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The total chromatic number xr(G) of a graph G is the least number of colours needed to 

colour the edges and vertices of G so that no two adjacent vertices receive the same colour, no 

two edges incident with the same vertex receive the same colour, and no edge receives the 

same colour as either of the vertices it is incident with. 

Let n 2 1, let J be a subgraph of KZn, let e = JE(J)( and let i(J) be the maximum size of a 

matching in J. Then 

xT(K,,, \E(J)) = 2n + 1 

if and only if e + j c n - 1. 

1. Introduction 

An edge-colouring of a graph G is a map $1 E(G)+ %, where % is a set of 
colours, such that no two adjacent edges receive the same colour. The chromatic 

index (or edge-chromatic number) x’(G) of G is the least value of I%1 for which 
G has an edge-colouring. A famous theorem of Vizing [5] states that A(G) 6 
x’(G) c A(G) + 1, where A(G) is the maximum degree of G, G being a simple 
graph. 

A total-colouring of G is a map 6: E(G) U V(G)-, % such that no incident or 
adjacent pair of elements of E(G) U V(G) receive the same colour. The 
total-chromatic number X&G) is the least value of I%‘1 for which G has a total 
colouring. A long-standing conjecture of Behzad [l] and, independently, of 
Vizing [6] is that A(G) + 1 s X=(G) s A(G) + 2 if G is a simple graph. The lower 
bound here is trivial but whether the upper bound is true is today still a 
fascinating mystery. 

It is well-known that x’(K2,,+r) = A(Kz,+l) + 1 = 2n + 1 and that x’(KZn) = 
A(Ka,) = 2n - 1. Plantholt [4] proved the following result about the chromatic 
index of the graph obtained from K2n+l by removing just a few edges. 

Theorem 1. Let n 3 1, let J be a subgraph of K2n+l and let e = IE(J)I. Then 

x’(Kzn+~ \E(J)) = 2n + 1 

ifandonlyife<n-1. 
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It is also well-known that xT(Kti) = A(K& + 2 = 2n + 1 and that xT(Kzn+J = 
A(Kh+l) + 1 = 2n + 1. Our object is to prove an analogue of Plantholt’s theorem 
about the total chromatic number of complete graphs with a few edges removed; 
complete graphs of odd order present no problems, and it is complete graphs of 
even order that we have to consider. 

Theorem 2. Let n L 1, let J be a subgraph of Kti, let e = IE(J)( and Iet j be the 
maximum size (i.e. number of edges) of a matching in J. Then 

xT(KZn \ E(J)) = 2n + 1 

ifandonlyife+j<n-1. 

2. Proof of Theorem 2 

We first prove the necessity. 

Proof of necessity. It is well-known that xT(K2,,) = 2n + 1, and so it follows that 
x,(Kzn \E(J)) G 2n + 1. We show that if e + j =C n - 1 then xT(Kzn \ E(J)) = 2n + 
1. We do this by assuming instead that xT(KZn\E(J)) = 2n and showing that then 
e + j 5 n. So suppose that KZn \ E(J) is totally-coloured with 2n colours. 

If a colour is used to colour an odd number of vertices, then there is one vertex 
at which it does occur at all (neither on the vertex itself, nor on an edge incident 
with the vertex). We show first that the number of colours which are used to 
colour an odd number of vertices is at least 2n - 2j. Let the colours be 

Cl, . . f , C2n and let the number of vertices which are coloured ci in a total- 
colouring of Kzn \ E(J) be xi (16 i s 2n). Then 

for some r. In K2,\E(.l) there are no edges between any of the xi vertices of 
colour ci, and so it follows that 

Suppose there are z odd numbers in {xi, . . . , x,} and so r - z even numbers. 
Then it follows that 

xi +. . . + x, < 2j + z. 

