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Abstract

We present several direct bijections between different combinatorial interpretations of the
Littlewood–Richardson coefficients. The bijections are defined by explicit linear maps which have
other applications.
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1. Introduction

In the past decade the Littlewood–Richardson rule (LR rule) has moved into center
stage in the combinatorics of Young tableaux. Classical applications (to representation
theory of the symmetric and the full linear group, to the symmetric functions, etc.)
as well as more recent developments (Schubert calculus, eigenvalues of Hermitian
matrices, etc.) have received much attention.While various combinatorial interpretations
of the Littlewood–Richardson coefficients have been discovered, there seems to be little
understanding of how they are related to eachother, and little order among them. This
paper makes a new step in this direction.
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We start with three major combinatorial interpretations of the LR coefficients which we
view as integer points in certain cones. We present simple linear maps between the cones
which produce explicit bijections for all triples of partitions involved in the LR rule. These
bijections are quite natural in this setting and in a certain sense can be shown to be unique.
Below we furtheremphasize the importance of the linear maps.

A classical version of the LR rule, in terms of certain Young tableaux, is now well
understood, and its proof has been perfected for decades. We refer to [14] for a beautifully
written survey of the “classical” approach, with a historical overview and connections to
the jeu-de-taquin, Schützenberger involution, etc. Unfortunately, the language of Young
tableaux is often too rigid to be able to demonstrate the inherent symmetries of the LR
coefficients.

A radically different combinatorial interpretation is due to Berenstein and Zelevinsky,
in terms of the so called BZ triangles, which makes explicit all but one symmetry of the
LR coefficients.1 The authors’ proof in [6] relies on a series of previous papers [10,4,
5], a situation that is hardly satisfactory. A paper [8] establishes a technically involved
bijection with the contratableaux associated with certain Yamanouchi words, which gives
another combinatorial interpretation of the LR rule. This combinatorial interpretation is
in fact different from the one given by LR tableaux, which makes the matter even more
confusing.

In a subsequent development, Knutson and Tao introduced [13] the so called honey-
combs, which are related to BZ triangles by a bijection that they sketch at the end. The
paper [11] uses a related construction of “web diagrams” for a different purpose. The
appendix in [13] also introduces a different language ofhives, which proved to be more
flexible to restate the Knutson–Tao proof of saturation conjecture [7].

In the appendix to [7], Fulton described in a simple language a bijection with a set of
certain contratableaux, similar to that of Carré [8]. As mentioned at the end of the appendix
(cf. also [9]), the latter are in a well known bijection with the classical LR tableaux.
Unfortunately, this bijection is based on the Schützenberger involution, which is in fact
quite involved and goes beyond the scope of this paper.

Now, let us return to the linear maps establishing the bijections. First, these maps
show that the LR cones have the same combinatorial structure. Despite a visual difference
between definitions of LR tableaux, hives, and BZ triangles, these combinatorial objects are
essentially the same and should be treated as equivalent. In a sense, this varying nature of
these combinatorial interpretations of the LR coefficients makes them “more fundamental”
than others.

Let us mention here a “local” nature of the bijections we present. In general, computing
the action linear mapsϕ : R

d → R
d requiresO(d2) arithmetic operations (multiplications

and additions) to perform. In this case, however, the local nature of bijections allows a

O(d) computation, whered =
(

k
2

)
, andk is the number of rows in LR tableaux. This

is especially striking when comparing with other Young tableau bijections, which require
O(d3/2) operations. We refer to a forthcoming paper [17] for references and details, and
for a new theory explaining this phenomenon. As observed previously, the bijections in this

1 Weshould warn the reader that the BZ triangles presented in [18] are different, albeit strongly related.
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paper combined with the symmetries of BZ triangles give nearly all the symmetries2 of the
LR coefficients, except for one:cλ

µ,ν = cλ
ν,µ. The latter again requiresO(d3/2) operations

and is in the same class as other Young tableau bijections (ibid).
The idea of using integer points in cones is a direct descendant of the earlier papers [10,

5] and most recently has appeared in the context of integer partitions [16]. While the fact
that the linear maps between cones exist atall may seem surprising, we do not claim to
be the first to establish that. It is perhaps surprising that the resulting linear maps are so
simple and natural in this language. We believe that this approach is perhaps more direct
and fruitful when compared to other more traditional combinatorial techniques employed
earlier (see above).

