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a b s t r a c t

In this paper, considering full Logistic proliferation of CD4+ T cells, we study an HIV
pathogenesis model with antiretroviral therapy and HIV replication time. We first analyze
the existence and stability of the equilibrium, and then investigate the effect of the time
delay on the stability of the infected steady state. Sufficient conditions are given to ensure
that the infected steady state is asymptotically stable for all delay. Furthermore, we apply
the Nyquist criterion to estimate the length of delay for which stability continues to
hold, and investigate the existence of Hopf bifurcation by using a delay τ as a bifurcation
parameter. Finally, numerical simulations are presented to illustrate the main results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and the establishment of the model

It is well known that HIV mainly targets a host’s CD4+ T cells, the main driver of the immune response. Chronic HIV
infection causes gradual depletion of the CD4+ T cell pool, and thus progressively compromises the host’s immune response,
leading to humoral and cellular immune function loss (the marker of the on set of AIDS), making the host susceptible to
opportunistic infections. The fact that HIV replicates rapidly, producing on average 1010 viral particles per day, led to the
realization that HIV evolves so rapidly that treatment with a single drug is bound to fail [1]. The best current therapy for
HIV involves the simultaneous administration of two ormore anti-viral drugs, potential inhibitors of HIV replication in vivo.
These drug cocktails generally consist of reverse transcriptase inhibitors (RTIs) that block the infection of CD4+ T cells by
infectious virus and protease inhibitors (PIs) that prevent HIV protease from cleaving HIV polyprotein into functional units,
causing infected cells to produce virus particles that are non-infectious.
Manymathematical models, used extensively in research into HIV virus dynamics, help to improve our understanding of

the disease development progress in the host. The basic mathematical model of HIV pathogenesis in the host describes
interactions of the immune system and the virus by including healthy and infected CD4+ T cells and HIV virion [2–6].
Much has been learned regarding the pathogenesis of HIV in the host using this basic model. Taking drug therapy into
consideration, some scholars incorporate constant terms describing drug efficacy in the basic models [1,7–9]. In addition,
researchers extend the basic models by adding CD4+ T cells’ simple Logistic proliferation term rT

(
1− T

Tmax

)
[1,7,10–12] or

CD4+ T cells’ full Logistic proliferation term rT
(
1− T+I

Tmax

)
[13–15], where r is the maximum proliferation rate of CD4+

T cells, T , I respectively represent the concentration of susceptible CD4+ T cells, infected CD4+ T cells, and Tmax is the
maximum level of CD4+ T cell concentration in the body.
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Perelson et al. [1] built on the biology of the HIV life cycle, including an intracellular delay. The intracellular delay
describes the amount of time from initial infection of a CD4+ T cell by HIV to the release of new virion. This work inspired
several modeling studies (see [16,15,17–19]). Herz et al. [16] used a discrete delay to model the intracellular delay in the
basic HIV pathogenesis model and demonstrated that the incorporation of a delay would substantially shorten the estimate
for the half-life of free virus. After that there were also many authors who investigated delayed HIV pathogenesis models
incorporating the Logistic proliferation term of CD4+ T cells or cure rate [15,17–19].
Wang et al. investigate an HIV pathogenesis model including a simple Logistic growth term of CD4+ T cells, intracellular

delay and antiretroviral therapy [20]. However, note that the model of literature [20] neglect the full Logistic proliferation
of healthy and infected CD4+ T cells. In literature [21–23], they argue that all CD4+ T cells (healthy and infected) divide and
increase in population once stimulated by antigen or mitogen. Inspired by their work, we assume that CD4+ T cells (healthy
and infected) are governed by a full Logistic growth term. Therefore, we shall establish a mathematical model as follows

T ′ = s− αT + rT
(
1−

T + I
Tmax

)
− k1(1− nr)TV ,

I ′ = k2(1− nr)T (t − τ)V (t − τ)+ rI
(
1−

T + I
Tmax

)
− βI,

V ′ = (1− np)NβI − dV ,
V ′N = npNβI − dVN ,

(1.1)

where T , I, V , VN represent the concentration of susceptible CD4+ T cells, infected CD4+ T cells, infectiousHIV virus particles
and non-infectious HIV virus in the blood, respectively. s denotes the rate at which new CD4+ T cells are created from
precursors in the bone marrow and thymus, and new CD4+ T cells is susceptible. Parameters α, β and d are the natural
death rates of uninfected CD4+ T cells and infected CD4+ T cells, and the clearance rate of HIV virus particles, respectively.
Because of the viral burden on the HIV infected CD4+ T cells, we assume that β ≥ α. Tmax is the maximum level of CD4+
T cells concentration in the body. If the population ever reaches Tmax, it should decrease, thus we impose the constraint
αTmax > s. CD4+ T cells can also be created by proliferation of existing CD4+ T cells. r denotes the maximum proliferation
rate of CD4+ T cells. The parameter k1 represents the rate of infection of CD4+ T cells with free virus, k2 is the rate at
which infected cells become actively infected (the ratio 0 ≤ k2/k1 ≤ 1 is the proportion of CD4+ T cells, which become
actively infected (proportion of infected cells surviving incubation)). CD4+ T cells can also be created by proliferation of
existing CD4+ T cells. r denotes the maximum proliferation rate of CD4+ T cells, and the Logistic functions rT

(
1− T+I

Tmax

)
and rI

(
1− T+I

Tmax

)
represent the proliferation of healthy and infected CD4+ T cells, respectively. HIV viruses are created by

infected CD4+ T cells, and each infected CD4+ T cell is assumed to produce N virus particles during its life time, including
any of its daughter cells. Protease inhibitors, with efficacy 0 ≤ np < 1, cause infected cells to produce non-infectious virus
with rate npN . Reverse transcriptase inhibitors prevent the production of infected cells with efficacy 0 ≤ nr < 1. The time
lag τ is considered the amount of time from initial infection of a CD4+ T cell by HIV to the release of new virion. We assume
that all parameters are non-negative constant.
The initial conditions of system (1.1) are

T (θ) = ϕ1(θ) > 0, I(θ) = ϕ2(θ) > 0, V (θ) = ϕ3(θ) > 0, VN(θ) = ϕ4(θ) > 0, θ ∈ [−τ , 0],

where functionsϕi ∈ C([−τ , 0], R+), i = 1, 2, 3, 4, andC([−τ , 0], R+) is the Banach space of continuous functionsmapping
the interval [−τ , 0] into R+, where R+ = (0,+∞).
Note that the non-infectious HIV virus VN does not appear in the first three equations. Therefore, we can consider the

following subsystem of system (1.1)
T ′ = s− αT + rT

(
1−

T + I
Tmax

)
− k1(1− nr)TV ,

I ′ = k2(1− nr)T (t − τ)V (t − τ)+ rI
(
1−

T + I
Tmax

)
− βI,

V ′ = (1− np)NβI − dV ,

(1.2)

with initial conditions

T (θ) = ϕ1(θ) > 0, I(θ) = ϕ2(θ) > 0, V (θ) = ϕ3(θ) > 0, θ ∈ [−τ , 0], (1.3)

where ϕi ∈ C([−τ , 0], R+), i = 1, 2, 3, R+ = (0,+∞).
The paper is organized as follows. In the next section, the existence of equilibrium and stability of the model are studied.