Therefore 

x +...+x,,Z=2n-2j-z. r+l 
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Since the values of x,+~, . . . , x2n are either 0 or 1, there are at least 2n - 2j - z 
odd numbers x, amongst x,+~, , . . , x2n. Therefore at least 2n - 2j of xi, . . . , xzn 

are odd. 
Call a pair (c, v), where c is a colour, u is a vertex, and c is used either to 

colour the vertex or to colour an edge incident with the vertex, a colour-vertex 
pair. Then there are 2n - 2j colours which are each associated with at most 2n - 1 
colour-vertex pairs, and so altogether these 2n - 2j colours are associated with at 
most (2n - 2j) (2n - 1) colour-vertex pairs. The remaining 2j colours are each 
associated with at most 2n colodr-vertex pairs, and thus altogether they are 
arrnriat~d with at mnrt 7i - 3n rnlnw vr=rtc=u ,X&-Q Thnr there care at mnct Y”““I.UC”U ,Y LCll _I LLLVU. -, -.. “.,-vIL ._&._<. y..““. *....” c.._sv u&W _. L...,yc 

(2n - 2j)(n - 1) + 2n -2j = 4n2 - 2n + 2j 

colour-vertex pairs. 
However since K2,\E(J) is totally-coloured using these 2n colours, there are 

altogether (2n)2 - 2e colour-vertex pairs. 
Therefore 

(2n)2 - 2e G (2n)2 - 2n + 2j, 

so that 

nGe+j, 

as required. Cl 

Proof of sdiciency. In order to prove the sufficiency, by adding in edges if 
necessary, we may without loss of generality suppose that either e + j = n or n is 
odd and J consists of $(n + 1) independent edges (so that e + j = n + l), and then 
show that K2, \E(J) can be totally-coloured with 2n colours. 

Suppose for the moment that e + j = n. We may suppose that J has no isolated 
vertices. Let {vi,. . . , v,} = V(J) and {u,,+i, . . . , 2r2n} = V(K,,)\V(J). We as- 
sociate with K2, \E(J) a multigraph H** on the 2n + 2 vertices u* *, u*, 

211, . . * 7 v2n. Let M be a maximum matching in J and let the vertices of M be 

VI, *. * 7 v2j; let the edges of M be e,, . . . , ei and, for 16 i S j, let ei join vi to 
v~+~. Let H* be the graph formed from ((K2n\(E(J)\M)) U {v*} by joining v* to 
each of v2j+ll . . . , ~2~. Then A(H*) = 2n; since 2n - d&v*) = 2j and 

c vcv(~) (2n - &f*(u)) = 2 e ( recall the edges of M are in H*) it follows that 

UEtU_,Z., vzn) (2n - G(V)) = 2(e +j) = 2n. 
* 1 

Finally form H** by joining v** to each v E {v*, vi, . . . , v2”} by 2n -d&v) 
edges (so some of these edges will be multiple); then d*..(v) = 2n(tlv E 

{v*, v1t.. . , vzn}). Then in H**, v* and v** are joined by 2j edges. For 
y <x c 2n, let Hz* denote the subgraph of H** induced by 
{v*, v**, VI,. . . ) v,,}. Then each vertex of {v*, vl,. . . , v,,} is joined in H** to 
each of the 2n -y vertices of V(H**)\{v*, v**, v,, . . . , v,}, and so in H,**, 
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each vertex of V(H,**) \ {v**} has degree y. Finally observe that each of 

Vl, * * . , v,, is not joined to v* but is joined to v**. 

If e +j = n + 1 and J consists of b(n + 1) independent edges, we vary this 

construction slightly. We let v** be joined to vi and Vi+j (2 s i sj) as before, and 

to v*, but not to vu1 or Vj+i. v1 and v~+~ are joined by two edges, e, and e;, 

instead of by just one. It again follows that dH..(v) = 2n(Vv E 

{v**, v*, vi, . . . ) t&J. 

