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1. I N T R O D U C T I O N  

Variational inequalities, introduced by Hartman and Stampacchia [1] in the early sixties, are 
a very powerful tool of the current mathematical technology. These have been extended and 
generalized to study a wide class of problems arising in mechanics, physics, optimization and 
control, nonlinear programming, economics, and transportation equilibrium and engineering sci- 
ences, etc. Quasivariational inequalities are generalized form of variational inequalities in which 
the constraint set depend on the solution. These were introduced and studied by Bensonssan, 
Goursat and Lions [2]. For further details, we refer to [3-8]. 

In 1991, Chang and Huang [9,10] introduced and studied some new class of complementarity 
problems and variational inequalities for set-valued mappings with compact values in Hilbert 
spaces. In the recent paper [11], Adly has studied a new general class of variational inclusions, 
which included many variational inequalities, quasi-variational inequalities, and explicit and im- 
plicit complementarity problems considered by Noor [12-14], Isac [15], Siddiqi and Ansari [16,17], 
and Hassounl and Moudafi [18] as special cases. 

In this paper, we first introduce a new completely general class of variational inclusions for 
set-valued mapping. Motivated and inspired by the methods of Adly [11] and Huang [19], we con- 
struct some new iterative algorithms for the new completely general class of variational inclusions 
with noncompact valued mappings. We also prove the existence of solutions for the completely 
general class of variational inclusions and the convergence of iterative sequences generated by the 
algorithms. 

2.  P R E L I M I N A R I E S  

Let H be a real Hilbert space endowed with a norm II" H, and inner product (., .). Given set- 
valued mappings T, A, G : H --* 2 H (where 2 H denotes the family of all nonempty subsets of H), 
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a set-valued maximal monotone mapping M : H -4 2 H and single-valued mappings f, p : H ~ H 
with Range (G) n dora (M) ~ 0, we consider the following problem: 

Find u • H,  w • Tu ,  y • Au ,  z • Gu  such that 

0 • f ( w )  - p(y)  + M ( z ) .  (2.1) 

This problem is called a completely general class of variational inclusion for set-valued mappings. 
An equivalent formulation of the original problem (2.1) is to find u • H,  w • Tu ,  y E Au ,  

z • Gu  such that 

(v* + f ( w )  - p ( y ) ,  v - z) >. O, V (v, v*) • Graph (M). (2.2) 

Since M is maximal monotone, u • H,  w • Tu ,  y • Au ,  z E Gu are the solutions of the 
problem (2.2) if and only if u E H, w • Tu ,  y • Au ,  z • Gu  such that p(y)  - f ( w )  • M ( z ) .  

If  G : H --* H is a single-valued mapping, then problem (2.1) is equivalent to finding u E H, 
w • Tu ,  y • A u  such that 

0 • f ( w )  - p(y)  -{- M ( G ( u ) ) .  (2.3) 

This problem is called a general class of variational inclusion for set-valued mapping. 
If T, A : H ~ H are two identity mappings and G : H --* H is a single-valued mapping, then 

problem (2.1) is equivalent to finding u • H such that 

0 E f ( u )  - p(u)  -{- M ( G ( u ) ) .  (2.4) 

Variational inclusion like (2.4) have been studied in [11]. 
If G : H --* H is a single-valued mapping and M :-- a~o, where a~0 denotes the subdifferential 

of a proper, convex, and lower semicontinuous function ~ : H --* R U {+oo}, then problem (2.1) 
is equivalent to finding u • H, w • Tu, y • Au such that 

G(u) N dom 0, 

i f ( w )  - p ( y ) ,  v - _> - Vv E H, 
(2.s) 

which is called a set-valued nonlinear generalized variational inclusion studied in [19]. 
It is clear that the completely general class of variational inclusion (2.1) includes many kinds of 

variational inequalities, quasi-variational inequalities, and explicit and implicit complementarity 
problem of [1,6-11,15,18-23] as special cases. 

3. ITERATIVE A L G O R I T H M  

LEMMA 3.1. U, W, y, and z are solutions o f  problem (2.1) i f  and only i f  there exists w E Tu ,  

y E Au ,  and z E Gu  such that  

U = u -- Z + J f f ( z  - ~ ( f ( w )  - p(y))), 

where a > 0 is a constant  and j M  ~_ ( l  + a M )  -1 is the so-called proximal mapp ing  on H. 

PROOF. From the definition of the proximal mapping Ja M one has 

z - c~(f(w) - p(y) )  e z + a M ( z ) ,  

hence,  

p(y) - f(w) e M(z). 

Thus, u, w, y, and z are solutions of problem (2.1). This completes the proof. 
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REMARK 3.1. We note that  when G : H -~ H is a single-valued mapping and M := 0~, 
Lemma 3.1 is similar to Lemma 2.1 in [19]. 