To conclude, let us describe the structure of the paper. We present in separate sections
the LR tableaux, the hives ofKnutson and Tao, and the BZ triangles. Along the way we
establish the bijections between these combinatorial interpretations. While the linear maps
which produce these bijections are easy to define, their proofs are not straightforward and
are delayed until the end of the paper. We conclude with the final remarks.

2. Littlewood–Richardson tableaux

Let λ = (λ1, . . . , λk) be a partition of a positive integern, that is, a sequence of integers
whose sum isn and satisfyλ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. Its diagram is the set of pairs of
positiveintegers{(i , j ) | 1 ≤ i ≤ k, 1 ≤ j ≤ λi }, which wealso denote byλ. If µ is
another partition and the diagram ofµ is a subset of the diagram ofλ, in symbolsµ ⊆ λ,
we denote byλ/µ the skew diagramconsisting of the points inλ that are not inµ, and
by |λ/µ| its cardinality. It is customary to represent diagrams pictorially as a collection
of boxes [9,15,18]. Any filling T of a skew diagramλ/µ with positive integers, formally
a mapT : λ/µ −→ N, will be called aYoung tableauor just atableauof shapeλ/µ.
A Young tableauT is calledsemistandard if its rows are weakly increasing from left to
right and its columns are strictly increasing from top to bottom. Thecontentof T is the
compositionγ (T) = (γ1, . . . , γc), whereγi is the number of i s in T . The word of T ,
denoted byw(T), is obtained fromT by readingits entries from right to left, in successive
rows, starting with the top row and moving down. For example, let

D = and T =

then D is a diagram of shape(6, 4, 4, 3)/(3, 2) andT is a semistandard tableaux of this
shape, has content(4, 0, 1, 2, 2, 0, 3) and its word isw(T) = 711417541753. Finally, a
word w = w1 · · ·wk in the alphabet 1, . . . , n is called alattice permutationif for all
1 ≤ j ≤ k and all 1≤ i ≤ n − 1 thenumber of occurrences ofi in w1 · · ·w j is not less
than the number of occurrences ofi + 1 in w1 · · ·w j . A semistandard tableauT of skew

2 There isone additional “symmetry”cλ
µ,ν = cλ′

µ′,ν′ ; whichdoes not seem to have a “geometric interpretation”.

For a combinatorial proof see [12].
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Fig. 1. Littlewood–Richardson tableau.

Fig. 2. Hive graph∆4.

shape iscalled aLittlewood–Richardsontableau if its wordw(T) is a lattice permutation.
Note that the content of a Littlewood–Richardson tableau is always a partition. Given three
partitions λ,µ, ν suchthatµ ⊆ λ and|λ| = |µ| + |ν|, we denote bycλ

µν thenumber of
Littlewood–Richardson tableaux of shapeλ/µ and contentν. We will use the following
example throughout the paper. Let

λ = (23, 18, 15, 11, 8), µ = (15, 9, 5, 2, 0) and ν = (16, 11, 10, 5, 2), (1)

then the tableau inFig. 1 is an example of a Littlewood–Richardson tableau of shapeλ/µ

and contentν.

3. Littlewood–Richardson triangles

Thehive graph∆k of size k is a graph in the plane with
(

k+2
2

)
vertices arranged in a

triangular grid consisting ofk2 small equilateral triangles, as shown inFig. 2. LetTk denote
the vector space of all labelingsA = (ai j )0≤i≤ j ≤k of the vertices of∆k with realnumbers
suchthata00 = 0. We will write such labelings as triangular arrays of real numbers in the

way shown inFig. 3. Thedimension ofTk is clearly
(

k+2
2

)
− 1.

We now proceed to explain how Littlewood–Richardson tableaux can be coded in a
simple way as elements inTk satisfying certain inequalities. ALittlewood–Richardson
triangle of size kis an elementA = (ai j ) ∈ Tk that satisfies the following conditions:

(P) ai j ≥ 0, for all 1≤ i < j ≤ k.