We shall show that H**, and therefore H*, is edge-colourable with 2n colours, 

with the edges of M and the edges V*Vzj+l, . . . , v*vz, all receiving different 
,.r\lr\..V.Z l?‘rnm th;r ~Acc._r.nl~\,,Amm nf FI* ,,,a nhtQ;n o tnt,al.,.nln..Anm nf V \ L7(1\ b”I”“*a. L l”lll 1111.9 LIcI$jC~C”I”UIIll~ “I LL WC ““CUlll a L”LQ“b”I”“I1L1~ “I ‘x2n \fi(d, 

with the 2n colours by retaining the colours on all the edges of Kzn\E(J), 

colouring the vertex vi with the colour of the edge v*vi (2j + 1 <i c n), and 

colouring the vertices vi and v~+~ with the colour of the edge viviti (1~ i ~j). 

Suppose first that e + j = IZ. Then we edge-colour Hy** as follows. We first 

colour v~v;+~ with colour ci (1 c i c j). We colour the 2j edges joining v* to v** 

with colours cl, . . . , Cy and the remaining 2n - 2j edges on vy** are coloured 

CZj+lt . . . 9 C2n. After that the remaining edges of Hy** are coloured one by one, 

greedily: if an edge e * is uncoloured, then at most 2(y - 1) colours are used on 

edges incident with the vertices at each end. Since e + j = II, J consists of j 

independent edges on 2j vertices, and a further e -j = n - 2j edges, each of 

which is incident with at least one of the 2j vertices above. Therefore the 

further edges are on a further at most e -j = IZ - 2j vertices, and thus J has at 

most (n - 2j) + 2j = IZ vertices altogether. Therefore y = IV(J)( c n. Therefore 

2(y - 1) 6 2(n - 1) < 2n, so there is a colour available to colour e* with. 

In the case when 12 is odd and J consists of ;(n + 1) independent edges, then 

y = n + 1 and the argument above does not work. However, in that case, H,** 
contains a l-factor F which does not include any edge of M but does include an 

edge from v* to v**. We colour the edges of F with the colour cy. Apart from 

this, we proceed as before; this time there are at most 2(y - 1) - 1 = 2n - 1< 2n 
colours used on edges incident with the vertices at each end of e*, so again there 

is a colour available to colour e* with. 

We now prove the following lemma. 

Lemma 3. For x 3 y, an edge-colouring of Hz* with colours cl, . . . , c2,, can be 
extended to an edge-colouring of H* * with the same colours if and only if each 
colour is used on at least x - n + 1 edges of HZ*. 

We resume the proof of the sufficiency in Theorem 2 after proving Lemma 3. 

Proof of Lemma 3. 

1. Necessity in Lemma 3. Suppose that an edge-colouring of H,** with colours 

Cl, ’ . . , C2n can be extended to an edge-colouring of H** with the same colours. 
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Then for each i, 1 c i c 2n, the number of edges not in H,** which are coloured ci 

is at most 2n - X. The total number of edges in H** which are coloured 

ci is n + 1. Therefore at least n + 1 - (2n - x) = x - n + 1 edges of H,** are 

coloured ci. 

2. Sufficiency iu Lemma 3. Suppose H,** is edge-coloured with ci, . . . , ch, and 

that, for 1s i c 2n, colour ci occurs on at least x - n + 1 edges of H,**. We shall 

extend this to an edge-colouring of Hz:, with the same colours in such a way that 

each colour will occur on at least (X + 1) - n + 1 =x - n + 2 edges. Iterating this 

will eventually give the required edge-colouring of H**. 
In order to extend H,X* we construct a bipartite graph B as follows. The vertex 

sets of B are {v*‘, vi, . . . , vi} and {c;, . . . , cln}. A vertex V’ is joined in B to a 

vertex c’ by an edge if in H,** there is no edge coloured c incident with V. Each 

vertex of H,** (except v**) has degree x, and so in B each v’-vertex has degree 

2n - X. Each colour Ci is used in H,** on at least x - n + 1 edges, and so there are 

at least 2(x - n + 1) vertices in Hz* which are incident with an edge coloured ci. 