The estimation of the length of delay to preserve stability is presented in Section 3. In Section 4, the existence of Hopf
bifurcation is discussed. In Section 5, some numerical simulations are performed to illustrate the main analytical results.
The paper ends with a brief discussion.
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2. The existence and stability of equilibria

In the following,we first show that all solutions of the system (1.2)with initial conditions (1.3) are positive and ultimately
bounded.

Theorem 2.1. For sufficiently large t, all solutions of system (1.2)with initial conditions (1.3) are positive and ultimately bounded.

Proof. Suppose T (t) is not always positive. Then, let t0 > 0 be the first time such that T (t0) = 0, that is t0 = inf{t|t >
0, T (t) = 0}. By the first equation of (1.2), we have T ′(t0) = s > 0. This means T (t) < 0 for t ∈ (t0 − ε, t0), where ε > 0 is
an arbitrarily small positive constant. This is a contradiction. It follows that T (t) is always positive.
We now show that I(t) > 0 for all t > 0. Otherwise, if it is not valid, noting that T (t) > 0 and I(t) > 0 for t ∈

[−τ , 0], then there exists a t1 such that I(t1) = 0. Assume that t1 is the first time such that I(t1) = 0, that is, t1 =
inf {t|t > 0, I(t) = 0}, then t1 > 0. From system (1.2) with initial conditions (1.3), we get

I ′(t1) =
{
k2(1− nr)ϕ1(t1 − τ)ϕ3(t1 − τ) > 0, t1 ∈ [0, τ ],
k2(1− nr)T (t1 − τ)V (t1 − τ) > 0, t1 ∈ [τ ,+∞].

Thus I ′(t1) > 0. Hence, there exists sufficiently small ε1 > 0 to make I(t) < 0 for t ∈ (t1 − ε, t1). By the definition of t1,
this is a contradiction. Therefore, I(t) > 0 for all t > 0. Similarly, we easily show that V (t) is always positive. Thus, we can
conclude that all solutions of system (1.2) with initial conditions (1.3) remain positive for all t > 0.
Next, we shall discuss the boundedness of solutions of the system (1.2). In the absence of HIV infection, the dynamics of

healthy CD4+ T cells are governed by

T ′ = s− αT + rT
(
1−

T
Tmax

)
.

It can be shown that the CD4+ T cell concentration stabilizes at a level T0, which is given by

T0 =
Tmax
2r

(
r − α +

√
(r − α)2 +

4rs
Tmax

)
,

and T0 satisfy the following equation

s = αT0 − rT0 +
rT 20
Tmax

. (2.1)

By the first equation of system (1.2), we have

T ′ ≤ s− αT + rT
(
1−

T
Tmax

)
.

Thus, if T (0) < T0, we obtain

lim
t→+∞

sup T (t) ≤ T0, for all t ≥ 0. (2.2)

LetW (t) = k2T (t − τ)+ k1I , then

W ′(t) = sk2 − αk2T (t − τ)+ rk2T (t − τ)
(
1−

T (t − τ)+ I(t − τ)
Tmax

)
+ rk1I

(
1−

T + I
Tmax

)
− βk1I

≤ sk2 − αk2T (t − τ)+ rk2T (t − τ)
(
1−

T (t − τ)
Tmax

)
+ rk1I

(
1−

I
Tmax

)
− βk1I

≤ sk2 − αk2T (t − τ)+
rk2Tmax
4
+
rk1Tmax
4
− βk1I

≤ sk2 +
r(k1 + k2)Tmax

4
− αW (t). (2.3)

LetM1 = sk2 +
r(k1+k2)Tmax

4 , and solving Eq. (2.3), we obtain

W (t) ≤
M1
α
+

[
W (0)−

M1
α

]
e−αt . (2.4)

According to inequality (2.4), we getW (t) < 2M1/α for sufficiently large t . Recall that T (t), I(t) stay positive. Combining
with inequality (2.2), T (t) and I(t) have ultimately above boundM2 > 0.
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Similarly, from the third equation of system (1.2), we easily obtain

V ′ = (1− np)NβI − dV ≤ (1− np)NβM2 − dV . (2.5)

Solving inequality (2.5), we have

V (t) ≤
(1− np)NβM2

d
+

[
V (0)−

(1− np)NβM2
d

]
e−dt . (2.6)

It follows from inequality (2.6) that V (t) has an ultimately above bound M3 > 0, for sufficiently large t . Then the proof of
Theorem 2.1 is completed. �

LetΩ = {(T , I, V )|0 < T ≤ T0, 0 < I ≤ M2, 0 < V ≤ M3}, thenΩ is the positive invariant set of system (1.2).
Now, we investigate the existence of equilibrium of system (1.2). The equilibrium of system (1.2) satisfies the following

equation
s− αT + rT

(
1−

T + I
Tmax

)
− k1(1− nr)TV = 0,

k2(1− nr)TV + rI
(
1−

T + I
Tmax

)
− βI = 0,

(1− np)NβI − dV = 0.

(2.7)

Clearly, system (1.2) has always the uninfected equilibrium E0 = (T0, 0, 0). From the third equation of (2.7), we have

I =
dV

(1− np)Nβ
. (2.8)

Substitute (2.8) into the second equation of (2.7) and solution for T results in

T =
(β − r)dTmax

(1− np)(1− nr)k2NβTmax − rd
+

rd2

(1− np)Nβ[(1− np)(1− nr)k2NβTmax − rd]
V . (2.9)

Rewriting the first equation of (2.7) as

s = T
[
α − r

(
1−

T + I
Tmax

)
+ k1(1− nr)V

]
. (2.10)

Substituting (2.8) and (2.9) into (2.10), we have

s = (A+ BV )(C + DV )

or

BDV 2 + (AD+ BC)V + AC − s = 0, (2.11)

where

A =
(β − r)dTmax

(1− np)(1− nr)k2NβTmax − rd
,

B =
rd2

(1− np)Nβ[(1− np)(1− nr)k2NβTmax − rd]
,

C = α − r +
rd(β − r)

(1− np)(1− nr)k2NβTmax − rd
,

D =
(1− np)(1− nr)2k1k2NβTmax − (1− nr)(k1 − k2)rd

(1− np)(1− nr)k2NβTmax − rd
.