(CS)
∑i−1

p=0 apj ≥ ∑i
p=0 apj+1, for all 1 ≤ i ≤ j < k.

(LR)
∑ j

q=i aiq ≥ ∑ j +1
q=i+1 ai+1q, for all 1 ≤ i ≤ j < k.
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Fig. 3. Triangular array of size 3.

Note that the inequality

j∑
p=0

apj ≥
j +1∑
p=0

apj+1, for 1 ≤ j < k (2)

follows from (CS) with i = j and (LR) with i = j ; alsonote thata0 j andaj j could be
negative. We denote byLRk the cone of all Littlewood–Richardson triangles inTk, andcall
it a Littlewood–Richardson cone; this has the same dimension asTk. Also let Dk denote
the set of allk-tuplesλ = (λ1, . . . , λk) of real numbers such thatλ1 ≥ λ2 ≥ · · · ≥ λk, and
|λ| the sum of its entries, that is,|λ| = ∑k

i=1 λi . With eachA = (ai j ) ∈ LRk we associate
the following numbers:

(B1) µ j = a0 j , for all 1 ≤ j ≤ k.

(B2) λ j = ∑ j
p=0 apj , for all 1 ≤ j ≤ k.

(B3) νi = ∑k
q=i aiq , for all 1 ≤ i ≤ k.

Then it follows from (P), (CS), and (LR) that the vectorsλ = (λ1, . . . , λk), µ =
(µ1, . . . , µk), andν = (ν1, . . . , νk) are inDk and that|λ| = |µ| + |ν|. We call (λ, µ, ν)

the typeof A, anddenote byLRk(λ, µ, ν) the set of all Littlewood–Richardson triangles
of type(λ, µ, ν); this is a convexpolytope. For example, letλ,µ, ν be as in (1), thenthe
triangle inFig. 4 is in LR5(λ, µ, ν).

Letλ,µ, ν ∈ Dk bepartitions, that isλ,µ, andν have non-negative integer coefficients,
and suppose that|λ| = |µ| + |ν|. With each Littlewood–Richardson tableauT of shape
λ/µ and contentν we associate a triangular arrayAT = (ai j ) ∈ Tk by defining

(i) a00 = 0, a0 j = µ j for 1 ≤ j ≤ k, and
(ii) ai j equal to the number ofi s in row j of T for 1 ≤ i ≤ j ≤ k.

Note that the Littlewood–Richardson triangle inFig. 4 corresponds to the Littlewood–
Richardson tableau inFig. 1.

Lemma 3.1. Let λ,µ, ν ∈ Dk be partitions such that|λ| = |µ| + |ν|. Then the
correspondence T�−→ AT is a bijection between the set of all Littlewood–Richardson
tableaux of shapeλ/µ and contentν and the set of all Littlewood–Richardson triangles
of type (λ, µ, ν) with integer entries. In particularLRk(λ, µ, ν) has cλµν integer
points.
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Fig. 4. Littlewood–Richardson triangle of size 5.

Fig. 5. Types of rhombus in a hive graph.

In effect,Lemma 3.1translates combinatorics of Littlewood–Richardson tableaux into
the language of integer points in polyhedra. Various other translations of this kind appear
in the literature and are more or less equivalent to ours. A short “verification style” proof
is given inSection 6.

4. Hives

The hive graph∆k of size k is divided intok2 small equilateral triangles. Each two
adjacent such triangles form a rhombus with two obtuse angles and two acute angles. There
are three types of rhombus: tilted to the right, vertical and tilted to the left. They are shown
in Fig. 5.

A hive of size kis a labelingH = (hi j )0≤i≤ j ≤k of the vertices ofthe hive graph∆k with
real numbers such that for each rhombus the sum of the labels at obtuse vertices is bigger
than or equal to the sum of the labels at acute vertices; equivalently,H = (hi j ) satisfies
the following inequalities:

(R) hi j − hi j −1 ≥ hi−1 j − hi−1 j −1, for 1 ≤ i < j ≤ k.
(V) hi−1 j − hi−1 j −1 ≥ hi j +1 − hi j , for 1 ≤ i ≤ j < k.
(L) hi j − hi−1 j ≥ hi+1 j +1 − hi j +1, for 1 ≤ i ≤ j < k.

