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The Theory of Involutive Divisions and an
Application to Hilbert Function Computations†
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Generalising the divisibility relation of terms we introduce the lattice of so-called invo-
lutive divisions and define the admissibility of such an involutive division for a given set
of terms. Based on this theory we present a new approach for building a general theory
of involutive bases of polynomial ideals. In particular, we give algorithms for checking
the involutive basis property and for completing an arbitrary basis to an involutive one.
It turns out that our theory is more constructive and more flexible than the axiomatic
approach to general involutive bases due to Gerdt and Blinkov.

Finally, we show that an involutive basis contains more structural information about
the ideal of leading terms than a Gröbner basis and that it is straightforward to compute
the (affine) Hilbert function of an ideal I from an arbitrary involutive basis of I.

c© 1998 Academic Press Limited

1. Introduction

The observation that the theory of involutive bases of polynomial ideals (see Zharkov and
Blinkov (1993)) provides an alternative method for the computation of Gröbner bases
has made involutive bases a frequently investigated subject during the last 2 years. Ex-
perimental implementations showed that the involutive method is fast and saves storage
(Gerdt and Blinkov, 1996; Nischke, 1996). There are different types of involutive divisions
originating from the theory of partial differential equations (see Janet (1929), Thomas
(1937), Pommaret (1978)).

The advantage of Pommaret division lies in the fact that the divisibility of terms is
independent of the leading terms of the ideal generators. Moreover, involutive divisions
of Pommaret type can be considered as divisions of homogeneous elements in associated
graded rings of polynomial rings with respect to natural non-commutative gradings (see
Apel (1995)). Unfortunately, there are polynomial ideals with no finite Pommaret basis.
This drawback motivated the investigation of other involutive divisions. It turned out
that any polynomial ideal has a finite Janet basis as well as a finite Thomas basis and
that their construction is algorithmic. Within the PoSSo project, Nischke studied the
different involutive bases and implemented a software package named InvBase in the
PoSSo library. His computing tests related to Janet bases indicated a very promising
method for the computation of Gröbner bases (Nischke, 1996).

Recently, Gerdt and Blinkov presented an axiomatic approach specifying the essen-
tial properties of involutive divisions (see Gerdt and Blinkov (1996)). In Section 3 we
will introduce another characterisation of involutive divisions which is more constructive
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and more flexible than that of (Gerdt and Blinkov, 1996). We will discuss the relation-
ships between generalised involutive divisions and sets of terms. The involutive divisions
introduced in this paper form a lattice. Algorithms for the computation of the set of
all involutive division which are admissible for a given finite set of terms and for the
computation of maximal admissible refinements of involutive divisions will be presented.

In Section 3 we analyse the classical involutive division, i.e. Pommaret, Janet and
Thomas division, in terms of our theory.

Section 5 deals with the theory of involutive bases of polynomial ideals. In particu-
lar, algorithms for checking the involutive basis property and for the completion of an
arbitrary basis to an involutive one are presented.

In Section 6 we discuss possible improvements to the involutive basis completion algo-
rithm. In particular, we discuss selection strategies for choosing the admissible involutive
division and show that the costs of the completion process are related to the partial
ordering belonging to the lattice of involutive divisions. Furthermore, we will close some
logical gaps in the proofs of (Gerdt and Blinkov, 1996). Finally, we discuss similarities
and differences between the involutive method and the theory of Gröbner bases.

It is well known that Gröbner bases are a powerful tool for the computation of Hilbert
functions. Buchberger has already discussed this relationship in his well-known thesis
(Buchberger, 1965) in which the theory of Gröbner bases was developed. Moreover, from
the theory of partial differential equations it is well known that finite involutive bases of
Pommaret type provide direct access to Hilbert polynomials (cf. Pommaret (1978), Seiler
(1994)). In Section 7 we will present an explicit formula for the (affine) Hilbert function
of an ideal in terms of an arbitrary finite involutive basis. Especially in situations where
the involutive algorithm is faster than Buchberger’s algorithm we obtain an excellent
algorithm for the computation of Hilbert functions. In some sense one can say that the
structural information of a monomial ideal becomes more accessible if it is given by
an involutive basis. The experimental observation that the involutive method provides
a fast algorithm for computing Gröbner bases was the original heuristical motivation
for studying involutive bases in the context of polynomial ideals. The close relationship
between Hilbert functions and involutive bases gives a second, theoretical, motivation.

Since all crucial investigations rely only on the monoid T of terms it is an easy exercise
to generalise the results to algebras of solvable type. But in order not to overload the
paper with technical details we will formulate the theory in terms of polynomial rings.

2. Preliminaries

In this section we will set up some definitions and discuss some aspects of the theory
of Gröbner bases. However, it is not our intention to present a complete introduction
to the theory of Gröbner bases, for this we refer to Buchberger (1985) and Becker and
Weispfenning (1993). Only selected facts motivating the ideas of involutive bases will be
reported here.

Throughout this paper the notion ordering (of a set) stands for total irreflexive order-
ing. The reflexive closure of an ordering will be marked by underlining the corresponding
ordering symbol in the usual way. If we need to consider reflexive or partial orderings we
will emphasise this fact explicitly.

Let R = K[X] be the polynomial ring in the indeterminates X = {x1, . . . , xn} over
the field K. By T we denote the set {xi11 · · ·xinn | ij = 0, 1, . . .} of terms of R. As
usual, the total degree

∑n
j=1 ij of the term t = xi11 · · ·xinn ∈ T will be denoted by deg t.

Furthermore, degj t refers to the degree ij of t in the indeterminate xj . We introduce the
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notation T (xi1 , . . . , xil) or, alternatively, T ({xi1 , . . . , xil}) for the set T ∩K[xi1 , . . . , xil ]
of terms in the indeterminates {xi1 , . . . , xil} ⊆ X.
T together with the multiplication obtained by restricting the multiplication of R is

an abelian monoid. The monoid ideal {s ∈ T |∃u ∈ U, v ∈ T : s = vu} generated by the
set U ⊆ T will be denoted by IdT (U). We will also write IdT (u) for the principal monoid
ideal generated by u ∈ T . Furthermore, we introduce the notation 〈U〉 for the submonoid
{t ∈ T | ∃u1, . . . , um ∈ U : t = u1u2 · · ·um} of T generated by U ⊆ T . By definition the
product of m = 0 terms is 1, in particular, 〈∅〉 = {1}.
T is a vector space basis of the polynomial ring R, i.e. every polynomial f ∈ R can

be uniquely represented as a linear combination f =
∑
u∈T cuu, where cu ∈ K and

only a finite number of coefficients cu is unequal 0, in terms of T . The set supp f =
{u ∈ T | cu 6= 0} of all terms appearing with non-zero coefficient in the above linear
combination is called the support of f . From now, let us fix an admissible term ordering,
i.e. a multiplication compatible well-ordering, ≺ of T . If f 6= 0 then we call the maximal
element of supp f with respect to ≺ the leading term of f with respect to ≺ (denoted
lt f). By definition ltF := {lt f | 0 6= f ∈ F} for sets F ⊆ R of polynomials. Furthermore,
we define the leading coefficient lc f := c ltf of f 6= 0 with respect to ≺ as the coefficient
of the leading term of f .

Let F ⊂ R be a set of non-zero polynomials. A polynomial g ∈ R satisfying supp g ∩
IdT (ltF ) = ∅ is called Gröbner-irreducible modulo F and ≺. Let h, h′ ∈ R, f ∈ F ,
u, v ∈ T , and c ∈ K be such that h′ = h+ cvf , u ∈ supph\ supph′, and u = v lt f . Then
we say that h can be reduced to h′ modulo F and ≺. Iterated reduction of h modulo F
and ≺ will terminate after finitely many steps since ≺ is a well-ordering. The result of
such a reduction process, which in general depends on various decisions made during the
reduction, is called a Gröbner normal form of h modulo F and ≺. Any Gröbner normal
form of h modulo F and ≺ is Gröbner-irreducible modulo F and ≺ and congruent to h
modulo the ideal generated by F .

If every h ∈ R has a uniquely determined Gröbner normal form modulo F and ≺
then F is called a Gröbner basis of the ideal I generated by F with respect to ≺. We
have the well-known equivalences (see Buchberger (1985) and Becker and Weispfenning
(1993)):

(i) F is a Gröbner basis of I with respect to ≺.
(ii) IdT (lt I) = IdT (ltF ) =

⋃
f∈F IdT (lt f).

(iii) Every g ∈ I has Gröbner normal form 0 modulo F and ≺.
(iv) For all f, g ∈ F the S-polynomial Spol(f, g) = lc (g)uf − lc (f) vg, where, by defi-

nition u, v ∈ T are such that u · lt f = v · lt g = lcm(lt f, lt g), has Gröbner normal
form 0 modulo F and ≺.

While conditions (ii) and (iii) are used in various generalisations of the theory of Gröbner
bases the importance of condition (iv) lies in the fact that it is constructive and illustrates
the main idea of Buchberger’s algorithm.