(2.12)

System (1.2) has positive equilibrium if and only if Eq. (2.11) has a positive root V such that A+ BV > 0.
For the sake of convenience, let

V± =
−(AD+ BC)±

√
(AD+ BC)2 − 4BD(AC − s)
2BD

, (2.13)

where V+ and V− correspond to the expression of taking ‘‘+’’ and ‘‘−’’ on the right side ‘‘±’’ of (2.13), respectively.
If β > r , it is proved that AC − s < 0 is equivalent to

s
[
(1− np)(1− nr)k2βNTmax − rd

]2
− d(β − r)(α − r)Tmax

[
(1− np)(1− nr)k2βNTmax − rd

]
− r(β − r)2d2Tmax > 0.
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The solutions of the above inequality are

N >
(β − r)d

(1− np)(1− nr)k2βT0
+

rd
(1− np)(1− nr)k2βTmax

, Ncrit (2.14)

or

N <
rd

(1− np)(1− nr)k2βTmax

(
1−

(β − r)T0
s

)
, Nmin. (2.15)

As

Ncrit =
d

(1− np)(1− nr)k2βT0

[
s
T0
+ β − α

]
> 0,

if N > Ncrit, then A > 0, B > 0, D > 0 and AC − s < 0, it follows that BD > 0. Therefore, Eq. (2.11) has an unique positive
root V+ and A+ BV+ > 0. Thus, we obtain T ∗ = A+ BV ∗, and I∗ = d

(1−np)Nβ
V ∗ > 0, where V ∗ = V+. So system (1.2) has an

unique positive equilibrium E∗(T ∗, I∗, V ∗).
If 0 < N < rd

(1−np)(1−nr )k2βTmax
, then A < 0 and B < 0, even if the equation s = (A+ BV )(C + DV ) has positive roots V ∗,

but A+ BV ∗ < 0. So system (1.2) has no positive equilibrium.
If rd
(1−np)(1−nr )k2βTmax

< N ≤ Ncrit, then AC − s ≥ 0, A > 0, B > 0,D > 0 and BD > 0. If α ≥ r , then C > 0. If α < r , it
follows from N ≤ Ncrit that

(1− np)(1− nr)k2NβTmax − rd ≤ (β − r)d
Tmax
T0

.

So

(α − r)
[
(1− np)(1− nr)k2NβTmax − rd

]
≥ (β − r)(α − r)d

Tmax
T0

.

It follows from (2.1) that

(α − r)
[
(1− np)(1− nr)k2NβTmax − rd

]
+ rd(β − r) ≥ (β − r)d

(
(α − r)

Tmax
T0
+ r

)
= s
Tmax
T 20

> 0.

That is, C > 0 and AD+ BC > 0. Therefore, Eq. (2.11) has no positive root. So system (1.2) has no positive equilibrium.
If N = rd

(1−np)(1−nr )k2βTmax
, it is known from (2.9) that the Eq. (2.9) has no positive solution. So system (1.2) has no positive

equilibrium.
If β = r , it is easy to prove that system (1.2) has an unique positive equilibrium if N > Ncrit, and no positive equilibrium

if N ≤ Ncrit.
If β < r , then

Ncrit <
rd

(1− np)(1− nr)k2βTmax
< Nmin.

It can also be proved that system (1.2) has an unique positive equilibrium ifN > Ncrit, and nopositive equilibrium ifN ≤ Ncrit.
In fact.
(i) If N > Nmin, then AC − s < 0, B > 0 and D > 0, so BD > 0. therefore, Eq. (2.11) has an unique positive root V+.

Because

A+ BV+ =
AD− BC +

√
(AD− BC)2 + 4BDs
2D

>
AD− BC + |AD− BC |

2D
≥ 0,

so system (1.2) has an unique positive equilibrium E∗ = (T ∗, I∗, V ∗), where V ∗ = V+.
(ii) If rd

(1−np)(1−nr )k2βTmax
< N < Nmin, then AC − s > 0, B > 0, D > 0, but A < 0, it follows that C < 0. So AD + BC < 0

and Eq. (2.11) has two positive roots V+ and V−. Because

A+ BV− =
AD− BC −

√
(AD− BC)2 + 4BDs
2D

<
AD− BC − |AD− BC |

2D
≤ 0,

and

A+ BV+ =
AD− BC +

√
(AD− BC)2 + 4BDs
2D

>
AD− BC + |AD− BC |

2D
≥ 0,

so system (1.2) has an unique positive equilibrium E∗ = (T ∗, I∗, V ∗), where V ∗ = V+.
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(iii) If Ncrit < N < rd
(1−np)(1−nr )k2βTmax

, then AC − s > 0, A > 0 and B < 0, it follows that C > 0. If D > 0, then BD < 0, if
follows that V− < 0 and V+ > 0. Because

A+ BV+ =
AD+ (−B)C +

√
(AD− BC)2 + 4BDs
2D

> 0,

so system (1.2) has anunique positive equilibrium E∗ = (T ∗, I∗, V ∗), whereV ∗ = V+. IfD > 0, thenBD > 0 andAD+BC < 0.
Similar to case (ii), system (1.2) has an unique positive equilibrium E∗ = (T ∗, I∗, V ∗), where V ∗ = V+.
(iv) If N < Ncrit, then AC − s < 0, A > 0 and B < 0.
(a) If D < 0, then BD > 0, there exists an unique positive root V+, but it follows from D < 0 that

A+ BV+ =
AD− BC +

√
(AD− BC)2 + 4BDs
2D

<
AD− BC + |AD− BC |

2D
≤ 0,

so system (1.2) has no positive equilibrium.
(b) If k1 = k2, then D < 0. According to the above conclusion, system (1.2) has no positive equilibrium.
(c) If k1 > k2 and D ≤ 0. Similarly, system (1.2) has no positive equilibrium.
(d) Suppose k1 > k2 and D > 0 below. Let

ND ,
(k1 − k2)rd

(1− np)(1− nr)k1k2βTmax
. (2.16)

It is easy to prove that D > 0 if and only if N < ND. Let

NAD−BC ,
(β − α)rd

(1− np)(1− nr)k1β(r − β)Tmax
. (2.17)

It is easy to prove that AD− BC < 0 if and only if N < NAD−BC , and AD− BC > 0 if and only if N > NAD−BC .
(d1) If k2(β − α) ≥ (k1 − k2)(r − β), then NAD−BC ≥ ND. As N < ND, so AD− BC < 0. It follows from BD < 0 that either

Eq. (2.11) has no positive root or there exist two positive roots V− and V+. But

A+ BV± =
AD− BC ±

√
(AD− BC)2 + 4BDs
2D

< 0.