Based on Lemma 3.1, we proceed our algorithm. 
Let T, A, G : H --* CB(H)  (where CB(H)  denotes the family of all nonempty closed bounded 

subsets of H) .  For given u0 E H, let wo E TUo, Yo E Auo, zo E Guo, and 

~1 = uo - zo + J 2  (zo - ~ ( f ( w 0 )  - p(y0)))- 

By [26] there exist Wl E Tul ,  Yl E Aul, and zl E GUl such that 

[IWl - Woll -< ( i  

Ilyx - yoll ~ (1 
Ilzl - zoll ~ ( 1  

where H is the Hausdorff metric on CB(H).  
following. 

+ 1)f i (Tul ,  Tuo), 

+ 1)H(Aul,  Auo), 

+ 1)f i(Gul ,  Guo), 

By induction, we can obtain our algorithm as 

ALGORITHM 3.1. Let T , A , G  : H --, CB(H) ,  and f , p  : H ---* H. For given u0 E H, we can get 
an algorithm for (2.1) as following: 

~n+l -~ ~tn -- Zn "~ J 2  (zn - o ~ ( f ( W n )  - P(Yn) ) ), 

w ,  E T u , ,  [[W~+l-w,H _< (1 + (1 + n )  -1) ~I(Tun+l,Tu,) ,  

y~ E Au~, [lYn+l - Ynl[ -< (1 + (1 + n) -1) f i (Au ,+ l ,  Aun), (3.1) 

z .  e c ~ ,  liz~+~ - z.l l  < (1 + (1 + n) -~)  f i ( C u . + l ,  C u . ) ,  

n = 0, 1,2, . . . .  

algorithm. 

f ,p ,  G : H ~ H. For given u0 E H, we can get 

From Algorithm 3.1, we can get the following 

ALGORITHM 3.2. Let T, A : H ~ CB(H) ,  and 
an algorithm for (2.3) as following: 

w ,  ETun ,  [[W,+l-wn[[  < (1 + (1 + n )  -1) f i(Tun+I,TUn), 
(3.2) 

yn e A u n ,  I[Y,+I-Ynl[ < (1 + (1 + n )  -1) H(Au,~+l,AUn), 

n = 0,1,2, . . . .  

REMARK 3.2. The Algorithms 3.1 and 3.2 include several known algorithms of [6,9,10,12-14,16, 
17,19,20,22-24] as special cases. 

4 .  E X I S T E N C E  A N D  C O N V E R G E N C E  

DEFINITION 4.1. A mapping g : H ~ H is said to be 

(i) strongly monotone ff  there exists some 6 > 0 such that 

(g(Ul)- -g(U2) ,Ul--U2)  >_~IlUl--U2H 2, V u i e H ,  i = 1 , 2 ;  

(ii) Lipschitz continuous ff there exists some a > 0 such that 

[ Ig (u l ) -g (u2) l l<al lu l -u2 l l ,  Vu~ e H, i = 1 , 2 .  
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DEFINITION 4.2. A set-valued mapping T : H --* 2 H is said to be 

(i) strongly monotone i[ there ex/sts some ~ > 0 such that 

(Wl--W2,Ul--U2)~I lUl--U2[I  2, V u i E H ,  w i E T u i ,  i = 1 , 2 ;  

(ii) strongly monotone with respect to a mapping f : H --* H if  there exists some fl > 0 such 
that 

( f ( W l ) - f ( w ~ ) , U l - U 2 ) > f l l J U l - U ~ l [  2, V u i E H ,  w i E T u i ,  i = 1 , 2 ;  

(iii) H-Lipschitz continuous/ f  there exists some "r > 0 such tha t  

ffI(Tul,TU~) < 7[[Ul -- U2[[, VUi E H, i = 1, 2. 

THEOREM 4.1. Let  G : H -~ CB(  H) be strongly monotone and H-Lipschitz continuous, f ,  p : 

H --* H be Lipschitz continuous, T, A : H -* C B ( H )  be ff-I-Lipschitz continuous and T be 
strongly monotone with respect to f . I[ the following conditions hold: 

I f l + e / z ( k - l )  ~ / ( f l + ( k - 1 ) e # ) 2 - ( r l 2 ~ 2 - e 2 # 2 ) k ( 2 . k )  

a ~72-~ _-- i ~  ~ < .272 _ e2# 2 , (4.1) 

fl > (1 - k)e# + ~ / (y272  - e2/z 2) k(2 - k), 77 > e/z, (4.2) 

a#e < 1 - k, k = 2X/1 - 26 + a s, k < 1, (4.3) 

where fl and 6 are strongly monotone constants o[ T and G respectively, 7, #, and a are H-  
Lipschitz constants of  T, A, and G respectively, ~ and e are the Lipschitz constants of f and 
p, respectively, then there exist u E H, w E Tu,  y E Au,  and z E Gu, which are solutions o[ 
problem (2.1). Moreover, 

Un -'~ u, Wn ---* W, Yn --~ Y, Zn --* Z, n --~ O0, 

where {un}, {wn}, {Yn}, and {zn} are defined in Algorithm 3.1. 