3. The Lattice of Involutive Divisions

Consider the family T = (Tu)u∈T of subsets Tu ⊆ T , where Tu = IdT (u) is the
principal monoid ideal of T generated by u. Then u is multiple of v iff u ∈ Tv and u is
divisor of v iff v ∈ Tu. This idea of characterising multiple and divisor relations can be
generalised in the following way:
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Definition 3.1. Let (Yu)u∈T be a family of subsets Yu ⊆ X of indeterminates. The
family M = (u · 〈Yu〉)u∈T is called the involutive division generated by (Yu)u∈T . The
elements u ∈ v · 〈Yv〉 are called the M-multiples of v and v is called a M-divisor of
u ∈ v · 〈Yv〉.

Let V ⊆ T be a set of terms and < an ordering of V . The involutive division M =
(Mu)u∈T is called admissible for (V,<) if for all v, w ∈ V such that w < v one of the
conditions Mw ⊂ Mv or Mv ∩ IdT (w) = ∅ holds. The short cut M is admissible for V
will express the existence of < such that M is admissible for (V,<).

We note, that the notion “involutive division” follows Zharkov/Gerdt/Blinkov: the
elements of Yu are the so-called “multiplicative variables” and those of X\Yu the “non-
multiplicative variables” for u in the sense of Zharkov/Gerdt/Blinkov (see Zharkov and
Blinkov (1993), Gerdt and Blinkov (1996)). Let M(V,<) denote the set of all involutive
divisions M which are admissible for (V,<). In accordance with the above definition we
set MV :=

⋃
<M(V,<), where < ranges over the set of all orderings of V . It is easy to

verify the relationship M(V,<) ⊆ M(W,<|W ) for any sets W ⊆ V of terms and orderings
< of V . Furthermore, M∅ is the set of all involutive divisions. If u < v for some u, v ∈ V
satisfying u | v then M(V,<) = ∅ since v ∈Mv ∩ IdT (u) 6= ∅ and u /∈Mv 6⊇Mu.

Definition 3.2. Let M = (Mu)u∈T and N = (Nu)u∈T be two involutive divisions and
V ⊆ T a set of terms.
If Mv = Nv for all v ∈ V then M and N are called V -equivalent (denoted M≡V N ).
If Mu ⊆ Nu for all u ∈ T then we say that N refines M (denoted M≤ N ).

Obviously, ≡V is an equivalence relation and ≤ is a reflexive partial ordering on the
set M∅ of all involutive divisions. For the rest of this paper all notions referring to an
ordering of involutive division will be understood with respect to the refinement relation
≤. The set of all maximal elements of a set M of involutive divisions will be denoted
by max (M). Any set M of involutive divisions has an infimum inf (M) and a supremum
sup (M) with respect to ≤, hence, (M∅,≤) forms a lattice.

Let us fix a set V ⊆ T and consider the quotient space M∅/ ≡V . By M̄ we denote
the equivalence class of M modulo ≡V . For any M ∈ M∅ we have sup (M̄) ∈ M̄
and the quotient structure forms a lattice together with the induced refinement relation
M̄ ≤ N̄ :⇐⇒ sup (M̄) ≤ sup (N̄ ). Note that the subset MV / ≡V⊆ M∅/ ≡V is closed
under the inf-operation but, in general, it is not closed under the sup-operation.

Next, we are looking for necessary and sufficient conditions for the admissibility of an
involutive divisionM = (Mu)u∈T generated by (Yu)u∈T for a given ordered set (V,<) of
terms. Admissibility implies Mu ⊂Mv, and hence Yu ⊆ Yv, for any terms u, v ∈ V such
that u < v and u ∈Mv. Therefore, the set

Au := {xi ∈ X | ∃v ∈ V : (u < v ∧ u ∈Mv ∧ xi /∈ Yv)} (3.1)

associated to u contains only indeterminates not belonging to Yu. To each u ∈ V we
assign the subsets

Bu := {v ∈ V | v < u, v /∈ IdT (u)} (3.2)
and

Cu := {v ∈ V | v < u,Mv 6⊆ u · 〈Yu ∪ {xi ∈ X | degi u < degi v}〉} (3.3)
of V . Bu consists of all terms v ∈ V which are smaller than u with respect to < and
for which the admissibility condition Mv ⊂ Mu is unsatisfiable because of Mv 3 v /∈
IdT (u) ⊇Mu. Therefore, ifM is admissible for (V,<) we must have Mu∩IdT (v) = ∅ for
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all v ∈ Bu, i.e. each term lcm(u,v)
u , where v ∈ Bu, must contain at least one indeterminate

which does not belong to the set Yu. Note that if there exist u, v ∈ V such that v < u

and v | u then we have v ∈ Bu and lcm(u,v)
u = 1 which confirms our above observation

M(V,<) = ∅.
The set Cu is constructed in such a way that for any refinement N of M obtained

by enlarging Yu one of the admissibility conditions Nv ⊂ Nu or Nu ∩ IdT (v) = ∅ for all
v ∈ V \ Cu such that v < u is always satisfied.

In the following theorem we consider monomial ideals of the polynomial ring Q =
K[X]. Note the equality Q = R in the settings of this paper. However, for the sake
of extendibility to algebras of solvable type R we emphasise that, in general, Q and R
need not coincide. Furthermore, we remark that the results presented in this section are
independent of the choice of the field K.

Theorem 3.1. Let M = (Mu)u∈T be the involutive division generated by (Yu)u∈T .
Furthermore, let (V,<) be an ordered set of terms. For each u ∈ V let Au, Bu and Cu be
the sets defined in Equations (3.1)–(3.3). Then the following conditions are equivalent:

(i) M is admissible for (V,<).
(ii) Yu is independent set of the monomial ideal (Au) + (Bu) : (u) for every u ∈ V .

(iii) Yu is independent set of the monomial ideal (Au) + (Cu) : (u) for every u ∈ V .

Furthermore, if Yu is a maximal independent set for (Au)+(Bu) : (u) for every u ∈ V and
Yu = X for all u /∈ V then M is maximal in the set of all involutive division which are
admissible for (V,<). In contrast, if M is a maximal element of the set of all involutive
division admissible for (V,<) then for all u ∈ V the set Yu is a maximal independent set
for (Au) + (Cu) : (u).

Proof. (i) ⇒ (iii) Let M be admissible for (V,<). Assume that there exist u ∈ V and
t ∈ T such that t ∈ ((Au) + (Cu) : (u)) ∩ K[Yu], in particular ut ∈ Mu. If t ∈ (Au)
then there exists v ∈ V such that u < v, u ∈ Mv and t /∈ 〈Yv〉. Hence, ut ∈ Mu\Mv.
Consequently, neither Mu ⊆Mv nor Mv ∩ IdT (u) = ∅ in contradiction to Definition 3.1.
It remains to consider the case t ∈ (Cu) : (u). Then the existence of v ∈ V satisfying the
conditions v < u, Mv 6⊆ u · 〈Yu∪{xi ∈ X | degi u < degi v}〉 ⊇Mu and ut ∈Mu∩ IdT (v)
follows which again contradicts Definition 3.1. In conclusion, ((Au)+(Cu) : (u))∩K[Yu] =
{0} for all u ∈ V .
(iii) ⇒ (ii) Trivial, since Bu ⊆ Cu for all u ∈ V .
(ii) ⇒ (i) Let ((Au) + (Bu) : (u)) ∩K[Yu] = {0} for all u ∈ V . Let v, u ∈ V be arbitrary
elements of V satisfying v < u and consider the intersection Mu ∩ IdT (v). We start with
the case v /∈ IdT (u). Then v ∈ Bu and lcm(u,v)

u ∈ (Bu) : (u). Hence, lcm(u,v)
u /∈ 〈Yu〉,

consequently, lcm(u, v) /∈Mu. It follows w /∈Mu for all w ∈ IdT (lcm(u, v)). In conclusion
Mu ∩ IdT (v) = ∅.

Now, consider the case v ∈ IdT (u). Assume Mu∩IdT (v) 6= ∅ and let w ∈Mu∩IdT (v).
Then v

u ∈ 〈Yu〉 since w
u ∈ 〈Yu〉 and v

u | wu . Hence, v ∈Mu and X\Yu ⊆ Av. Consequently,
Yv ⊆ Yu which implies Mv ⊆Mu.