We denote byHk the cone of all hives of sizek that satisfy the extra conditionh00 = 0,
and call it ahive cone. As we did for Littlewood–Richardson triangles, we associate with
each hiveH = (hi j ) ∈ Hk numbers:



I. Pak, E. Vallejo / European Journal of Combinatorics 26 (2005) 995–1008 1001

Fig. 6. Hive of size 5.

(B1′) µ j = h0 j − h0 j −1, for 1 ≤ j ≤ k.
(B2′) λ j = h j j − h j −1 j −1, for 1 ≤ j ≤ k.
(B3′) νi = hik − hi−1k, for 1 ≤ i ≤ k.

Then it follows from (R), (V), and (L) that the vectorsλ = (λ1, . . . , λk), µ =
(µ1, . . . , µk), andν = (ν1, . . . , νk) are inDk and that|λ| = |µ| + |ν|. For example,

µ j = h0 j − h0 j −1 ≥ h1 j +1 − h1 j ≥ h0 j +1 − h0 j = µ j +1.

We call (λ, µ, ν) the typeof A, anddenote byHk(λ, µ, ν) the set of all hives of type
(λ, µ, ν); this is a convex polytope. For example, letλ,µ and ν be as in (1), thenthe
triangle inFig. 6 is in H5(λ, µ, ν).

For anypositiveintegerk, we define alinear mapΦk : Tk −→ Tk by

Φk(ai j ) = (hi j ), wherehi j =
i∑

p=0

j∑
q=p

apq.

Note that the hive inFig. 6is the image underΦ5 of the Littlewood–Richardson triangle in
Fig. 4. We have thefollowing theorem.

Theorem 4.1. The mapΦk defined above is a volume preserving linear operator which
mapsLRk bijectively ontoHk, andLRk(λ, µ, ν) ontoHk(λ, µ, ν), for all λ,µ, ν ∈ Dk.

As mentioned in the Introduction, the proof can be found inSection 6. Let us mention
here two important corollaries. For any polytopeP let e(P) denote the number of integer
points inP.

Corollary 4.2. e(Hk(λ, µ, ν)) = cλ
µν , for all λ,µ, ν ∈ Dk with non-negative integer

coefficients.

Corollary 4.3. Vol(Hk(λ, µ, ν)) = Vol(LRk(λ, µ, ν)), for all λ,µ, ν ∈ Dk.



1002 I. Pak, E. Vallejo / European Journal of Combinatorics 26 (2005) 995–1008

Fig. 7. Hive graph∆4 and the corresponding Berenstein–Zelevinsky graphΓ3.

Fig. 8. Labeling ofΓ3.

5. Berenstein–Zelevinsky triangles

For any integerk ≥ 1 we construct a graphΓk from the hive graph∆k+1 in the
following way: its vertices are the middle points of the edges of the hive graph that do
not lie on the boundary, and their edges are those joining pairs of middle points on edges
lying on small triangles of∆k+1, seeFig. 7. We call Γk the Berenstein–Zelevinsky graph
of size k. The vertices of the Berenstein–Zelevinsky graph are partitioned into disjoint
blocks of cardinality three, each block corresponding to a small equilateral triangle; these
triangles are distributed in the graph: one on the first (top) level, two on the second
level, three on the third level, and so on. LetVk denote the vector space of all labelings
X = (xi j , yi j , zi j )1≤i≤ j ≤k of Γk with real numbers. The labelings are carried out in
such a way that the vertices of thei -th triangle on the j -th level are labeled with

xi j , yi j , zi j as indicated inFig. 8. Thedimension ofVk is 3
(

k+1
2

)
. Note that the labels

yi j , zi j , xi+1 j +1, yi+1 j +1, zi j +1, xi j +1 form an hexagon for each 1≤ i ≤ j < k and hence

there are
(

k
2

)
hexagons inΓk. We will be interested in the subspaceWk of Vk consisting
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Fig. 9. Berenstein–Zelevinsky triangle of size 4.

of all labelings such that for each hexagon inΓk the sum of the labels in each edge equals
the sum of the labels of the diametrically opposite edge, that is

(BZ1) yi j + zi j = yi+1 j +1 + zi j +1, for all 1 ≤ i ≤ j < k.
(BZ2) xi j +1 + yi j = xi+1 j +1 + yi+1 j +1, for all 1 ≤ i ≤ j < k.
(BZ3) xi j +1 + zi j +1 = xi+1 j +1 + zi j , for all 1 ≤ i ≤ j < k.