So system (1.2) has no positive equilibrium.
(d2) If k2(β − α) < (k1 − k2)(r − β), then NAD−BC < ND.
If 0 < N ≤ NAD−BC , then AD − BC ≤ 0, it follows from BD < 0 that either Eq. (2.11) has no real root or there exist two

positive roots V− and V+ such that A+ BV± < 0. So system (1.2) has no positive equilibrium.
If NAD−BC < N < ND, then AD− BC > 0.
It is easy to prove that the sign of (AD− BC)2 + 4BDs is determined by

d2r2(α − β)2 + 2rd(1− np)(1− nr)β [2(k2 − k1)rs+ k1(r − β)(α − β)Tmax]N

+β2(1− np)2(1− nr)2
[
4k1k2rsTmax + k21T

2
max(r − β)

2]N2. (2.18)

Let

∆s , [4d(k1 − k2)(1− np)(1− nr)r2sβ]2

+ 16d2r3(1− np)2(1− nr)2k1sβ2(α − β)Tmax [(k2 − k1)(r − β)− k2(α − β)] (2.19)

and

N± ,
2(1− np)(1− nr)rdβ [2(k1 − k2)rs+ k1Tmax(r − β)(β − α)]±

√
∆s

2(1− np)2(1− nr)2β2k1Tmax
[
4k2rs+ k1Tmax(r − β)2

] , (2.20)

where N+ and N− correspond to the expression of taking ‘‘+’’ and ‘‘−’’ on the right side ‘‘±’’ of (2.20), respectively.
It is easy to prove that (AD− BC)2 + 4BDs < 0 if and only if N− < N < N+.
By calculation, we have

N− <
2(1− np)(1− nr)rdβk1Tmax(r − β)(β − α)

2(1− np)2(1− nr)2β2k1Tmax
[
4k2rs+ k1Tmax(r − β)2

]
<
2(1− np)(1− nr)rdβk1Tmax(r − β)(β − α)
2(1− np)2(1− nr)2β2k21T 2max(r − β)2

= NAD−BC ,



Z. Hu et al. / Journal of Computational and Applied Mathematics 234 (2010) 461–476 467

and

N+ >
2(1− np)(1− nr)rdβ [4(k1 − k2)rs+ k1Tmax(r − β)(β − α)]
2(1− np)2(1− nr)2β2k1Tmax

[
4k2rs+ k1Tmax(r − β)2

]
>
2(1− np)(1− nr)rdβk1Tmax(r − β)(β − α)
2(1− np)2(1− nr)2β2k21T 2max(r − β)2

= NAD−BC .

That is, 0 < N− < NAD−BC < N+. Therefore, if NAD−BC < N < N+, then (AD − BC)2 + 4BDs < 0, so Eq. (2.11) has no real
root. If N+ ≤ N < ND, then AD− BC > 0 and (AD− BC)2 + 4BDs ≥ 0. It can be proved that AD+ BC < 0, so Eq. (2.11) has
no positive real root.
According to the above discussions, we have the following conclusions.

Theorem 2.2. If N > Ncirt, then system (1.2) has two equilibria, the uninfected steady state E0 = (T0, 0, 0) and the infected
equilibrium E∗ = (T ∗, I∗, V ∗); if N ≤ Ncirt, then system (1.2) has an unique equilibrium, the uninfected equilibrium E0 =
(T0, 0, 0).

Let Ẽ = (T̃ , Ĩ, Ṽ ) be an arbitrary equilibrium. Thus, linearizing the system (1.2) at equilibrium Ẽ = (T̃ , Ĩ, Ṽ ), we obtain
the characteristic equation of Ẽ as follows∣∣∣∣∣∣∣∣∣∣

λ+ Q1
rT̃
Tmax

k1(1− nr)T̃

r Ĩ
Tmax
− k2(1− nr)Ṽe−λτ λ+ Q2 −k2(1− nr)T̃e−λτ

0 −(1− np)Nβ λ+ d

∣∣∣∣∣∣∣∣∣∣
= 0, (2.21)

where

Q1 = α +
2rT̃ + r Ĩ
Tmax

+ (1− nr)k1Ṽ − r, Q2 =
rT̃ + 2r Ĩ
Tmax

+ β − r.

Thus, for uninfected equilibrium E0 = (T0, 0, 0), the characteristic equation (2.21) reduces to(
λ+ α +

2rT0
Tmax
− r

) (
λ2 + A0λ+ B0 − C0e−λτ

)
= 0, (2.22)

where

A0 =
rT0
Tmax
+ β + d− r =

s
T0
+ d+ β − α > 0,

B0 = d
(
rT0
Tmax
+ β − r

)
= d

(
s
T0
+ β − α

)
> 0,

C0 = (1− np)(1− nr)k2NβT0 > 0.

Clearly, Eq. (2.22) has a characteristic root λ1 = r − α −
2rT0
Tmax
= −

s
T0
−

rT0
Tmax

< 0, and the rest characteristic roots of Eq.
(2.22) satisfy following equation

λ2 + A0λ+ B0 − C0e−λτ = 0. (2.23)

When τ = 0, if N < Ncirt, then B0 − C0e−λτ = B0 − C0 > 0. By Routh–Hurwitz criterion, E0 is locally asymptotically
stable. If N > Ncirt, then B0 − C0e−λτ < 0. Thus, E0 is a saddle point withW s(E0) = 2 andW u(E0) = 1.
For any time delay τ > 0, we can show that Eq. (2.22) has no root with positive real part as N < Ncirt. In fact,assume that

λ = u1 ± v1i, where v1 > 0 and i =
√
−1. Substituting λ = u1 + v1i into Eq. (2.23) and separating the real and imaginary

parts, we obtain{
u21 − v

2
1 + A0u1 + B0 = C0e

−u1τ cos v1τ ,
2u1v1 + A0v1 = −C0e−u1τ sin v1τ .

(2.24)

Squaring and adding both equations of (2.24), we have

v21(v
2
1 + 2u

2
1 + 2A0u1 + A

2
0 − 2B0)+ u

4
1 + A

2
0u
2
1 + 2A0B0u1 + 2A0u

3
1 + 2B0u

2
1 = C

2
0 e
−2u1τ − B20. (2.25)

Since A20 − 2B0 =
(
s
T0
+ β − α

)2
+ d2 > 0, the left side of Eq. (2.25) is larger than zero, while the right side of Eq. (2.25)

is less than zero (since u1 ≥ 0, and if N < Ncirt, then B0 > C0). This results in contradiction. Therefore, u1 < 0, and E0 is
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locally asymptotically stable. When N > Ncirt, let F1(λ) = λ2 + A0λ+ B0 − C0e−λτ , and note that F1(0) = B0 − C0 < 0 and
limλ→+∞ F1(λ) = +∞. It follows from the continuity of the function F1(λ) on [0,+∞) that the Eq. (2.23) has at least one
positive real root. Hence, the characteristic equation (2.22) has at least one positive real root. Hence, E0 is unstable. Thus,
we obtain the following theorem.

Theorem 2.3. If N < Ncirt, then E0 is locally asymptotically stable; if N > Ncirt, then E0 is unstable.

