argument
below to write the all-loop Baxter equation for the lowest tra-
jectory.

4.2. Beyond one loop

Let us find the equation for the minimal trajectory start-
ing from the multi-loop Baxter equation (2.3). Again, we have
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to separate only terms which generate leading behavior in the
large-spin limit. The transfer matrix degenerates on the min-
imal trajectory to the one of twist-two operators, i.e., t (u) �
uL−2(2u2 + q1u + q2). Notice however that only O(g0) con-
tributions to the charges q1,2(g) can induce the leading effect
in the large-N limit since the quantum corrections grow at
most logarithmically with N → ∞. Therefore, we can replace
t (u) � t (0)(u) in the right-hand side of (2.3). Hence the reduced
Baxter equation admits the form

(4.9)eσ+(x+)Q(u + i) + eσ−(x−)Q(u − i) = τ (0)(u)Q(u).

Introducing again the ratio of the Baxter functions Q analogous
to Eq. (4.2), we can write again two asymptotic equations for
the two components of Q. However, since we are interested
solely in the lowest trajectory, both equations generate the same
contributions to the anomalous dimension. Therefore, we may
consider only one of the resulting equations, e.g.,

(4.10)eσ+(x+)Q(u + i) = τ (0)(u)Q(u).

Next, introducing the one- and all-loop Hamilton–Jacobi func-
tions,

(4.11)S(0)(u) = lnQ(0)(u), S(u) = lnQ(u),

Eq. (4.10) can be rewritten by virtue of the one-loop degenerate
Baxter equation (4.4) for the lowest trajectory as follows

(4.12)

S(u + i) − S(0)(u + i) − S(u) + S(0)(u) + σ+(x+) = 2πim.

Here m displays the ambiguity in choosing the branch of the
logarithm. Since the anomalous dimension (3.5) is expressed
in terms of the derivative of the Hamilton–Jacobi function, it
is instructive to differentiate both side of Eq. (4.12) with re-
spect to u. Using the perturbative decomposition of the all-order
Hamilton–Jacobi function

(4.13)

S(u) = S(0)(u) + g2Sh(u), with Sh(u) =
∞∑

n=1

g2(n−1)S(n)(u),

and rescaling S′
h by extracting its single logarithmic behavior

(4.14)iS′
h(u) = Σ(u) lnN,

we finally arrive at the equation for the cusp anomaly

Σ(u + i) − Σ(u) + 1√
u2+ − g2

(4.15)×
1∫

−1

dt

π

√
1 − t2

u+ + gt

[
2 + g2Σ

(
i

2
− gt

)]
= 0.

The cusp anomalous dimension is then found in terms of Σ

making use of Eq. (3.5) as

(4.16)Γcusp(g) = g2 + g4

1∫
−1

dt

π

√
1 − t2Σ ′

(
i

2
− gt

)
.

As we will demonstrate below, there exists yet another ex-
pression for the cusp anomalous dimension in terms of the
rescaled Hamilton–Jacobi function Σ which leads to realiza-
tion of an iterative perturbative structure of Γcusp in gauge
theory. Eqs. (4.15) and (4.16) are the main results of this sec-
tions. If one shifts the spectral parameter as u → u − i

2 , one
immediately realizes that the first two terms give the imagi-
nary part of Σ for real u. Then the use of a dispersion relation
for the rescaled Hamilton–Jacobi function in the last term al-
lows us to bring the equation into the form of a Fredholm
equation of the second kind. Then the large-x asymptotics of
the solution to this integral equation yields the cusp anomaly
2x[u]�mSh(u + i

2 )|x[u]→∞ = −[Γcusp(g)/g2] lnN . However
below we choose a slightly different route to solve Eq. (4.15) at
weak coupling.