Observe that any of these three equalities follows from the other two.

Lemma 5.1. The vector space Wk has dimension12k(k + 5) = dimTk+1 − 2.

A Berenstein–Zelevinsky triangle of size kis any labeling ofΓk in Wk with non-negative
entries. LetBZk denote the cone of all Berenstein–Zelevinsky triangles of sizek. Let
λ,µ, ν ∈ Dk+1, then we saythat a Berenstein–Zelevinsky triangle is of type(λ, µ, ν)

if it satisfies the following conditions:

(B1′′) x1 j + y1 j = µ j − µ j +1, for 1 ≤ j ≤ k.
(B2′′) x j j + zj j = λ j − λ j +1, for 1 ≤ j ≤ k.
(B3′′) yik + zik = νi − νi+1, for 1 ≤ i ≤ k.

Note that, in contrast to Littlewood–Richardson triangles and hives, a Berenstein–
Zelevinsky triangle has many different types. LetBZk(λ, µ, ν) denote the set of all
Berenstein–Zelevinsky triangles of type(λ, µ, ν); this is a convexpolytope. For example,
let λ,µ andν be as in (1), thenthe triangle in Fig. 9 is in BZ4(λ, µ, ν). Here thexi j s
are written with roman numerals, theyi j s by boldface numerals, and thezi j s by italic
numerals.

For any integer k ≥ 2, we define a linear mapΨk : Tk −→ Wk−1 by setting
Ψk(hi j ) = (xi j , yi j , zi j ) where

xi j = hi j + hi−1 j − hi−1 j −1 − hi j +1,
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yi j = hi−1 j + hi j +1 − hi j − hi−1 j +1,

zi j = hi j + hi j +1 − hi−1 j − hi+1 j +1,

for all 1 ≤ i ≤ j < k. Note that the values of thexi j s, yi j s, andzi j s areobtained by
taking, respectively, the differences of the inequalities (V), (R), and (L) used to define
hives. It should be remarked that theyi j s areobtained from (R) by adding one toj . It
is straightforward to check that the image ofΦk is contained inWk−1. The composition
Ψk ◦ Φk : Tk −→ Wk−1 has also a nice description:Ψk ◦ Φk(ai j ) = (xi j , yi j , zi j ) with

xi j =
i−1∑
p=0

apj −
i∑

p=0

apj+1,

yi j = ai j + 1,

zi j =
j∑

q=i

aiq −
j +1∑

q=i+1

ai+1q,

(3)

for all 1 ≤ i ≤ j < k. Again, the values of thexi j s, yi j s, andzi j s areobtained by
taking, respectively, the differences of the left and right hand sides in the inequalities
(CS), (P), and (LR) used to define Littlewood–Richardson triangles. For example, the
Berenstein–Zelevinsky triangle inFig. 9 is the image underΨ5 of the hive in Fig. 6 and
the image underΨ5 ◦ Φ5 of the Littlewood–Richardson triangle inFig. 4. Note that the
boldface numerals inFig. 9 are contained in the Littlewood–Richardson triangle from
Fig. 4.

Theorem 5.2. The linear operatorΨk ◦ Φk maps LRk surjectively ontoBZk−1, and
LRk(λ, µ, ν) bijectively ontoBZk−1(λ, µ, ν), for anyλ,µ, ν ∈ Dk.

Corollary 5.3. The linear operatorΨk mapsHk surjectively ontoBZk−1, andHk(λ, µ, ν)

bijectively ontoBZk−1(λ, µ, ν), for anyλ,µ, ν ∈ Dk.

Corollary 5.4. e(BZk−1(λ, µ, ν)) = cλ
µν , for anyλ,µ, ν ∈ Dk with non-negative integer

coefficients.