We come to the proof of the sufficient and necessary conditions presented in the second
part of the theorem. Let the involutive division M = (Mu)u∈T generated by (Yu)u∈T
satisfy Yu = X for all u /∈ V and have the property that all the sets Yu, u ∈ V , are
maximal independent sets for the corresponding monomial ideals (Au) + (Bu) : (u).
Assume there exists an involutive division N = (Nu)u∈T which is admissible for (V,<)
and satisfies M < N . Let N be generated by (Y Nu )u∈T and let ANv and BNv be the sets
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Input: V = {v1, v2, . . . , vm} ⊂ T
Output: MV / ≡V

function lift(π, Y, j)
if j > m then

Mvi := vi · 〈Y [i]〉, (i = 1, . . . ,m)
Mu := u · 〈X〉, (u /∈ V )
return({M})

end if
L := ∅
l := j − 1
while l > 0 and vπ(j) /∈ vπ(l) · 〈Y [π(l)]〉 do l := l − 1 end while
if l > 0 then A := X\Y [π(l)] else A := ∅ end if
B := { lcm(vπ(i),vπ(j))

vπ(j)
|j < i ∧ vπ(j) 6 |vπ(i)}

for each independent set Z of (A) +
√

(B) do
Y [π(j)] := Z
L := L∪ lift (π, Y, j + 1)

end for
return(L)

end lift

M := ∅
Y := array[1 . . .m]
for each permutation π of {1, . . . ,m} do

M := M∪ lift(π, Y, 1)
end for
return(M)

Figure 1. Computation of MV / ≡V .

defined in (3.1) and (3.2) which correspond to N . Since Definition 3.2 does not depend
on the generating family (Yu)u∈T we have Bw = BNw for all w ∈ V . Let v ∈ V be of
minimal possible degree such that Yv ⊂ Y Nv . Then for any proper divisor w | v we have
Yw = Y Nw and, hence, Av = ANv . Consequently, (Av) + (Bv) : (v) = (ANv ) + (BNv ) : (v).
Since Yv is assumed to be a maximal independent set of (Av) + (Bv) : (v) the larger
set Y Nv must be a dependent set of (ANv ) + (BNv ) : (v). According to the first part
of the theorem this contradicts the assumption that N is admissible for (V,<) and,
consequently, M∈ max (M(V,<)).

LetM be maximal in the set of all involutive divisions which are admissible for (V,<).
We have to show that Yu∪{y} is a dependent set of the monomial ideal (Au)+(Cu) : (u)
for any u ∈ V and y ∈ X\Yu.

Assume there exist w ∈ V and y ∈ X\Yw such that ((Aw)+(Cw) : (w))∩K[Yw∪{y}] =
{0}. Let N = (Nv)v∈T be the involutive division defined by Nw := w · 〈Yw ∪ {y}〉 and
Nu := Mu for all u 6= w. Consider arbitrary u, v ∈ V such that v < u. If w /∈ {u, v} then
the condition Nv ⊆ Nu or Nu ∩ IdT (v) = ∅ carries over from M.

Consider the case v = w. Obviously, Mu ∩ IdT (w) = ∅ implies Mu ∩ IdT (w) = Nu ∩
IdT (w) = ∅. So, let us check the case Mw ⊆Mu. From X\Yu ⊆ Aw and (Aw) ∩K[Yw ∪
{y}] = {0} we deduce y ∈ Yu. Hence, Nw ⊆ Nu = Mu.
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Input: V = {v1, v2, . . . , vm} ⊂ T , ordered by vm < · · · < v1

Y = [Y [1], . . . , Y [m]] generatinga M∈M(V,<)

Output: N ∈ submax (M(V,<)) satisfying M≤ N

Nu := u · 〈X〉, (u /∈ V )
for i := 1 to m do

j := i− 1
while j > 0 and vi /∈ Nvj do j := j − 1 end while
if j > 0 then A := X\Y [j] else A := ∅ end if
C := { lcm(vi,vj)

vi
|i < j ≤ m ∧ vj · 〈Y [j]〉 6⊂ vi · 〈Y [i] ∪ {xl | degl vi < degl vj}〉}

while Y [i] is not maximal independent for (A) +
√

(C) do
compute a maximal independent set Z ⊃ Y [i] of (A) +

√
(C)

Y [i] := Z

C := { lcm(vi,vj)
vi

|i < j ≤ m∧vj ·〈Y [j]〉 6⊂ vi ·〈Y [i]∪{xl | degl vi < degl vj}〉}
end while
Nvi := vi · 〈Y [i]〉

end for
return(N )

aup to V -equivalence

Figure 2. Computing submaximal admissible refinements.

Finally, we have to consider u = w. Obviously, if Mv ⊆ Mw then Mv = Nv ⊆ Mw ⊂
Nw. Hence, the remaining case is Mw∩IdT (v) = ∅ where we will distinguish two subcases.

(a) We start with the case v ∈ Cw. From (Cw) : (w) ∩ K[Yw ∪ {y}] = {0} it follows
that wt /∈ (Cw) ⊇ (v) for all t ∈ 〈Yw ∪ {y}〉 and we deduce Nw ∩ IdT (v) = ∅.

(b) Let v /∈ Cw. IfNw∩IdT (v) 6= ∅ then it follows that {xi | degi w < degi v} ⊆ Yw∪{y}
and we deduce that Nv = Mv ⊆ w · 〈Yw ∪ {xi | degi w < degi v}〉 ⊆ w · 〈Yw ∪ {y}〉 = Nw.

In conclusion, it follows that N is admissible for (V,<). By construction we have
M < N in contradiction to the assumed maximality of M. 2

An involutive division M ∈ M(V,<) generated by a family (Yu)u∈T satisfying the neces-
sary maximality condition presented in Theorem 3.1, i.e. Yu is a maximal independent
set for the monomial ideal (Au) + (Cu) : (u) for all u ∈ V , will be called a submaximal
involutive division admissible for (V,<). The set of all submaximal involutive divisions
which are admissible for (V,<) will be denoted by submax (M(V,<)).

Figure 1 presents an algorithm for the computation of the set of equivalence classes
modulo ≡V , given by their maximal representants, of all involutive divisions which are
admissible for a fixed finite set V ⊂ T . Termination is obvious. Correctness follows
immediately from the equivalence of conditions (i) and (ii) in Theorem 3.1 and some
well-known facts on monomial ideals.

LetM be a given involutive division which is admissible for (V,<). Using the algorithm
presented in Figure 2 it is possible to compute a submaximal involutive division N
admissible for (V,<) which refines M. The termination of Algorithm 2 is trivial. In
the proof of Theorem 3.1 it was shown that enlarging Y [i] to another independent set
Z ⊃ Y [i] of the ideal (A) +

√
(C) preserves the admissibility of the involutive division

generated by Y for (V,<). In particular, it is an invariant of Algorithm 2 that for every
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1 ≤ j ≤ m the set Y [j] is independent for the corresponding ideal (Avj ) + (Cvj ) : (vj)
defined in Theorem 3.1. Furthermore, if Y [i] is enlarged in Algorithm 2 then for any 1 ≤
j < i the ideal (Avj )+(Cvj ) : (vj) becomes larger or equal, hence, also the maximality of
all previously considered sets Y [j] is maintained. In conclusion, it follows the correctness
of the algorithm.

Note, the necessity of the while-loop repeating the refinement of the involutive division
at Y [i]. The set C may become smaller after Y [i] is enlarged to a maximal independent
set Z ⊇ Y [i]. Therefore, in general, Z need not be maximal for the possibly smaller ideal
(Avi) + (Cvi) : (vi) corresponding to the refined involutive division.

As a byproduct we obtain an algorithm for checking the submaximality of an admissible
involutive division. Since for any finite set V the set MV / ≡V is finite too, it is also
possible to check maximality or to compute maximal refinements in an algorithmic way.
In this case it is advisable to start with the computation of a submaximal refinement
using Algorithm 2 and then to look for its maximal refinements using combinatorics.
Algorithm 2 is fast and starting the combinatorical search from a submaximal admissible
refinement often shrinks the costs drastically.

Let us summarise. For any given finite set V we are able to construct the set of
all involutive divisions which are admissible for V . Furthermore, for an arbitrary given
M∈M(V,<) we can construct N ∈ submax (M(V,<)) satisfying M≤ N . Spending more
combinatorical efforts we can also achieve N ∈ max (M(V,<)).

In Section 6 we will show the importance of submaximal and maximal involutive
divisions for the theory of involutive bases of polynomial ideals. Hence, from the point of
view of constructivity, we are in a better situation here than in (Gerdt and Blinkov, 1996).

4. Classical Involutive Divisions

In this section we will justify our definition of involutive divisions by showing that
the classical involutive divisions, i.e. Pommaret, Janet and Thomas division, can be
described in terms of our theory. The reverse lexicographical ordering on T will prove
to be a suitable ordering < for the classical involutive divisions. By � we denote the
reverse lexicographical ordering extending x1 � x2 � · · ·� xn, i.e. xi11 · · ·xinn � xj11 · · ·xjnn
iff the first non-zero component of the integer vector (i1− j1, . . . , in− jn) is positive. For
the sake of simplicity we will denote any restriction � |V of the reverse lexicographical
ordering to a subset V ⊂ T also by �.

4.1. Pommaret division

Definition 4.1. (see Pommaret (1978), Zharkov and Blinkov (1993), Gerdt
and Blinkov (1996)) u ∈ T is called a Pommaret divisor of v ∈ T if u | v and,
in addition, there exists 1 ≤ i ≤ n such that u ∈ T (x1, . . . , xi) and v

u ∈ T (xi, . . . , xn).
Under the same conditions we call v a Pommaret multiple of u. The family P = (Pv)v∈T ,
where Pv denotes the set of all Pommaret multiples of v, is called the Pommaret division
(corresponding to �).