5. Weak-coupling expansion

We will seek the solution to the cusp equation (4.15) in the
form [17]

(5.1)Σ(u) =
1∫

0

dωωiu−1ω̄−iu−1Σ̂

(
ln

ω

ω̄

)
,

with ω̄ = 1 − ω. This integral representation immediately diag-
onalizes the difference terms. The change of variables to p =
lnω/ω̄ brings Eq. (5.1) into the form of a Fourier transform.
However, before we proceed with the above transformation of
Eq. (4.15), we will manipulate it at first. We notice that the first
term in the infinite series expansion in Chebyshev polynomials
in Eq. (3.1) is determined by the all-order anomalous dimen-
sion. Therefore, we can separate it from the kernel and rewrite
the equation for the cusp anomaly Γcusp in a form which im-
mediately suggests yet another relation of the Hamilton–Jacobi
function to the cusp anomalous dimension. Performing these
steps, we find

sinh

(
p

2

)
Σ̂(p) + Γcusp(g)

g3
J1(gp)

(5.2)+ gp

2

∞∫
0

dp′ e−p′/2

p − p′ U(gp,gp′)Σ̂(p′) = 0,

where the kernel U is expressed in terms of the Bessel func-
tions,

U(p,p′) = J1(p)

[
J0(p

′) − 2

p′ J1(p
′)
]

(5.3)− J1(p
′)
[
J0(p) − 2

p
J1(p)

]
.

An examination of Eq. (5.2) immediately suggests that the last
term dies out for p → 0 much faster than the first two, which
scale linearly with p. Therefore, we deduce yet another rep-
resentation for Γcusp in terms of the solution Σ̂ to the cusp
equation (5.2), namely,

(5.4)Σ̂(0) = −Γcusp(g)

g2
.
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At the same time, we can use Eq. (4.16) for the anomalous di-
mension in terms of the Hamilton–Jacobi function, such that we
get

(5.5)Σ̂(0) = −1 − g

∞∫
0

dp

p
e−p/2J1(gp)Σ̂(p).

This expression clearly displays the mixing of orders and thus
exhibits an iterative structure of the perturbative series in cou-
pling constant, i.e., the cusp anomaly at higher orders can
be determined in terms of Σ(p) at lower orders. Combining
Eqs. (5.2)–(5.5) together we reproduce the cusp equation de-
rived in Ref. [9].

Finally, let us solve the cusp equation perturbatively. Writing
the expansion in coupling constant as

(5.6)Σ̂(p) = p/2

sinhp/2

∞∑
n=0

g2nΣ̂n(p),

where the prefactor is extracted for the latter convenience, and
substituting it into the cusp equation (5.2), we find for the few
lowest order functions

Σ̂0(p) = −1,

Σ̂1(p) = π2

12
+ 1

8
p2,

Σ̂2(p) = − 11

720
π4 + 1

8
ζ(3)p − π2

96
p2 − 1

192
p4,

Σ̂3(p) = 73π6

20160
− ζ(3)2

8
−

(
5

16
ζ(5) + π2

96
ζ(3)

)
p

+ π4

480
p2 − 1

96
ζ(3)p3 + π2p4

2304
+ p6

9216
,

. . . .

The p-independent term in these expressions determines the
cusp anomaly according to Eq. (5.4). The lowest six orders of
Γcusp read

Γcusp(g) = g2 − π2

12
g4 + 11π4

720
g6 −

(
73π6

20160
− ζ(3)2

8

)
g8

+
(

887π8

907200
− π2

48
ζ(3)2 − 5

8
ζ(3)ζ(5)

)
g10

−
(

136883π10

479001600
− π4

240
ζ(3)2 − 5π2

48
ζ(3)ζ(5)

− 51

64
ζ(5)2 − 105

64
ζ(3)ζ(7)

)
g12

+
(

7680089π12

87178291200
− 47π6

48384
ζ(3)2 + ζ(3)4

64

− 41π4

1920
ζ(3)ζ(5) − 17π2

128
ζ(5)2 − 35π2

128
ζ(3)ζ(7)

(5.7)− 273

64
ζ(5)ζ(7) − 147

32
ζ(3)ζ(9)

)
g14 + · · · .

The two- and three-loop coefficients agree with Feynman dia-
gram calculations of Refs. [19,20,15] and [22,23,12], respec-
tively, and the rest with available predictions of Ref. [9]. The
calculation can be extended to few dozens of terms in the
series (5.6), but the results are too cumbersome to display
here.

6. Outlook

In this note we proposed a multi-loop asymptotic Bax-
ter equation for anomalous dimensions of arbitrary twist-L,
spin-N single-trace holomorphic Wilson operators in maxi-
mally supersymmetric Yang–Mills theory. We developed an
approach for the asymptotic solution of the resulting equation
for large values of spin N and derived an all-order equation
for the cusp anomaly which governs the Sudakov asymptot-
ics of anomalous dimensions. The problem with the asymptotic
nature of the equation was overcome by studying the lowest-
energy trajectory which is insensitive to the twist of the operator
in the single logarithmic regime LeL 	 N , L,N → ∞.