It will follow from Lemma 6.1and the proof ofTheorem 5.2that the conesLRk and
Hk are isomorphic toBZk−1 × R

2. One can embed the coneBZk−1 into LRk in the
following way: for anyk ≥ 2, let Ωk : Wk−1 −→ Tk be thelinear operator defined by
Ωk(xi j , yi j , zi j ) = (ai j ) where

a0 j =
k−1∑
l= j

x1l + y1l for 1 ≤ j < k, anda0k = 0,

ai j = yi j −1, for 1 ≤ i < j ≤ k,

aj j =
k−1∑
l= j

zll for 1 ≤ j < k, andakk = 0.

(4)

Then we have:
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Theorem 5.5. The linear operatorΩk defined above mapsBZk−1 injectively intoLRk,
andBZk−1(λ, µ, ν) bijectively ontoLRk(λ, µ, ν) for anyλ,µ, ν ∈ Dk suchthatµk = 0
andνk = 0.

6. Proof of results

Proof of Lemma 3.1. Let T be a Littlewood–Richardson tableau of shapeλ/µ and
contentν, then AT satisfies (P) by definition. Since T has strictly increasing columns
(CS) follows, and sincew(T) is a lattice permutation,AT satisfies (LR).It is also clear
that AT is of type(λ, µ, ν). Conversely, for any Littlewood–Richardson triangleA = (ai j )

in LRk(λ, µ, ν) with integer entries, we define a tableauTA of shapeλ/µ by placing in
row j , in weakly increasing order,ai j i s for eachi and j . It is routine to check thatT is
a Littlewood–Richardson tableau of shapeλ/µ and contentν, and thatboth constructions
are inverses of each other. Here we use that (2) follows from (CS) and (LR).�

Proof of Theorem 4.1. Let {Ei j } be the canonical basis ofTk, that isEi j = (ei j
pq), where

ei j
pq =

{
1, if p = i andq = j ;
0, otherwise.

We order it according to the lexicographic order of the subindices, that is,

B = {E01, E02, . . . , E0k, E11, . . . , E1k, . . . , Ekk}.
The matrix ofΦk with respect toB is lower triangular with ones on the main diagonal,

therefore it has determinant one, is volume preserving, and mapsZ

(
k+2

2

)
−1

bijectively

ontoZ

(
k+2

2

)
−1

. The inverse ofΦk is given byΦ−1
k (hi j ) = (ai j ) where

ai j =



h0 j − h0 j −1, if i = 0 and 1≤ j ≤ k.

h j j − h j −1 j , if 1 ≤ i = j ≤ k.

hi j − hi j −1 − hi−1 j + hi−1 j −1, if 1 ≤ i < j ≤ k.

Let (ai j ) ∈ LRk and(hi j ) = Φk(ai j ), then we have

hst − hst−1 =
s∑

p=0

apt and hs+1t − hst =
t∑

q=s+1

as+1q,

for 0 ≤ s < t ≤ k. It is straightforward, using these two identities, to check that(ai j )

satisfies (P), (CS), or (LR), respectively, if and only if(hi j ) satisfies (R), (V), or (L),
respectively; thereforeΦk(LRk) = Hk. Also, it is straightforward to check that(ai j ) and
(hi j ) have the same type; thereforeΦk(LRk(λ, µ, ν)) = Hk(λ, µ, ν), for all λ,µ and
ν ∈ Dk. �

Proof of Lemma 5.1. We form a system of linear equations by taking, for each 1≤ i ≤
j < k, that is, for each hexagon inΓk, equations (BZ2) and (BZ3). Then, after arranging
the variables in the orderx11, y11, z11, x12, y12, z12, x22, . . . , zkk, we easily check that
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the matrix of coefficients of the system is in echelon form and has rank 2
(

k
2

)
. Thus

dim Wk = 3
(

k+1
2

)
− 2

(
k
2

)
= 1

2k(k + 5). �

Before weproveTheorem 5.2, let usprove the following lemma.

Lemma 6.1. The linear operatorsΨk andΨk ◦ Φk are surjective. Moreover, Eq.(5) give
a full description of(Ψk ◦ Φk)

−1(X) for any X∈ Wk−1.