PROOF. From (3.1), we have 

Ilu.+l - u . [ I  = I l u .  - u . _ l  - ( z .  - Z n _ l )  "~ J 2  (h(?An) ) - JaM (h(Un_l))[[ , 

where h(un) = z ,  - a ( f ( w , )  - P(Yn)). Also, we have 

[[jM (h(u.) ) - JM (h(un-1) )[[ <_ I l h ( u . )  - h ( u . - 1 ) l ]  

_< I]u,, - u . - 1  - a ( . f ( w , , )  - . f ( w , , - x ) ) l l  

+ Ilu,~ - u . - 1  - ( z .  - z , , - a ) l l  + allP(Yn) - P(Yn-1) [ [ .  

Tha t  is 

I1~ .+1  - u . I I  < 211u .  - u . - 1  - ( z .  - z . - 1 ) l l  

+ I lu .  - u . _ l  - a ( f ( w . )  - f ( w . - 1 ) ) l l  + a l l y ( y - )  - p ( y - - d l l .  (4.4)  

By H-Lipschitz continuity and strongly monotonici ty of G, we obtain 

I l u . - u . _ , - ( z . - z . _ l ) ] l  2 <_ ( 1 -  2 , ~ +  (1  +n-a)2~2)l lu.-u._, l l2 .  (4.5) 
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Also from H-Lipschitz continuity and strongly monotonicity of T, and Lipschitz continuity of f, 
we have 

Ilu, - un-1 - a ( I (wn)  - f(wn-1))ll 2 < (1 - 2ftc~ + o~2T] 2 (1 + n-1)272 ) Ilun - u , - l l l  2. (4.6) 

By H-Lipschitz continuity of A, Lipschitz continuity of p and (3.1), we know 

~llv(un) - vCy.-l) l l  -< ~e (1 + n -1)  gl l=.  - =.-111. (4.7) 

So by combining (4.4)-(4.7), we get 

IlUn+l - unll _< 0nllun -- Un-lll ,  

where 

On := 2~/1 - 2~ + (1 q- n - I )2  o "2 + ~/1 - 2/3c~ + ~2r12 (1 q- . - 1 ) 2 7 2  -I- or, (1 -I- n -1) . .  

Letting 
/9 := 21/1 - 26 + a 2 + ~/1 - 2ha  + O~27"]2"/2 q- O~e~, 

We know that  0n \ 0. It follows from (4.1)-(4.3) that  8 < 1. Hence On < 1, for n sufficiently 
large. Therefore, {un} is a Cauchy sequence and we can suppose that  u ,  --* u e H. 

Now we prove that 

Zn -'* z E ~zL. wn -'* w E Tu~ Yn --* Y E Au,  

In fact, it follows from the Algorithm 3.1 that 

i.e., {wn) ,  
have 

Ilzon - wn-111 ~ (1 + n - l )  7 Ilun - Un-lll ,  

t l y n -  yn-ll l  ~ (I + . - 1 ) ~ l l u n -  Un-lll ,  

Ilzn - Zn-lll < (1 + n -1)  ~ Ilun - U. - l l l ,  

{Yn}, and {zn} are Cauchy sequences. Let Wn -'* w, Yn "-* Y, zn "-* z. Further, we 

d(w, Tu) = inf{llw - zll: z ~ Tu} 

II~o - wall + d(wn,Tu) 

___ IIw - wall  + H(Tun, Tu) 
< IIw - wall + 711u. - ull -~ 0. 

Hence, w E Tu.  Similarly, y E Au  and z E Gu. This completes the proof. 

From Theorem 4.1, we can obtain the following theorem. 

THEOREM 4.2. Let G : H --, H be strongly monotone and Lipschitz continuous, f ,  p : H ~ H be 
Lipechitz continuous, T, A : H --* C B ( H ) be fft-Lipschitz continuous and T and be strongly mono- 
tone with respect to f . Let  fl and 6 be strongly monotone constants of T and G respectively, 7 
and i~ be H-Lipechitz constants o f T  and A respectiveIy, a, rl, and ~ are the Lipschitz constants 
of G, f ,  and p, respectively. I f  conditions (4.1)-(4.3) hold, then there exist u E H, w E Tu,  and 
y E Au,  which are solutions of  problem (2.3). Moreover, 

Un ~ U ,  Wn "* W ,  Y n  --~ Y ,  . ~ 00, 

where {un}, {wn}, and {Yn} are denned in Algorithm 3.2. 

REMARK 4.1. For a suitable choice of the mappings G, T, A, f ,  p, and M,  we can obtain several 
known results [6,9,10,I2-17,19,20,22-24] as special cases of the main results of this paper. 
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