For infected equilibrium E∗ = (T ∗, V ∗, I∗), the characteristic equation (2.21) reduces to

F(λ, τ ) = λ3 + p1λ2 + p2λ+ p3e−λτ + p4λe−λτ + p5 = 0 (2.26)

where

p1 =
s
T ∗
+
r(T ∗ + I∗)
Tmax

+
(1− nr)k2T ∗V ∗

I∗
+ d,

p2 =
s
T ∗

(
(1− nr)k2T ∗V ∗

I∗
+
rI∗

Tmax
+ d

)
+
(1− nr)dk2T ∗V ∗

I∗
+
(1− nr)rk2(T ∗)2V ∗

I∗Tmax
+
dr(T ∗ + I∗)
Tmax

,

p3 =
(1− nr)drk2T ∗V ∗

Tmax
+
(1− nr)2dk1k2T ∗(V ∗)2

I∗
−
(1− nr)dk2T ∗V ∗

I∗

(
s
T ∗
+
rT ∗

Tmax

)
,

p4 =
(1− nr)rk2T ∗V ∗

Tmax
−
(1− nr)dk2T ∗V ∗

I∗
,

p5 =
(1− nr)dk2T ∗V ∗

I∗

(
s
T ∗
+
rT ∗

Tmax

)
+
drsI∗

T ∗Tmax
−
(1− nr)drk1T ∗V ∗

Tmax
.

When τ = 0, Eq. (2.6) can write as

λ3 + p1λ2 + p̄2λ+ p̄3 = 0,

where

p̄2 = p2 + p4 =
s
T ∗

(
(1− nr)k2T ∗V ∗

I∗
+
rI∗

Tmax
+ d

)
+

(
(1− nr)rk2T ∗V ∗

I∗Tmax
+
dr
Tmax

)
(T ∗ + I∗) > 0,

p̄3 = p3 + p5 =
drsI∗

T ∗Tmax
+ (1− nr)dk1V ∗

[
β − r

(
1−

(k2/k1)T ∗ + I∗

Tmax

)]
.

Hence, by directly calculating, we obtain

Q = p1p̄2 − p̄3

=
s
T ∗

(
(1− nr)k2T ∗V ∗

I∗
+
rI∗

Tmax
+ d

)(
s
T ∗
+
r(T ∗ + I∗)
Tmax

+
(1− nr)k2T ∗V ∗

I∗

)
+
ds
T ∗

(
(1− nr)k2T ∗V ∗

I∗
+ d

)
+ p1

(
(1− nr)rk2T ∗V ∗

I∗Tmax
+
dr
Tmax

)
(T ∗ + I∗)− (1− nr)dk1V ∗

[
β − r

(
1−

(k2/k1)T ∗ + I∗

Tmax

)]
.

If τ = 0, by Routh–Hurwitz criterion, we have the following theorem.

Theorem 2.4. Assume N > Ncirt, if Q > 0 and β − r
(
1− (k2/k1)T∗+I∗

Tmax

)
> 0, then the infected equilibrium E∗ = (T ∗, I∗, V ∗)

is locally asymptotically stable as τ = 0.

In order to show that the infected equilibrium E∗ = (T ∗, I∗, V ∗) is locally asymptotically stable for any time delay τ > 0,
we firstly introduce a lemma coming from literature [24].

Lemma 2.1. A set of necessary and sufficient conditions for E∗ = (T ∗, I∗, V ∗) is locally asymptotically stable for all τ > 0 if and
only if the following conditions hold,
(i) The real parts of all the roots of the characteristic equation (2.26) F(λ, 0) = 0 are negative.
(ii) For all real ω and τ > 0, F(iω, τ) 6= 0, where i =

√
−1.

Next, we apply Lemma 2.1 to show that the infected equilibrium E∗ = (T ∗, I∗, V ∗) is locally asymptotically stable for
any time delay τ > 0. By Theorem 2.4, the condition (i) of Lemma 2.1 is easily satisfied. Hence, we only need to verify the
condition (ii) of Lemma 2.1.
In fact, if ω = 0, then F(0, τ ) = p3 + p5 6= 0 under the condition of Theorem 2.4.
If ω 6= 0, we have

F(iω, τ) = −iω3 − p1ω2 + ip2ω + p3e−iωτ + p4iωe−iωτ + p5 = 0. (2.27)
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Separating the real and imaginary parts of (2.27), we obtain{
p1ω2 − p5 = p3 cosωτ + p4ω sinωτ,
ω3 − p2ω = −p3 sinωτ + p4ω cosωτ.

(2.28)

Squaring and adding both equations of (2.28), we have

ω6 + (p21 − 2p2)ω
4
+ (p22 − 2p1p5 − p

2
4)ω

2
+ (p25 − p

2
3) = 0. (2.29)

Let

η = ω2, q1 = p21 − 2p2, q2 = p22 − 2p1p5 − p
2
4, q3 = p25 − p

2
3. (2.30)

Then Eq. (2.29) becomes

G1(η) = η3 + q1η2 + q2η + q3 = 0. (2.31)

In the following, we prove that Eq. (2.31) has no positive root for q2 > 0, q3 > 0, and then equation F(iω, τ) = 0 has no
root. In fact, note that dG1(η)dη = 3η

2
+ 2q1η + q2.

Let

3η2 + 2q1η + q2 = 0. (2.32)

Then the solutions of Eq. (2.32) are given by

η1,2 =
−q1 ±

√
q21 − 3q2

3
.

If q2 > 0, then
√
q21 − 3q2 < q1. Hence, η1, η2 are both negative, Eq. (2.32) has no positive root. Therefore, if G1(0) = q3 > 0,

then Eq. (2.31) has no positive root. For any time delay τ > 0, the infected equilibrium E∗ = (T ∗, I∗, V ∗) is locally asymp-
totically stable. Thus, we now can state the following theorem.

Theorem 2.5. Assume N > Ncirt, if (i) Q > 0, β − r
(
1− (k2/k1)T∗+I∗

Tmax

)
> 0, (ii) q2 > 0, q3 > 0, then the infected equilibrium

E∗ = (T ∗, I∗, V ∗) is locally asymptotically stable for any time delay τ > 0.

3. Estimates for the length of delay to preserve stability

In this section, we shall apply Nyquist criterion to get estimates on the length of delay for preserving stability of system
(1.2).

Lemma 3.1 (Nyquist Criterion). If L is the arc length of a curve encircling the right half-plane, the curve P̄L(L) will encircle the
origin a number of times equal to the difference between the number of poles and the number of zeroes of P̄L(L) in the right
half-plane.