If v /∈ T (x1), then the set of all Pommaret multiples of v can be represented in the form
Pv = v · 〈YP,v〉, where YP,v = {xi, . . . , xn} and 1 ≤ i ≤ n is such that v ∈ T (x1, . . . , xi)
but v /∈ T (x1, . . . , xi−1). For v = xα1 we have Pv = v · 〈YP,v〉, where YP,v = X.

Lemma 4.1. For every v ∈ T the set YP,v is maximal independent set for the monomial
ideal (Av) + (Bv) : (v) defined in Theorem 3.1.
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Proof. The case v = 1 is trivial since A1 = B1 = ∅. Consider v 6= 1 and let 1 ≤ i ≤ n
be such that degi v > 0 and degj v = 0 for all i < j ≤ n. Then Av ⊆ {x1, . . . , xi−1} since
YP,u ⊇ {xi, . . . , xn} for all divisors u of v.

For any T 3 w�v there exists 1 ≤ k ≤ n such that degk w > degk v and degj w = degj v
for all 1 ≤ j < k. If, in addition, v 6 |w then k < i. Hence, (Bv) : (v) ⊆ (x1, . . . , xi−1).
From {xkvxi | k < i} ⊆ Bv we obtain equality.

The final observation that YP,v = {xi, . . . , xn} is a maximal independent set for (Av)+
(Bv) : (v) = (x1, . . . , xi−1) completes the proof. 2

Corollary 4.1. The Pommaret division P is admissible for (T,�) and maximal in the
set M(T,�).

The corollary follows immediately from Lemma 4.1 and Theorem 3.1. The next two
theorems emphasise the outstanding position of the Pommaret division in the class of all
involutive divisions which are admissible on the entire monoid T .

Theorem 4.1. Let < be an ordering of T satisfying x1 < x2 < · · · < xn and u < v ⇐⇒
uw < vw for all u, v, w ∈ T . The Pommaret division P refines any involutive division
M which is admissible for (T,<).

Proof. Assume that there exists u ∈ T such that Mu 6⊆ Pu. Then there exist 1 ≤
j < i ≤ n such that xj · u ∈ Mu and xi | u. From the properties of < it follows that
v := xj · uxi < xi · uxi = u. Obviously, u6 |v. Hence, Mu ∩ IdT (v) = ∅ according to
Definition 3.1. This contradicts xi · v = xj · u ∈Mu. 2

Theorem 4.2. The Pommaret division is a maximal element of the set MT of all in-
volutive divisions admissible on the entire monoid T .

Proof. We have to prove that P 6<M for any involutive division M ∈ M(T,<), where
< is an arbitrary order of T .

Assume that there exists an involutive division M = (Mu)u∈T ∈ MT satisfying P <
M. Let M be generated by (Yu)u∈T and let v ∈ T be a term of minimal possible
degree such that Pv 6= Mv. Obviously, we have v /∈ K[x1]. Let 1 < j ≤ n be such
that v ∈ K[x1, . . . , xj ] and v /∈ K[x1, . . . , xj−1]. It follows that v ∈ P v

xj
= M v

xj
. Hence,

Yv ⊆ Y v
xj

= YP, vxj
. Let 1 ≤ i < j be minimal with the property xi ∈ Yv. It follows that

v
xj
∈ K[x1, . . . , xi]. Set u := vxi

xj
. From uxj = vxi ∈ Mv ∩ IdT (u) 6= ∅ it follows that

v < u. But since u ∈ K[x1, . . . , xi] we have also that {xi, . . . , xn} ⊆ YP,u ⊆ Yu leading to
the contradiction vxi = uxj ∈Mu ∩ IdT (v) 6= ∅. 2

Note that the n! Pommaret divisions corresponding to the reverse lexicographical order-
ings extending a permutation of the indeterminates are not the only maximal involutive
divisions admissible on T . But according to Theorem 4.1 all other maximal involutive
divisions admissible for T require exotic term orderings <. Let us consider an example.
For X = {x, y} let T = Ty ∪ Tx ∪ Txy be the partition of the set T = T (x, y) of terms
defined by Ty := T (y), Tx := x · T (x), and Txy := IdT (xy). Furthermore, let � denote
the reverse lexicographical term ordering extending x�y and < the ordering of T having
the following properties:

(i) <|Ts= � |Ts for s ∈ {y, x, xy},
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(ii) Txy < Tx < Ty, where Ts < Ts′ :⇐⇒ ∀u ∈ Ts, v ∈ Ts′ : u < v.

Finally, let P be the Pommaret division corresponding to � and define: Y1 := Yx :=
{x, y}, Yu := {y} for all 1 6= u ∈ Ty, Yu := {x} for all x 6= u ∈ Tx, and Yu := YP, uxy for
all u ∈ Txy. It is easy to verify that the involutive division M generated by (Yu)u∈T is
admissible for T and not refined by any of the two Pommaret divisions. Moreover,M is
a maximal element of MT .

4.2. Janet division

In contrast to the Pommaret division the notion Janet division stands for a function
ι : Pow(T ) → M∅, where Pow(T ) is the set of all subsets of T , which assigns to each
subset V ⊆ T an involutive division ι(V ) = J (V ) ∈MV which is admissible for V .

Definition 4.2. (see Janet (1929), Gerdt and Blinkov (1996)) Let V ⊆ T be a
set of terms. Furthermore, let YJ (V ),u := X for all u /∈ V and

YJ (V ),v := {xi | ¬∃u ∈ V (degi u > degi v ∧ ∀1 ≤ j < idegj u = degj v)}

for all v ∈ V . The involutive division J (V ) = (J (V )
u )u∈T , where J (V )

u := u · 〈YJ (V ),u〉 for
all u ∈ T , is called the Janet division (corresponding to �) supported on V .

In the case of Janet divisions we will also use the notions Janet divisor and Janet multiple
instead of J (V )-involutive divisor and J (V )-involutive multiple, respectively.

Lemma 4.2. The Janet division supported on V ⊆ T is admissible for (V,�). Further-
more, the sets J (V )

v , v ∈ V , are pairwise disjoint.

Proof. Let Av and Bv be as defined in Equations (3.1) and (3.2). It is easy to observe
the equality

J (V )
v ∩ V = {v} , for all v ∈ V. (4.1)

Hence, we have Av = ∅ for all v ∈ V . Fix an arbitrary v ∈ V . For any term u ∈ T
which is smaller than v with respect to the reverse lexicographical ordering there exists
1 ≤ iu ≤ n such that degiu u > degiu v and degj u = degj v for all 1 ≤ j < iu. Hence,
u ∈ Bv implies xiu /∈ YJ (V ),v. Consequently, t /∈ 〈YJ (V ),v〉 for all t ∈ (Bv) : (v) and it
follows that YJ (V ),v is an independent set for the monomial ideal (Av) + (Bv) : (v). This
proves the admissibility of J (V ) for (V,�) and according to (4.1) the sets J (V )

v , v ∈ V ,
are pairwise disjoint. 2

We cannot hope that J (V ) is maximal admissible for any set V , e.g. J (T ) ≤ P ac-
cording to Theorem 4.1 and the refinement is proper since J (T )

v = J
(T )
v ∩ T = {v} for

all v ∈ T . Actually, V = T is an extreme case which is not of great interest in the
case of Janet divisions. So, let us discuss the situation in slightly more detail. It is easy
to observe that YJ (V ),u is an independent set of the monomial ideal (Du) : (u), where
Du := {v ∈ V | v � u}, for all u ∈ V . We have the relationship (Au) + (Bu) : (u) =
(Bu) : (u) ⊆ (Au) + (Cu) : (u) = (Cu) : (u) ⊆ (Au) + (Du) : (u) = (Du) : (u), where
Au, Bu and Cu are the sets defined in (3.1)–(3.3). Obviously, an independent set of
(Du) : (u) is also an independent set of (Cu) : (u). However, a maximal independent
set of (Du) : (u) needs not to be maximal for (Cu) : (u). There are many sets V such
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that YJ (V ),u is maximal independent set of the monomial ideal (Du) : (u) for all u ∈ V .
If, nevertheless, we have J (V ) /∈ max (M(V,�)) we can consider the non-maximality as a
consequence of the property of Janet divisions that all elements of V have to be pair-
wise, not Janet divisors of one another. But the following example shows that there also
exist sets V for which even the maximality of YJ (V ),u for (Du) : (u) does not hold for
any u ∈ V . For example, consider the set V = {x1x3, x1x

2
2x4, x

2
1x

2
2} in four indetermi-

nates. We have YJ (V ),x1x3
= {x3, x4}. But {x1, x3, x4} ⊃ YJ (V ),x1x3

is independent for
(Dx1x3) : (x1x3) = (x1x

2
2, x

2
2x4) = (x1, x4) ∩ (x2

2), too.