Therefore ci faiis to be on any edges incident with at most x + 2 - 2(x - n + ij = 
2n --x vertices of H* (it is incident with v**). Therefore in B each c’-vertex has 

degree at most 2n - x. 
By Konig’s theorem [3], B can be edge-coloured with 2n -x colours. Let (Y be 

one colour in such an edge-colouring. Then (Y occurs on every vertex of degree 

2n -x. If an edge C’U’ is coloured (Y, we colour the edge 2rX+,v in Hz:, with the 

colour c. -It is easy to check that we obtain this way a proper edge-colouring of 

H ** x+1. In this edge-colouring, any colour c which occurred on only x - n + 1 edges 

of H,** gives rise in B to a vertex c’ of degree 2n -x, and so c’ has an edge 

coloured (Y on it; therefore c is assigned to some edge incident with u,+r. It 

follows that in Hz*, each colour does occur on at least x - n + 2 edges, as 

required. 

The sufficiency in Lemma 3 now follows. 0 

We now resume the proof of the sufficiency in Theorem 2. 

In the case when e + j = n, we have y 6 n, and so the condition that each 

colour occurs on at least x - n + 1 edges reduces in this case to the condition that 

each colour occurs on some edee of _H.!*. Rut each rolnur OC~IJ~S on 2.n. edge ef --- ------ --c)- y --- _---- _-__-_ 
Hy** incident with v**. By Lemma 3, therefore, H** can be edge-coloured with 

2n colours. The colours used on M and the colours used on the edges b*vi 

(2j < i G 2n) are all different, and so this edge-colouring corresponds to the 

required total-colouring of K2,, \ E(J), as described earlier. 

If e + j = n + 1 and J consists of i(n + 1) independent edges, we have y = n + 1, 

and so the condition that each colour occurs on at least x - n + 1 edges reduces in 

this case to the condition that each colour occurs on at least two edges of H**. 
Each colour occurs on an edge incident with u**. It may be necessary to modify 

our original edge-colouring of H;* . if some colour, say c, is not used on any edge 
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of Hy* * \ {v* *}. In that case, we find an edge e not in M whose colour occurs on 
more than one edge of H:*\ {v**} and which is not adjacent to the edge 
coloured c incident with v * *, and we colour e with c. We repeat this as necessary. 
It is easy to check that this can always be done. The argument now proceeds as 
above. 

This proves the sufficiency in Theorem 2. Cl 

3. Concluding remarks 

We have the following corollary of Theorem 2. 

Corollary 4. Under the hypothesis of Theorem 2, 

XT(H) = 
A(H)+2 qe+jSn-1, 

A(H)+1 if 2n-l?=e+jSn, 

where H = Kti \ E(J). 

Proof. We may assume that J has no isolated vertices. If 2n - 13 e + j then J 
consists of j independent edges on 2j vertices, and a further e - j s 2n - 1 - 2j 
edges, each of which is incident with at least one of the 2j vertices above. 
Therefore the further edges are on a further at most 2n - 1 - 2j vertices, and so J 
has at most 2n - 1 vertices altogether. Therefore A(H) = 2n - 1. Corollary 4 now 
follows from Theorem 2. 0 

We remark that our proof of Theorem 2 is very like the proof of Theorem 1 
given by Chetwynd and Hilton in [2]. 

The following conjecture may describe the ‘next step’ after Theorem 2. 

Conjecture. Let n 3 1 and let J be a spanning subgraph of Kz, such that 
d,(v) 3 l(Vv E V(K,)). Let jI be the maximum size of a ‘submatching’ M of J (M 
is a submatching of J if M is a matching and d&v) 3 1 (Vu E V(K,,)). Then 

xT(Kti\E(J)) s 2n 

if and only if 

e+j,a2n-1. 
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