We consider the system (1.2) and the space of all real valued continuous functions defined on [−τ ,+∞] satisfying the
initial conditions (1.3) on [−τ , 0]. Let X(t) = T (t) − T ∗, Y (t) = I(t) − I∗, Z(t) = V (t) − V ∗, and we linearize the system
(1.2) about its infected equilibrium E∗ = (T ∗, I∗, V ∗) and getX

′(t) = A1X(t)+ A2Y (t)+ A3Z(t),
Y ′(t) = B1X(t)+ B2X(t − τ)+ B3Y (t)+ B4Z(t − τ),
Z ′(t) = C1Y (t)+ C2Z(t),

(3.1)

where

A1 = −α −
2rT ∗ + rI∗

Tmax
− (1− nr)k1V ∗ + r, A2 = −

rT ∗

Tmax
,

A3 = −(1− nr)k1T ∗, B1 = −
rI∗

Tmax
, B2 = (1− nr)k2V ∗,

B3 = r − β −
rT ∗ + 2rI∗

Tmax
, B4 = (1− nr)k2T ∗,

C1 = (1− np)Nβ, C2 = −d.
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Let X̄(L), Ȳ (L) and Z̄(L) be the Laplace transform of X(t), Y (t) and Z(t), respectively. Then Laplace transform of system (3.1)
yields(L− A1)X̄(L) = A2Ȳ (L)+ A3Z̄(L)+ X(0),(L− B3)Ȳ (L) = B1X̄(L)+ B2e−Lτ X̄(L)+ B4e−Lτ Z̄(t − τ)+ B2e−LτR1(L)+ B4e−LτR2(L)+ Y (0),

(L− C2)Ȳ (L) = C1Ȳ (L)+ Z(0),

where

R1(L) =
∫ 0

−τ

e−LτX(t)dt, R2(L) =
∫ 0

−τ

e−LτZ(t)dt.

Note that if X̄(L) has poles with positive real parts, then the inverse Laplace transform of X̄(L) will have terms which
exponentially increasewith time. Thus, if E∗ = (T ∗, I∗, V ∗) is locally asymptotically stable, then it is necessary and sufficient
that all poles of X̄(L) have negative real parts. Following along the lines of [25] and using Nyquist criterion, it can be shown
that the conditions for local asymptotic stability of E∗ = (T ∗, I∗, V ∗) are given by

ImH(iu0) > 0, (3.2)
ReH(iu0) = 0, (3.3)

where H(s) = L3 + p1L2 + p2L+ p3e−Lτ + p4Le−Lτ + p5, and u0 is the smallest positive root of Eq. (3.3). Thus the conditions
(3.2) and (3.3) in our case become

−p1u20 + p5 = −p3 cos u0τ − p4u0 sin u0τ , (3.4)

−u30 + p2u0 > p3 sin u0τ − p4u0 cos u0τ . (3.5)

To get further estimate of the length of delay, we need the following conditions, which are sufficient to guarantee stability.

−p1u2 + p5 = −p3 cos uτ − p4u sin uτ , (3.6)

−u3 + p2u > p3 sin uτ − p4u cos uτ . (3.7)

Recall that E∗ will be stable if the inequality (3.7) holds at u = u0, where u0 is the smallest positive root of the Eq. (3.7).
Our aim will be to find an upper bound û of u0, independent of τ , and then to estimate τ so that (3.8) holds for all values of
u ∈ [0, û], and in particular at u = u0.

Since the right side of (3.6) is always less than or equal to
√
p23 + p

2
4u2, the unique positive solution of −p1u

2
+ p5 =√

p23 + p
2
4u2, denoted by û, is clearly greater than or equal to u0. By straightforward calculation, we obtain

û =



√√√√ (2p1p5 + p24)+
√
p44 + 4p1p5p

2
4 + 4p

2
1p
2
3

2p21
, p3 6= p5,√

2p1p5 + p24
p1

, p3 = p5.

(3.8)

Note that û is independent of τ . We now need an estimate on τ so that Eq. (3.8) holds for all u ∈ [0, û]. Rewriting (3.7) as

u2 < p2 −
p3 sin uτ
u

+ p4 cos uτ . (3.9)

Note that at τ = 0, inequality (3.9) becomes u2 < p2 + p4. Hence, (3.9) holds when τ = 0 and u = u0. Substituting u2 from
(3.6) into (3.9), we have

(p3 − p1p4) cos uτ +
(
p4u+

p1p3
u

)
sin uτ < p1p2 − p5. (3.10)

Form (3.10), we obtain

(p3 − p1p4)(cos uτ − 1)+
(
p4u+

p1p3
u

)
sin uτ < p1(p2 + p4)− (p5 + p3) , σ . (3.11)

Denote the left of (3.11) byΦ(τ , u). Using the inequality sin τu ≤ τu and 1− cos τu = 2 sin2 τu2 ≤
τ2u2
2 , we obtain

Φ(τ , u) ≤ ψ(τ, u) =
1
2
|p3 − p1p4| τ 2u2 + (|p4| u2 + p1 |p3|)τ . (3.12)
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Noting that for u ∈ [0, û], we have Φ(τ , u) ≤ ψ(τ, u) ≤ ψ(τ, û). Hence, if ψ(τ, û) ≤ σ , then Φ(τ , û) ≤ σ . Let τ ∗ denote
the unique positive root of ψ(τ, û) = σ , that is

τ ∗ =
1
2a1

(
−a2 +

√
a22 + 4a1σ

)
, (3.13)

where a1 = |p3 − p1p4| û2, a2 = |p4| û2 + p1 |p3|. Then for τ < τ ∗, the Nyquist criterion holds, and τ ∗ is the estimate for
the length of delay for which stability is preserved. Thus, we obtain the following theorem.

Theorem 3.1. Suppose that N > Ncirt, if there exists a delay τ ∗ satisfying (3.13), then for any τ with 0 ≤ τ ≤ τ ∗, E∗ = (T ∗,
I∗, V ∗) is locally asymptotically stable.

4. Hopf bifurcation analysis

In this section, we wish to obtain criteria for preservation of stability or instability. Furthermore, we shall determine
criteria for Hopf bifurcation to occur using the time delay τ as the bifurcation parameter.
Note that it is the sign of the real parts of the solutions λ of Eq. (2.26) that determines the stability of the infected

equilibrium E∗ = (T ∗, I∗, V ∗). Letting λ = b+ vi and substituting into Eq. (2.26), gives the following equation{
b3 − 3bv2 + p1(b2 − v2)+ p2b+ p5 = −[(p3 + p4b) cos vτ + p4v sin vτ ]e−bτ ,
−v3 + 3b2v + 2p1bv + p2v = [(p3 + p4b) sin vτ − p4v cos vτ ]e−bτ .