4.3. Thomas division

As in Janet division, Thomas division is also a function τ : Pow(T ) → M∅ assigning
to each subset V ⊆ T an involutive division τ(V ) = T (V ) ∈ MV which is admissible for
V .

Definition 4.3. (Thomas (1937), Gerdt and Blinkov (1996)) Let V ⊆ T be a set
of terms. For each v ∈ V define YT (V ),v := {xi | ∀u ∈ V degi u ≤ degi v}. The involutive
division T (V ) = (T (V )

u )u∈T , where T (V )
u = u · 〈YT (V ),u〉 for all u ∈ V and T (V )

u = IdT (u)
for all u /∈ V , is called the Thomas division supported on V .

Theorem 4.3. Let V ⊆ T be a set of terms and < an ordering of V satisfying u v v
for all u, v ∈ V such that v | u. Then,

(i) T (V ) is admissible for (V,<),
(ii) the sets T (V )

v , v ∈ V , are pairwise disjoint, and
(iii) T (V ) ≤M for any M∈ submax (M(V,<)).

Proof. Let Av and Bv be the sets defined in (3.1) and (3.2). Similar to the case of
Janet divisions we have T (V )

v ∩ V = {v}. Again, it follows that Av = ∅ for all v ∈ V .
Consider arbitrary xi ∈ X and v ∈ V such that xi ∈ YT (V ),v. Then xi 6 | lcm(u,v)

v for all
u ∈ V according to Definition 4.3. The assumption on < ensures that u6 |v for all u ∈ Bv,
hence, 1 /∈ (Bv) : (v) for all v ∈ V . In summary, we deduce YT (V ),v ⊆ Z for any maximal
independent set Z of (Av) + (Bv) : (v) and the properties (i) and (ii) follow immediately.

(iii) LetM∈ submax (M(V,<)) be generated by (Yu)u∈T and let AMv and CMv be the sets
defined in (3.1) respectively (3.3) which belong to M. Furthermore, define DMv := {u ∈
V | u < v} for all v ∈ V . Applying the same arguments as above we observe YT (V ),v ⊆ Z
for all v ∈ V and all maximal independent sets Z of (DMv ) : (v) ⊇ (CMv ) : (v). Let
xi ∈ AMv . There exists u ∈ V such that v < u, v ∈ Mu and xi /∈ Yu. It follows that
u | v and degi u = degi v. Since v has only finitely many divisors there must exist a with
respect to < maximal term u satisfying the above conditions. For this maximal term u
we have xi /∈ AMu , consequently Yu ∪ {xi} is an independent set for (AMu ). Yu ∪ {xi} is a
dependent set for (AMu )+(CMu ) : (u) because of the submaximality ofM. Hence, Yu∪{xi}
is dependent for (CMu ) : (u). Consequently, xi /∈ YT (V ),u and it follows xi /∈ YT (V ),v since
degi u = degi v. In conclusion, YT (V ),v ∩AMv = ∅.

In summary, we have YT (V ),v ⊆ Z for any v ∈ V and any maximal independent set Z
of (AMv ) + (CMv ) : (v), in particular, YT (V ),v ⊆ Yv. 2

Note the following property of Thomas division.
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Lemma 4.3. Let M be the involutive division generated by (Yu)u∈T and V ⊂ T a non-
empty, finite set of terms. If T (V ) ≤M then xiv | lcm(V ) for all v ∈ V and xi ∈ X\Yv,
where lcm(V ) denotes the least common multiple of all elements of V .

Proof. xi ∈ X\Yv ⊆ X\YT (V ),v implies the existence of u ∈ V such that degi v < degi u
and the claim follows immediately. 2

Any permutation π of X extends to a reverse lexicographical ordering �π and analogously
to Definition 4.2 we can define Janet division J (V,π) corresponding to �π supported on
V . We have the equality

T (V ) = inf
π
J (V,π),

where π ranges over all permutations of X.

5. Involutive Bases

In the following we repeat the ideas from Section 2 for building a theory of Gröbner
bases. But now, we allow only M-multiples and M-divisors.

Definition 5.1. Let ≺ be an admissible term order, F ⊆ R a set of polynomials, and
M = (Mu)u∈T an involutive division which is admissible for ltF . The polynomial h ∈ R
is called M-irreducible modulo F and ≺ if

supph ∩
⋃

06=f∈F
M ltf = ∅.

We say that h M-reduces to h′ modulo F and ≺ if there exist v ∈ T , c ∈ K and f ∈ F
such that h′ = h+cvf and v · lt f ∈M ltf ∩(supph\ supph′). AM-irreducible polynomial
g obtained by iterated M-reduction of h modulo F and ≺ is called a M-normal form of
h modulo F and ≺.

Under the assumption that M ltf ∩M ltg = ∅ for all polynomials f 6= g from F it is easy to
observe that every polynomial h ∈ R has a uniquely determinedM-normal form modulo
F and ≺. Moreover, the mapping assigning each polynomial itsM-normal form modulo
F and ≺ is a linear function.

Definition 5.2. Let ≺ be an admissible term ordering, F ⊆ R a set of polynomials,
and M = (Mu)u∈T an involutive division which is admissible for ltF .

The set F is calledM-reduced with respect to ≺ if 0 /∈ F and all sets M ltf , f ∈ F , are
pairwise disjoint. If, in addition, lc f = 1 and supp f ∩

⋃
f 6=g∈F M ltg = ∅ for all f ∈ F

then F is called totally M-reduced with respect to ≺.
If for every non-zero polynomial g ∈ I there exists f ∈ F such that lt g ∈ M ltf then

F is called a M-involutive basis with respect to ≺ of the ideal I generated by F . A
M-involutive basis F of I with respect to ≺ which is (totally) M-reduced with respect to
≺ is called a (totally) reduced M-involutive basis of I with respect to ≺.

Remark 5.1. Let F be a set of non-zero polynomials, I ⊆ R the ideal generated by F ,
and ≺ an admissible term ordering. Furthermore, let M be an involutive division which
is admissible for ltF . Note the following obvious but useful facts:

(i) If F is M-involutive basis of I with respect to ≺ then it is also a Gröbner basis of
I with respect to ≺.
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(ii) If F is a N -involutive basis of I with respect to ≺ for some N ≤M then it is also
a M-involutive basis of I with respect to ≺.

(iii) F is a M-involutive basis of I with respect to ≺ iff each polynomial g ∈ I has
M-normal form 0 modulo F and ≺.

(iv) If F is M-involutive basis of I with respect to ≺ then there exists a subset G ⊆ F
which is reduced M-involutive basis of I with respect to ≺. Moreover, if there exists
a M-involutive basis of I with respect to ≺ then there exists a uniquely determined
totally reduced M-involutive basis of I with respect to ≺. Furthermore, all reduced
M-involutive bases of I with respect to ≺ contain the same number of elements and
have the same sets of leading terms with respect to ≺.

(v) F is a M-involutive basis of I with respect to ≺ iff

IdT (lt I) =
⋃
f∈F

M ltf .

If, in addition, F is M-reduced with respect to ≺ then the union on the right-hand
side of the equation is disjoint.

A main problem in the theory of Gröbner bases consists in the fact that a given term
u ∈ IdT (ltF ) can have more than one divisor in ltF . In the case of involutive divisions
we are faced with the opposite problem, namely, that it is possible that u ∈ IdT (ltF )
has no M-divisors in ltF . The philosophy of the Gröbner test algorithm is to check
that the least common multiples of elements of ltF have uniquely determined normal
forms. Analogously, the test for theM-involutive basis property consists of checking the
existence of involutive divisors for minimal critical terms belonging to IdT (ltF ).

Theorem 5.1. Let F be a set of non-zero polynomials, I ⊆ R the ideal generated by F ,
and ≺ an admissible term order. Furthermore, let the involutive division M = (Mu)u∈T
generated by (Yu)u∈T be such that ltF is M-reduced with respect to ≺ and let < be an
arbitrary ordering of ltF for which M is admissible for (ltF,<). Then the following
conditions are equivalent:

(i) F is a M-involutive basis of I with respect to ≺.
(ii) For all f ∈ F and x ∈ X\Y ltf the product xf has M-normal form 0 modulo F

and ≺.
(iii) For every f ∈ F and every x ∈ X\Y ltf there exists f ′ ∈ F such that the following

conditions are satisfied: lt f ′ < lt f , lt f ′ | x · lt f , and the S-polynomial of f and
f ′ has a representation Spol(f, f ′) =

∑m
i=1 hifi, where 0 6= hi ∈ R, fi ∈ F , and

lt (hifi) ≺ x · lt f for all i = 1, . . . ,m.
(iv) F is a Gröbner basis of I with respect to ≺ and X · ltF ⊆

⋃
f∈F M ltf .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial.