There are many questions which remain to be addressed.
One has to constrain the amount of ambiguity left in restoration
of higher loop effects from the lowest few terms of perturba-
tive series for the dressing factors. The analysis of the strong-
coupling expansion of Γcusp is of special interest in light of
available predictions for it from string theory [31]. A prelim-
inary analysis reveals however that g = ∞ is an essential sin-
gularity of the cusp equation. Next, one has to understand how
to incorporate wrapping effects to the Baxter equation (2.3) and
to identify a putative microscopic spin chain standing behind
it. An ultimate goal would be to generalize the all-order Bax-
ter equation to all sectors of N = 4 super-Yang–Mills theory
which is conceivably described by a long-range graded mag-
net.

Note added

Recently a new calculation was published of the four-loop
cusp anomalous dimension using the unitarity technique [39].
Their numerical finding explicitly demonstrates that the predic-
tion (5.7) based on the Baxter equation (2.3) with the dressing
factor (3.1) is incorrect starting from four loops. In a companion
paper [40], a modified form of the cusp equation was proposed
which takes into account a nontrivial dressing factor in Bethe
equations of Ref. [18].

Presently we use the result of Ref. [39] in order to fix the
form of the four-loop correction to the Baxter equation (2.3)
and find anomalous dimensions of local Wilson operators. It
was suggested [39], that to reconcile within error bars the re-
sult of their numerical calculation with the one coming from
the cusp equation, the sign of the ζ 2(3) in four-loop contri-
bution of Eq. (5.7) has to be flipped. This requires the fol-
lowing additive modification of the four-loop cusp anomaly
(5.7),

(6.1)Γcusp(g) = −ζ(3)2

4
g8 +O

(
g10).
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In order to generate it from the cusp equation, one has to add
the following term4 to the left-hand side of Eq. (5.2)

· · · + 2αg2J2(gp)

(
1 + g

∞∫
0

dp′ e−p′/2Σ̂(p′)J1(gp
′)

p′

)

(6.2)+O
(
g3),

in agreement with Ref. [18]. Here the favored value of the con-
stant is α = 1

2ζ(3) [39,40]. This translates into a modification
of the integrand in Eq. (4.15),

(6.3)
1

u+ + gt
→ 1

u+ + gt
+ iαg4

x2+
+O

(
g6).

A simple analysis allows to unambiguously restore the correc-
tion term to the dressing factors (3.1) of the Baxter equation
(2.3). Namely, the former get shifted as

(6.4)σ±(x) → σ±(x) + Δ±(x),

with

Δ±(x) = ∓ iαg6

2x2

1∫
−1

dt

π

√
1 − t2

[
lnQ

(
± i

2
− gt

)]′

(6.5)+O
(
g7).

Taking into account this extra term, the anomalous dimen-
sions of Wilson operators acquire additional contributions.
For instance, the four-loop term in Eq. (3.6) gets corrected
by

(6.6)γ (g) = · · · − α
5 ± √

5

8
g8 +O

(
g10).

This explicitly demonstrates that the attempt to rescue the
principle of maximal transcendentality [23] in the cusp anom-
alous dimension with α = 1

2ζ(3) results in breaking of the
rational form of anomalous dimensions of local Wilson op-
erators, i.e., they acquire transcendental addenda (6.6) in
addition to rational terms (3.6). At the current state-of-the-
art of higher loop calculations such terms are not ruled out
yet. Within Mueller’s cut vertex technique [41], the main
sources of transcendental constants in local anomalous di-
mensions comes from virtual self-energy and vertex cor-
rections with rational terms being generated by real cuts.
The finiteness of maximally supersymmetric Yang–Mills the-
ory, especially transparent in the light-cone gauge where
Ward identities imply equality of the vanishing beta func-
tion with all field renormalization constants, seems to sug-
gests the absence of transcendental constants in local anom-
alous dimensions. This question deserves however a thorough
study.

4 In the unnumbered equations above (5.2), it yields corrections to the right-

hand side the equations, i.e., Σ̂2(p) = · · · + 1
2 αp, Σ̂3(p) = · · · + 1

2 αζ(3) +
1

24 αp(π2 + p).
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