(4.1)

We now investigate λ, and thus b and v are considered as functions of the delay τ . Since the change of stability of
E∗ = (T ∗, I∗, V ∗) will occur at any values of τ for which b(τ ) = 0, we let τ̂ be such that b(τ ) = 0, that is, b(τ̂ ) = 0.
Thus the Eq. (4.1) reduces to{

p1v̂2 − p5 = p3 cos v̂τ̂ + p4v̂ sin v̂τ̂ ,
v̂3 − p2v̂ = p4v̂ cos v̂τ̂ − p3 sin v̂τ̂ ,

(4.2)

where v̂ = v(τ̂ ). Squaring and adding the equations of (4.2) and simplifying, we obtain an equation for v̂ of the following
form

v̂6 + (p21 − 2p2)v̂
4
+ (p22 − 2p1p5 − p

2
4)v̂

2
+ (p25 − p

2
3) = 0. (4.3)

Differentiating (4.1) with respect to τ , and setting τ = τ̂ , v = v̂, b = 0, we obtain
g
db(τ̂ )
dτ
+ h
dv(τ̂ )
dτ
= m,

g
dv(τ̂ )
dτ
− h
db(τ̂ )
dτ
= n,

(4.4)

where
g = 3v̂2 − p2 + p4v̂τ̂ sin v̂τ̂ + (p3τ̂ − p4) cos v̂τ̂ ,
h = 2p1v̂ + (p3τ̂ − p4) sin v̂τ̂ − p4v̂τ̂ cos v̂τ̂ ,
m = p4v̂2 cos v̂τ̂ − p3 sin v̂τ̂ ,
n = −p4v̂2 sin v̂τ̂ − p3v̂ cos v̂τ̂ .

(4.5)

Solving (4.4), we have

db(τ̂ )
dτ
=
gm− hn
g2 + h2

. (4.6)

From (4.5), after some simplification, we obtain

gm− hn = [(2p1p4 − 3p3)+ p2p3v̂] sin v̂τ̂ + [(2p1p3 − p2p4)+ 3p4v̂4] cos v̂τ̂ − p22v̂
2. (4.7)

Substituting (4.2) into (4.7), we get

gm− hn = 3v̂3(p4v̂ cos v̂τ̂ − p3 sin v̂τ̂ )+ 2p1v̂2(p3 cos v̂τ̂ + p4v̂ sin v̂τ̂ )− p2v̂(p4v̂ cos v̂τ̂ − p3 sin v̂τ̂ )
= 3v̂6 + 2(p21 − 2p2)v̂

4
+ (p22 − 2p1p5 − p

2
4)v̂

2

= v̂2
(
3(v̂2)2 + 2q1(v̂2)+ q2

)
. (4.8)

Let

G(x) = x3 + q1x2 + q2x+ q3, (4.9)
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which is the left side of (4.3) with x = v̂2, where q1, q2, q3 is defined in (2.30). Then G(v̂2) = 0, and from (4.8) and (4.9), we
obtain

db(τ̂ )
dτ
=

v̂2

g2 + h2
dG(v̂2)
dx

. (4.10)

Clearly, db(τ̂ )dτ has the same sign as dG(v̂
2)

dx . Hence, we can describe criteria for preservation of instability (stability)
geometrically as follows:
(H1) If the polynomial G(x) has no positive roots, there can be no change of stability.
(H2) If the polynomial G(x) is decreasing (increasing) at all of its positive roots, stability (instability) is preserved. Now

we proceed to analyze G(x). By directly calculating, we have

q1 = p21 − 2p2

=

( s
T ∗

)2
+

(
r(T ∗ + I∗)
Tmax

)2
+

(
(1− nr)dk2T ∗V ∗

I∗

)2
+ d2 +

2rsT ∗

T ∗Tmax
+
2(1− nr)rk2I∗T ∗V ∗

I∗Tmax
> 0.

If G(0) = q3 > 0, then G(x)will either have two positive roots or no positive roots. We consider the following two cases in
order that G(x)may have no positive roots.
(i) If q2 > 0, q3 > 0, then G′(x) > 0 for all x > 0. Obviously, the above (H1) holds. Namely, stability or instability will be

preserved in this case.
(ii) Consider q2 < 0, q3 > 0. Let G′(xc) = 3x2c + 2q1xc + q2 = 0 and xc > 0, we have

xc =
−q1 +

√
q21 − 3q2

3
. (4.11)

Substituting (4.11) into (4.9), we have

G(xc) =
2q31 − 9q1q2 + 27q3

27
−
2(q21 − 9q1q2)

3/2

27
. (4.12)

Hence, G(xc) > 0 if and only if

2q31 − 9q1q2 + 27q3 > 2(q
2
1 − 9q1q2)

3/2. (4.13)

Thus, the polynomial G(x) has also no positive roots in the case (ii) if (4.13) holds. Summarizing the above discussion, we
have the following conclusions.

Theorem 4.1. Assume that N > Ncirt holds, if either
(i) q2 > 0, q3 > 0 or
(ii) q2 < 0, q3 > 0 and (4.13) holds.
Then E∗ remains stable (unstable) for all τ > 0 if the infected equilibrium E∗ is stable (unstable) at τ = 0.

If G(0) = q3 ≤ 0, then G(x) has at most one positive root. Note that if G(x) has only one positive root, then G(x)must be
increasing at this positive root. Thus, we have the following theorem.

Theorem 4.2. Assume that N > Ncirt and G(0) = q3 ≤ 0 holds, if E∗ is unstable at τ = τ0 > 0, then E∗ remains unstable for
all τ > τ0.

Note that if the polynomial G(x) have two or three distinct positive roots, the above criterion (H2) cannot hold, since it
is decreasing at one root and increasing at the other. Hence, stability cannot be preserved if G(x0) < 0 for some x0 > 0. In
particular, a Hopf bifurcation may occur as τ passes through critical value τ0.
Next, we assume that Q > 0, β − r

(
1− (k2/k1)T∗+I∗

Tmax

)
> 0 and q3 < 0. For Q > 0 and β − r

(
1− (k2/k1)T∗+I∗

Tmax

)
> 0, by

Theorem 2.3, we have shown that the infected equilibrium E∗ = (T ∗, I∗, V ∗) is stable at τ = 0. The cubic equation (4.3) in v̂2
has one or more positive real roots v̂20 , since when v̂ = 0, the left side of Eq. (4.3) q3 = p

2
5− p

2
3 < 0, and limv̂→+∞ G(x) > 0.

Namely, the characteristic equation (2.6) has a pair of purely imaginary roots, denoted by ±iv̂0. Thus from (4.2), we can
solve for τ̂ , which is of the form

τ̂n =
1
v̂0
arccos

p4v̂40 + (p1p3 − p2p4)v̂
2
0 − p3p5

p23 + p
2
4v̂
2
0

+
2nπ
v̂0

, n = 0, 1, 2, . . . . (4.14)

If v̂0 is the first positive root of Eq. (4.3), it follows from (4.10) that

db(τ̂0)
dτ

=
v̂20

g2 + h2
dG(v̂20)
dx

> 0.