(iii) ⇒ (i) For u ∈ T let Iu be the additive subgroup of I consisting of all polynomials
g ∈ I which can be represented in the form g =

∑m
i=1 hifi, where 0 6= hi ∈ R, fi ∈ F ,

and lt (hifi) ≺ u for all i = 1, . . . ,m. We remark that the family (Iu)u∈T is a R-module
filtration of I. Without loss of generality let us assume lc f = 1 for all f ∈ F .

For each term t ∈ IdT (ltF ) we define the set Gt := {g ∈ F : lt g | t}. Since F is M-
reduced with respect to ≺ the leading terms of the elements of F are pairwise different
and, hence, each Gt is a non-empty finite subset of F containing a uniquely determined
element gt of minimal leading term with respect to <. Set vt := t

lt gt
.
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Input:
F · · · finite set of non-zero polynomials generating the ideal I ⊆ R
M = (u · 〈Yu〉)u∈T · · · involutive division admissible for (ltF,<)
≺ · · · admissible term ordering

Output:
g ∈ I · · · a polynomial which is M-irreducible modulo F and ≺

and g = 0 iff F is M-involutive basis of I
compute a minimal subset K ⊆ F such that ltK = ltF
H := {g ∈ K | ∀f ∈ K\{g} : lt g /∈M ltf}
L := {(1, h) | h ∈ F\H} ∪ {(y, h) | h ∈ H, y ∈ X\Y lth}
while L 6= ∅ do

choose (u, h) ∈ L such that u · lth is minimal with respect to ≺
L := L\{(u, h)}
g := M-normal form(uh) modulo H with respect to ≺
if g 6= 0 then return(g) end if

end while
return(0)

Figure 3. Algorithm for checking the M-basis property.

Assume vt /∈ 〈Ylt (gt) 〉. Then there exists y ∈ X\Ylt (gt) dividing vt. From (iii) the
existence of g ∈ F such that lt g < lt gt and lt g | y · lt gt | t in contradiction to the choice
of gt follows. In conclusion,

vt ∈ 〈Ylt (gt) 〉. (5.1)

Next, we will show that

uf − vtgt ∈ It (5.2)

for all f ∈ Gt and u = t
lt f . The finiteness of Gt allows induction on lt f with respect

to <. If lt f is minimal with respect to < then f = gt and the membership (5.2) is
obvious. Otherwise, there exists y ∈ X\Y ltf dividing u since F isM-reduced. Condition
(iii) implies the existence of f ′ such that lt f ′ < lt f , lt f ′ | y · lt f | t, and Spol(f, f ′) =
yf − wf ′ ∈ Iy·lt f , where w ∈ T satisfies y · lt f = w · lt f ′. We have u

ywf
′ − vtgt ∈ It

according to the induction hypothesis. Hence, uf−vtgt = u
ywf

′−vtgt+ u
ySpol(f, f

′) ∈ It.
Now, consider an arbitrary non-zero element h ∈ I and let d ∈ T be the uniquely

determined term such that h ∈ Id and h /∈ Is for all s ≺ d. Then h =
∑m
i=1 ciuifi, where

0 6= ci ∈ K, ui ∈ T , fi ∈ F , and ui · lt fi ≺ d for all i = 1, . . . ,m. Let t ∈ T be the
maximal term among ui · lt fi, i = 1, . . . ,m. Define J ⊆ {1, . . . ,m} such that ui · lt fi = t
if i ∈ J and ui · lt fi ≺ t if i /∈ J . By construction h −

∑
i∈J ciuifi ∈ It and application

of (5.2) to uifi, i ∈ J , yields h −
∑
i∈J civtgt ∈ It. From h /∈ It we deduce

∑
i∈J ci 6= 0

and lth = vt · lt gt. Finally, using (5.1) we observe lth ∈ M ltgt . In conclusion, F is a
M-involutive basis of I with respect to ≺.

The trivial observations (i) ⇒ (iv) ⇒ (iii) complete the proof. 2

The equivalence of conditions (i) and (ii) is the fundamental idea for the construction
of involutive bases. Note that this equivalence fails if we require only that the sets M ltf

are pairwise disjoint instead of the stronger condition that F has to be M-reduced
which additionally implies thatM is admissible for ltF . Figure 3 presents an algorithm
for testing whether a finite generating set F is a M-involutive basis with respect to
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≺. A sketch of the termination and correctness proofs follow. Termination follows from
finiteness of L. So, let us consider correctness. By construction H is a maximal subset
of F such that the sets M ltg, g ∈ H, are pairwise disjoint. H generates a subideal J
of I. If the algorithm returns g 6= 0 then g ∈ I is M-irreducible modulo H and ≺. By
construction of H the polynomial g is also M-irreducible modulo F , hence, the answer
is correct. Assume the result is 0. Then H is a M-involutive basis of J with respect to
≺ according to Theorem 5.1. Furthermore, J = I and correctness follows.

Lemma 5.1. Let H ⊂ R, ≺ an admissible term ordering, f a non-zero polynomial,
and M the involutive division generated by (Yu)u∈T . Assume that M is admissible for
(ltH,<), H is M-reduced and that for every h ∈ H and every y ∈ X \ Y lth satisfying
y · lth � lt f there exists h′ ∈ H such that lth′ | y · lth and lth′ < lth. Then the M-
normal form g of f modulo H and ≺ is also a Gröbner normal form of f modulo H and
≺.

Proof. It is sufficient to show that g is Gröbner-irreducible modulo H and ≺. Assume
that there exists u ∈ supp g ∩ IdT (ltH) and let h ∈ {h′ ∈ H| lth′ | u} be such that lth
is minimal with respect to <. Since g is M-irreducible modulo H and ≺ it follows that
u

lth /∈ 〈Y lth〉. So, let y ∈ X\Y lth be a divisor of u
lth . We have y · lth � u � lt g � lt f .

Hence, by assumption there exists h′ ∈ H such that lth′ | y · lth | u and lth′ < lth in
contradiction to the minimal choice of h. Hence, supp g ∩ IdT (ltH) = ∅ and the claim
follows. 2

Corollary 5.1. Let g be the polynomial returned by Algorithm 3 for input F ,M,≺. If
g 6= 0 then either lt g /∈ (ltF ) or there exist h ∈ F and y ∈ X\Y lth such that lt g = y · lth.

Proof. We use the notation in Algorithm 3. Let (u, h) ∈ L be the pair considered
last before termination, i.e g is M-normal form of uh modulo F and ≺. In the case
u · lth = lt g u 6= 1 must hold and the assertion is obvious.

Otherwise, lt g ≺ u·lth. From Lemma 5.1 and the assumptions on the selection strategy
for choosing the elements from L it follows that theM-normal form of g modulo H and
≺ is also a Gröbner normal form of g modulo H and ≺. But g is M-irreducible modulo
H and ≺, hence, lt g /∈ (ltH) = (ltF ). 2

Let F ,M and ≺ satisfy the input specification of Algorithm 3. Assume that the algorithm
returns g 6= 0. The natural approach to force the zero-reduction of g is to add the
polynomial g to the generating set F . However, in general M will not be admissible for
lt (F ∪ {g}) .

One possible solution is to choose M such that it is admissible for a set V ⊆ T
which is large enough to contain all leading terms of polynomials added to F during
the completion process, e.g. the Pommaret method is of this type. In general, there is no
essentially better a priori choice than V = T . It is well known that an ideal need not have
a finite Pommaret basis and according to Remark 5.1 and Theorem 4.1 the same is true
at least for anyM∈M(T,<), where < is a multiplication compatible ordering. Hence, we
learned that a completion process based on a fixed involutive division admissible for T
will not terminate, in general. Note, however, that finite parametrizations of Pommaret
bases can be computed in an algorithmic way (see Apel (1996)).

An alternative approach consists in the generalisation of the ideas beyond the theo-
ries of Janet and Thomas bases, i.e. in adjusting the involutive division in each step to
the enlarged generating set. Figure 4 presents the global structure of such a completion
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Input:
F · · · finite generating set of the ideal I ⊆ R
≺ · · · admissible term ordering

Output:
G and M such that G is M-involutive basis of I with respect to ≺

G :=Gauss(F )
choose M∈MltG such that T (ltG) ≤M
while g :=check(G,M,≺) 6= 0 do

G := G ∪ {g}
choose M∈MltG such that T (ltG) ≤M

end while
return(G,M)

Figure 4. Computation of involutive bases.

algorithm. The function check calls Algorithm 3. The function Gauss performs gaus-
sian autoreduction on the elements of F considered as elements of the K-vector space
R = K[X], i.e. G is a triangular system generating the same subvector space as F . The
preparatory gaussian autoreduction is optional and does not affect correctness or ter-
mination, but by this means we ensure that the leading terms of elements of G will be
pairwise different during the whole run of the algorithm, in particular, K = G for each
execution of the check-function.