Proof. It is enough to show thatΨk ◦ Φk is surjective. LetX = (xi j , yi j , zi j ) ∈ Wk−1. For
eachs, t ∈ R we define an elementAst = (ai j ) ∈ Tk by

a0 j = s +
k−1∑
l= j

x1l + y1l for 1 ≤ j < k, anda0k = s,

ai j = yi j −1, for 1 ≤ i < j ≤ k,

aj j = t +
k−1∑
l= j

zll for 1 ≤ j < k, andakk = t .

(5)

Let X′ = (x′
i j , y′

i j , z′
i j ) = Ψk ◦ Φk(Ast). We claim that X′ = X. By definition, x′

i j , y′
i j

and z′
i j satisfy Eq. (3). Combining (3) and (5) we get that y′

i j = ai j +1 = yi j for all
1 ≤ i ≤ j < k. Again, combining (3) and (5), we obtain

x′
i j = (x1 j + y1 j ) +

i−1∑
p=1

ypj−1 −
i∑

p=1

ypj

= (x1 j + y1 j −1 − y2 j ) +
i−1∑
p=2

ypj−1 −
i∑

p=3

ypj .

Condition (BZ2) implies thatx1 j + y1 j −1 − y2 j = x2 j ; and repeated application of (BZ2)
yields x′

i j = xi j for all 1 ≤ i ≤ j < k. Finally, the equalityz′
i j = zi j , is obtained in a

similar way from (BZ1). ThusΨk ◦ Φk is surjective. The last statement follows from the
identity dimTk = dimWk−1 + 2.

Proof of Theorem 5.2. It follows from (3) thatΨk ◦ Φk(LRk) = BZk−1; and it follows
from (3) and (B1)–(B3) thatA andΨk ◦ Φk(A) have the same type, for anyA ∈ LRk,
thusΨk ◦ Φk(LRk(λ, µ, ν)) = BZk(λ, µ, ν). The last claim follows from the remark that
different elements in the preimage of anX ∈ BZk(λ, µ, ν) have different types. �

Proof of Theorem 5.5. It follows from (3), (4), and the proof ofLemma 6.1thatΨk ◦Φk ◦
Ωk is the identity map onWk−1, and thatΩ(BZk−1) ⊆ LRk. The laststatement follows
from Theorem 5.2. �

7. Final remarks

Let us start with the complexity issues. Recall that the LR triangles, hives, and BZ
triangles, all of sizek, are given byθ(k2) entries. As defined, mapsΦ−1 andΨ require
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only a constant number of arithmeticoperations per entry, and thus haveO(k2) complexity.
It is an easy exercise in dynamic programming to show thatΦ andΨ−1 have the same
complexity, linear in the input.

The complexityO(k2) is in stark contrast with theO(k3) complexity required by the
jeu-de-taquin and Schützenberger involution (cf. [9,18,17]). This explains why Fulton’s
map in [7] has the same complexity. In fact, Fulton reworks the bijection of Carré [8]
which establishes a combinatorial mapΥ : e(LRk(λ, µ, ν)) → e(Hk(λ, ν, µ)). As we
mentioned in the Introduction and will reiterate below, there is no linear map establishing
the symmetryHk(λ, ν, µ) → Hk(λ, µ, ν). Onecan use a more complicated map called
tableaux switching to demonstrate this symmetry [3] (see also [14,17]).

Now, the symmetries of the LR coefficients are quite intriguing in a sense that most of
them can be established by simple means. Ifone operates with LR tableaux, one simply has
to map them into BZ triangles (which takesO(k2) steps), perform the symmetry, and return
back to LR tableaux (which takesO(k2) steps again). For the remainingµ ↔ ν symmetry
several authors found an explicit map (in different languages) [1,2,14,19] but all of them
useθ(k3) steps (see [17] for the theory and the explanation). It would be interesting to
prove the lower boundΩ(k3) but we are doubtful such a result is feasible at the moment.
What one can show, however, is that this “last” symmetry cannot be performed by a linear
map already fork = 4. We leave this statement as an interesting exercise to the reader, and
refer to a sequel paper [17] for further results in this direction.
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