By Butlers lemma [25] and the Hopf bifurcation theorem [26], we have the following conclusions.
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Table 1
List of parameters.

Variables Definition Data 1 values Data 2 values Units

T Uninfected T-cells concentration 900 900 cells mm−3

I Productively infected T-cells concentration 0.1 0.1 cells mm−3

V Infectious virus concentration 0.1 0.1 virions mm−3

VN Non-infectious virus concentration virions mm−3

Parameters

s T-cells source term 10 0.1 cells day−1 mm−3

α Death rate of healthy T cells 0.02 0.2 day−1

β Death rate of infected T cells 0.26 1 day−1

d Clearance rate of virus 2.4 2.4 day−1

r Growth rate of T cells 0.03 0.95 day−1 mm−3

Tmax Carrying capacity of T cells 1500 1500 mm−3

k1 Viral infectivity rate 2.5× 10−4 2.5× 10−4 virions day−1mm−3

k2 Rate infected cells becomes active 2× 10−4 2× 10−4 virions day−1mm−3
N Bursting term for viral production after lysis 500 200 virions/cell
nr Reverse transcriptase inhibitor efficacy 0.6 0.6
np Protease inhibitor efficacy 0.7 0.7

Theorem 4.3. Assume that N > Ncirt, if Q > 0, β − r
(
1− (k2/k1)T∗+I∗

Tmax

)
> 0 and q3 < 0 hold, and v̂0 is the first positive root

of Eq. (4.3), then the infected equilibrium E∗ is locally asymptotically stable when τ < τ̂0 and unstable when τ > τ̂0, where

τ̂0 =
1
v̂0
arccos

p4v̂40 + (p1p3 − p2p4)v̂
2
0 − p3p5

p23 + p
2
4v̂
2
0

. (4.15)

Furthermore, when τ = τ̂0, system (1.2) undergoes a Hopf bifurcation to periodic solutions at the infected state E∗.

5. Numerical simulations

In order to check themain results of this paper, we useMatlab software to carry out some numerical simulations. For the
simulations, we use a similar set of parameter values as those in [9–14,16,15,17–20].
Firstly, considering Data 1 values in Table 1, we find thatNcrit = 96.1538 < N ,Q = 0.3904 > 0, β−r(1−

(k2/k1)T∗+I∗

Tmax
) =

0.2336 > 0, q2 = 0.02541 > 0, and q3 = 0.001073 > 0. If choose τ = 2, which satisfies condition of Theorem 2.5, then
the trajectories converge at the infected equilibrium E∗ = (180.2751, 37.6081, 611.1311). We obtain the time histories
and the phase trajectories of system (1.2) as shown in Fig. 1. Under the condition of Theorem 2.5, the infected steady state is
locally asymptotically stable independent of the size of the delay, though the time delay does cause transient oscillations in
all components. Computer simulations confirm our analysis. Biologically, this implies that the intracellular delay can cause
the cell and virus populations to fluctuate in the early stage of infection, in a longer term they will converge to the infected
steady state values.
Furthermore, we numerically illustrate the change of the stability and the occurrence of a Hopf bifurcation by varying

the time delay. We consider parameters listed in Data 2 of Table 1. Here Ncrit = 67.5551 < N , Q = 1.3812 > 0, β − r(1−
(k2/k1)T∗+I∗

Tmax
) = 0.2529 > 0, q1 = 5.9540 > 0, q2 = 1.3734 > 0 and q3 = −0.1379 < 0, which satisfy conditions of

Theorem 4.3. Hence, we shall utilize these values to work out the critical time delay preserving stability or not. For this,
substituting these values into Eq. (4.3), we have

v̂6 + 5.9540v̂4 + 1.3734v̂2 − 0.1379 = 0. (5.1)

Solving (5.1), we get one positive value of v̂0 = 0.2747. Substituting v̂0 = 0.2747 into (4.15), we obtain the critical
time delay τ̂0 = 1.5663. Hence, the infected equilibrium E∗ remains stable for τ < τ̂0 (see Fig. 2), while E∗ bifurcates into
a periodic solution at τ̂0 and remains unstable for τ > τ̂0 (see Fig. 3). Fig. 3 depict the bifurcation is supercritical and the
bifurcating periodic solution is orbitally asymptotically stable.
In particular, comparing with the system in [20] only including simple Logistic proliferation term for healthy CD4+ T

cells, denoted by system (∗), if choose parameters listed in Data 2 of Table 1 and τ = 0.5, we will find that the total number
of CD4+ T cells (healthy and infected) in system (1.2) is larger while the number of HIV virions in system (1.2) is smaller
(see Fig. 4). Biologically, it suggests that the proliferation of infected CD4+ T cells increases the possibility that HIV infection
becomes persistent.

6. Discussion

In this paper,we analyze aHIVpathogenesismodel including antiretroviral therapy, an intracellular delay and full Logistic
proliferation term of CD4+ T cells (healthy and infected). Similar to the analysis in [23], we obtain a critical number Ncrit on



474 Z. Hu et al. / Journal of Computational and Applied Mathematics 234 (2010) 461–476

Fig. 1. The infected equilibrium E∗ is asymptotically stable for τ = 2.

Fig. 2. The infected equilibrium E∗ is asymptotically stable for τ = 0.2 < τ̂0 .

the number of HIV virions released per infectious CD4+ T cell in order for infection to be sustained. Analyzing the critical
number in [20] for models only including simple Logistic proliferation term for healthy CD4+ T cells, we obtain its critical
number of HIV virions released per infection CD4+ T cell during its life time is N∗crit =

d
(1−np)(1−nr )k2βT0

. If chosen data follow
the clinically actual state, we will find N∗crit > Ncrit. Biologically, it suggests that the proliferation of infected CD4

+ T cells
increases the possibility that HIV infection becomes persistent. Furthermore, the influence of the time delay on the stability
of equilibrium states is discussed. We first show that the local stability of the uninfected steady state is independent of
the size of the delay (see Theorem 2.3). We then obtain sufficient conditions for the stability of the infected equilibrium
E∗, independent of the size of the delay (see Theorem 2.5). By utilizing the Nyquist criterion, we also obtain the maximum
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Fig. 3. The infected equilibrium E∗ bifurcating into a periodic solution remains unstable for τ = 1.7 > τ̂0 .

Fig. 4. The total number of CD4+ T cells (healthy and infected) in system (1.2) is larger than system (∗) while the number of HIV virions in system (1.2) is
smaller than system (∗).

value of delay length for which the infected equilibrium E∗ will preserve asymptotically stable. Finally, we investigate the
delay-induced oscillations that could occur via instability. Specially, the unstable infected equilibrium E∗ bifurcates into a
small amplitude periodic solution as τ passes through critical value τ̂0, where τ̂0 is given by Eq. (4.15). This clearly shows
the importance of time delay on HIV dynamics under the influence of antiretroviral drug treatment.
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