The correctness of the method presented in Figure 4 is obvious. Let us consider the
question of termination. Let Gν be the value of G before the ν-th run of the while loop.
The increasing polynomial ideal sequence (ltG1) ⊆ (ltG2) ⊆ · · · ⊆ (ltGν) ⊆ · · · must
become stationary since R is a noetherian ring. Let ν0 be such that (ltGν) = (ltGν0)
for all ν > ν0. From Lemma 4.3 and Corollary 5.1 we deduce lcm(ltGν) = lcm(ltGν0)
for all ν > ν0 and it follows that the sequence Gν0 ⊂ Gν0+1 ⊂ · · · must be finite. Hence,
Algorithm 4 terminates.

6. Improvements and Heuristics

It is well known that the time and space behaviour of Buchberger’s algorithm are
very sensitive against selection strategies and applications of criterions (see Buchberger
(1985), Giovini et al. (1991)). Certainly, the same applies to the involutive basis algorithm
and a lot of computer experiments will be necessary in order to tune Algorithm 4.

The strategies proposed in Zharkov and Blinkov (1993) and Gerdt and Blinkov (1996),
which proved to be fast in the experiments reported there, can be found as instantiation
of our theory in the following way. If we choose always M = J (ltG) or M = T (ltG),
respectively, then we obtain the Janet and Thomas methods as instantiations of our
algorithm. The Pommaret method is not covered directly. This is not surprising since
the Pommaret method is known to be non-terminating, in general. But we will indicate
that there are variants of our algorithm which for arbitrary input F and ≺ are at least
not worse than the Pommaret method.

We will discuss some of the freedoms contained in Algorithms 3 and 4. Most of them
appear in Buchberger’s algorithm in a similar way and will be discussed only briefly.
We aim our intention mainly at an absolute new question, namely, the choice of the
involutive division. The central results are summarised in Remarks 6.1 and 6.2. They are
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based widely on an exact cost analysis and improve the average behaviour of Algorithm
4 drastically.

6.1. selection of M

We will discuss a selection strategy for M from the point of view of keeping the
number of reductions small and avoiding multiple reductions. However, as in the selection
problems in the theory of Gröbner bases, we will also be unable to present here a general
strategy which is optimal for all inputs. For any part of our strategy there are particular
counter-examples for which alternative strategies would be faster. So, in order to justify
our strategy it is necessary to perform further investigations and tests which will give an
impression on the average behaviour of our strategy.

First of all, let us consider the static dependencies on the generating set G of I and ask
for an involutive division M refining the Thomas division supported on ltG such that
the chance for G being a M-involutive basis of I is high and the costs for the involutive
basis check are low.

Let M and N be two involutive divisions admissible for ltG satisfying T (ltG) ≤ N <
M. Then by condition (ii) in Remark 5.1 it follows that the probability for G being aM-
involutive basis is higher than for G being a N -involutive basis. Let HM and HN be the
maximal subsets of G which are M-reduced or N -reduced, respectively. If HM = HN ,
e.g. if HM = G, then the set L appearing in Algorithm 3 for inputM is a subset of that
for input N . Hence, in the case of success, the check for M is performed faster. Now,
consider the case HN 6= HM, i.e. HM ⊂ HN . We observe that the number of elements
contained in L is smaller for M than for N . Furthermore, any N -reduction sequence is
also a M-reduction sequence and, hence, N -reduction can be considered as a particular
M-reduction strategy. Applying this strategy the situation becomes similar to the case
HN = HM. Next, let us consider the problem of deciding between M and N from a
dynamic point of view. If G is not a M-involutive basis then the decision for M or
N , respectively, will influence the future behaviour of the completion algorithm. There
is a certain similarity between this behaviour and that based on the question whether
or not to consider a critical pair which could be skipped according to Buchberger’s
second criterion. In the latter case it turned out that the application of the criterion is
strongly advisable in most cases. In summary, we propose to choose M only among the
submaximal involutive divisions admissible for ltG. Since, at least using the algorithms
discussed in this paper, the computation of maximal refinements is much more costly than
that of submaximal ones it needs experimental calculations in order to decide whether
a further restriction to only maximal involutive divisions is preferable. One should also
estimate how often Algorithm 2 already produces a maximal refinement and would be
followed only by a costly confirmation procedure.

In the following we deal with another dynamic feature, namely, the dependency of the
choice of M from the history of the completion process. The changes of the involutive
divisions should be “smooth” in order to carry over as many as possible zero-reductions
from one intermediate basis check to a succeeding one. Let G be the generating set of I
andM the corresponding involutive division at some intermediate state of Algorithm 4.
Assume that uh, where (u, h) ∈ L, had N -normal form 0 modulo G′ and ≺ for a previous
intermediate generating set G′ ⊂ G and the corresponding involutive division N admis-
sible for ltG′. Then the polynomial uh need not have M-normal form 0 modulo G and
≺. There are counter-examples even in the classical cases of Janet or Thomas division.
So, it needs more than condition (ii) of Theorem 5.1 in order to prove that it is sufficient
to consider a pair (u, h) only once during an involutive completion process.
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Remark 6.1. Fix a term ordering < satisfying u | v ⇒ v v u, e.g. <= �. We modify
the algorithm presented in Figure 4 by considering only such involutive divisions which
are admissible for (ltG,<). Furthermore, we modify the check-subroutine by removing
all pairs (u, h) from L which have been considered previously.

Let us consider the termination and correctness of the modified algorithm. Termination
follows in the same way as for the original algorithm since the assumptions of Lemma 5.1
remain valid and, hence, the validity of Corollary 5.1 is maintained. Let G andM be the
result returned by the modified algorithm for input F and ≺. Furthermore, let H be the
maximal M-reduced subset of G. In order to show correctness we start with the proof
that any element f ∈ G\H can be represented in the form

f =
k∑
i=1

higi, where hi ∈ R\{0}, gi ∈ H, and lt (higi) � lt f. (6.1)

The modified algorithm ensures that (1, f) has been considered during a run of the
check-subroutine. The reduction yields a representation f =

∑k
i=1 higi, where 0 6= hi ∈

R, gi ∈ G, lt (higi) � lt f . Suppose lt f = lt gi for some 1 ≤ i ≤ k then f = gi since
G is gaussian autoreduced. But in contradiction to (1, f) ∈ L this would mean that f
was involutively irreducible at check time. Hence, lt gi ≺ lt f for all i = 1, 2, . . . , k. If
the leading term of f is minimal with respect to ≺ among all leading terms of elements
of G\H then the above representation is already of type (6.1). Applying induction on
lt f with respect to ≺ proves the existence of representations of type (6.1) for arbitrary
f ∈ G\H.

Next let us show that H satisfies condition (iii) of Theorem 5.1. Let f ∈ H and
x ∈ X\Y ltf . The modified algorithm ensures that there exist G′ and N such that a
N -normal form of xf modulo G′ and ≺ has been computed during the execution of
check(G′,N ,≺). If lt (xf) is N -irreducible modulo G′ and ≺ then lt g = x · lt f , where
g is the result of check(G′,N ,≺). Hence, g ∈ G, lt g | x · lt f , and lt g < lt f . Otherwise,
there exists g ∈ G′ such that x · lt f ∈ N ltg and lt g /∈ N ltg′ for all g′ ∈ G′\{g}.
Again, we have g ∈ G, lt g | x · lt f , and lt g < lt f . In any case, keeping track of the
N -reduction of xf modulo G′ and ≺ provides a representation Spol(f, g) =

∑k
i=1 higi,

where 0 6= hi ∈ R, gi ∈ G, and lt (higi) ≺ x · lt f , of the S-polynomial of f and g in terms
of G′. Finally, substituting the elements gi /∈ H according to (6.1) shows that H,M, ≺,
and < satisfy condition (iii) of Theorem 5.1. In conclusion, H and G are M-involutive
bases of (H) = (G) = I with respect to ≺. 2

So, we observed that we can avoid a lot of multiple reductions using the modified al-
gorithm described in Remark 6.1. As a byproduct the costs for choosing the involutive
divisionM are reduced drastically. Note, however, the price we have to pay for the above
advantages is that we can miss a fast way of completion or we do not realise that an
intermediate basis is already a M-involutive basis for some M which is admissible only
for another ordering <.

In order to benefit from the possibility to remove previously considered pairs from L
we have to ensure that the considered pairs (u, h) will also be contained in L in the
succeeding checks.

In the classical involutive situations described in Section 3 the involutive division M
is chosen according to a function ϕ : Pow(T ) → M∅ satisfying ϕ(V ) ∈ M(V,<). We
have ϕ(V ) = P for all V ⊆ T in the Pommaret case and ϕ = ι respectively ϕ = τ in
the Janet or Thomas case. In all three situations the function ϕ is descending in the
sense that ϕ(V ) ≤ ϕ(W ) for all W ⊆ V ⊆ T . The involutive divisions investigated by



The Theory of Involutive Divisions 701

Gerdt and Blinkov are also of this type. The descending property ensures that any pair
(xi, h) contained in L for some intermediate check will also be a member of L for any
succeeding check in which lth is involutively irreducible modulo lt (G\{h}) and <. But,
in general, the selection strategyM = ϕ(ltG) will not be optimal since ϕ(ltG) need not
be (sub-)maximal.

Remark 6.2. Let G and N be the values of G and M before the execution of the
instruction computing a new M in Algorithm 4 modified according to Remark 6.1. We
propose to choose M in such a way that M ∈ submax (M(ltG,<)) and, in addition,
inf(M,N ) takes a maximal possible value.

Let ϕ : Pow(T )→M∅, where ϕ(V ) ∈M(V,<), be an arbitrary fixed descending function,
e.g. one belonging to one of the classical involutive divisions discussed in Section 3.
Then the additional property ϕ(ltG) ≤ M can be ensured for all involutive divisions
used during the completion process. In particular, we are able to simulate the classical
situations. Nevertheless it is an interesting open question as to how to apply the whole
freedom left by Remark 6.2 in order to utilise as much as possible information from a
specific leading term ideal.

Let u = x2y2z, v = xyz2, s = xy3z, and t = x3z. There are exactly two submaximal
involutive divisions which are admissible for ({u, v},�) and exactly one submaximal
involutive division which is admissible for ({u, v, s},�) or ({u, v, t},�), respectively. It is
easy to check that any function ϕ : Pow(T )→M∅, where ϕ(V ) ∈ submax (M(V,�)) for all
V ⊆ T , can satisfy only one of the conditions ϕ{u, v, s} ≤ ϕ{u, v} or ϕ{u, v, t} ≤ ϕ{u, v}.
Hence, no descending function ϕ of this type exists. Consequently, it is impossible to find
a selection strategy forM which depends only on ltG and ensures submaximality ofM
as well as the total exploitation of all previously computed reductions.

The above investigations show that our concept is more flexible and more general than
the restriction to descending functions ϕ.

6.2. miscellaneous

There are many similarities between the theories of involutive and Gröbner bases. So,
it is natural to ask whether we can make use of at least some of the improvements which
are well known from the theory of Gröbner bases.

full versa head reduction

If we apply headM-reduction, i.e. only such reduction steps which cancel the leading
term are allowed, then we have to consider weak M-normal forms g of f modulo H
and ≺, i.e. g has to satisfy only lt g /∈

⋃
h∈HM lth instead of supp g ∩

⋃
h∈HM lth = ∅.

Neglecting the details we note that Algorithm 4 with head reduction has to perform at
least all the work which has to be done in a particular variant of Buchberger’s algorithm
for the same input F and ≺. Hence, such a version of the involutive basis algorithm
cannot improve Buchberger’s algorithm. Moreover, the tests reported in Giovini et al.
(1991) indicate that the simulated version of Buchberger’s algorithm is not advisable in
most cases.

autoreduction of intermediate bases

Let us discuss the question of which type of autoreduction should be applied to inter-
mediate generating sets G during Algorithm 4. Gaussian autoreduction, i.e. the weakest
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possible autoreduction, should be applied to the input generating set in a preparatory
step. Then any subsequent intermediate basis will be automatically gaussian autoreduced.
Any other kind of autoreduction, e.g. M-autoreduction, has to be checked for its com-
patibility with the function used for choosing the involutive divisions since redundancy
of leading terms is not invariant under change in involutive division. There are counter
examples which show that intermediate M-autoreduction can destroy the termination
of our method. Only at the end when we have already computed a M-involutive basis
can we be sure thatM-autoreduction leads to aM-reduced set, which is even a reduced
M-involutive basis of the input ideal. Besides the above theoretical reasons there are also
experimental indications showing that intermediate autoreduction should be avoided (see
Giovini et al. (1991)).

selection of the reduction polynomial

In the case of involutive bases this problem is much less important than in Buchberger’s
algorithm. For M-reduced sets G the question is even irrelevant since any term t ∈ T
will have at most one involutive divisor in ltG.

selection of (u, h) ∈ L

The use of the standard selection strategy, i.e. choosing the pairs such that u · lth
is minimal with respect to ≺, in Algorithm 3 is essential for the termination property
of the completion procedure. So, we guess that the practical importance of the involu-
tive method is restricted to degree compatible term orderings ≺ until other termination
preserving selection strategies are known.

removing unnecessary pairs from L

Criteria for detecting useless prolongations in Gerdt and Blinkov (1996) should be
checked in our context. Partial answers to this question can also be found also in Section 6
of this paper.

6.3. comparison with Buchberger’s algorithm

Finally, let us discuss the author’s conjecture on the major advantage of the involutive
basis method in comparison to Buchberger’s algorithm. According to Giovini et al. (1991)
it is advisable to perform full reduction on S-polynomials and to avoid post-reduction
of old ideal generators. We have the following background. Let f ∈ F be such that
lt f /∈ IdT (lt (F\{f}) ) and let g be a polynomial obtained from f by application of
some reduction steps modulo F\{f}. The question is whether f or g should be applied
in subsequent S-polynomial reductions. An argument for f is that it often contains less
terms and has smaller coefficients than g. An argument against f is that the reductions
not performed on f may cause the necessity of many additional subsequent reductions
during a Gröbner basis calculation. However, counter-examples showing the opposite
behaviour for both arguments also exist.

The strategy proposed in Giovini et al. (1991) is a compromise justified by computing
experiments. But it seems that the same strategy, i.e. full reduction of new polynomials
and no post-reduction of old polynomials, applied in the involutive method provides the
better compromise. The generating sets appearing in the involutive algorithm contain
certain redundant higher degree (“younger”) polynomials of an intermediate reduction



The Theory of Involutive Divisions 703

state. Moreover, due to this redundancy we need to consider only the S-polynomials of
a special simple type according to Theorem 5.1. It seems that the involutive strategy
reduces the growth of the length of the intermediate polynomials as well as of their
coefficient size.

Similar considerations as Mall’s comparison of involutive and Gröbner method for ho-
mogeneous ideals (see Mall (1995)) and the fact that a fullM-reduction of a S-polynomial
is also always a full Gröbner reduction according to Lemma 5.1 indicate that the phe-
nomena explained above remains the only possible advantage of the involutive method
in comparison to Buchberger’s algorithm.

7. Application to the Computation of Hilbert Functions

First of all, recall some well-known facts about Hilbert functions (see Renschuch (1976)
or any other textbook on commutative algebra). Let S = K[Y ] be the polynomial ring
in Y ⊆ X over the field K. Furthermore, let Y = {y1, . . . , yk}, where the yi are pairwise
different. We extend the notion of binomial coefficients to arbitrary integers by defining(−1
−1

)
:= 1 and

(
r
s

)
:= 0 for all r, s such that r < s or r < 0 or s < 0 but (r, s) 6= (−1,−1).

† Then S contains exactly

∆(m; k) =
(
m+ k − 1
k − 1

)
(7.1)

terms of total degree m. Let I ⊆ S be a homogeneous polynomial ideal and Am ⊆ S/I
the K-vector space of all residue classes [f ]I ∈ S/I of m-forms f modulo I. The function
H(·; I) : N → N defined by H(m; I) = dimK (Am) is called the Hilbert function of I.
Furthermore, we define the volume function of I by

V(m; I) := ∆(m; k)−H(m; I), m = 0, 1, . . . .

Let L(I) be the monomial ideal generated by the set lt I of leading terms of elements of
I with respect to an arbitrary total degree compatible term ordering ≺. I and L(I) have
the same Hilbert function. Furthermore, we have the connection

Ha(m; I) =
m∑
i=0

H(i;L(I)), m = 0, 1, . . . , (7.2)

to the affine Hilbert function Ha of I. Note, that (7.2) is also valid for inhomogeneous
ideals I and more general definitions of leading forms.

Theorem 7.1. Let M be the involutive division generated by (Yu)u∈T and V ⊂ T a
finite M-reduced set of terms. By kv we denote the number of indeterminates contained
in Yv. If V is a M-involutive basis of the ideal I = (V ) ⊆ R (with respect to an arbitrary
admissible term ordering ≺) then we have

V(m; I) =
∑
v∈V

∆(m− deg v; kv) =
∑
v∈V

(
m− deg v + kv − 1

kv − 1

)
, m ∈ N.

Proof. According to (v) of Remark 5.1 we have IdT (V ) =
⋃
v∈V Mv, where the union

on the right-hand side is disjoint. The submonoid generated by Yv contains ∆(m; kv)
terms of degree m. Taking into account the degree shift caused by the factor v it follows

†The unusual setting
(−1
−1

)
= 1 proves to be useful in the exceptional case k = 0, i.e. S = K .
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that v · 〈Yv〉 = Mv contains exactly ∆(m − deg v; kv) terms of degree m. In conclusion,
we observed the first equality and the second follows immediately by Equation (7.1). 2

Using the relationships listed above we obtain explicit formulae and fast algorithms for
the computation of the Hilbert function of homogeneous and the affine Hilbert function
of arbitrary polynomial ideals I.
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——Apel, J. (1995). A Gröbner approach to involutive bases. J. Symb. Comput. 19/5, 441–457.
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