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a b s t r a c t

The issues of robust stability for uncertain fractional-order systems of two types of order
α ∈ (0, 1) are dealt with in this paper. For the polytope-type uncertainty case, a
less conservative sufficient condition for robust stability is given; for the norm-bounded
uncertainty case, a sufficient and necessary condition for robust stability is presented.
Both of these conditions can be checked by solving sets of linear matrix inequalities. Two
numerical examples are presented to confirm the proposed conditions.
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1. Introduction

As an application background of fractional calculus [1], fractional-order control systems [2–14] have attracted increasing
attention in the past few decades. The problems of robust stability for interval uncertain fractional-order systems were
investigated systematically in [15–20]. For instance, an experimentally verified Kharitonov-like procedure for checking
robust stability for interval fractional-order linear time invariant (FO-LTI) systems described by a transfer function was
proposed in [15]. In [16], the robust stability problem for interval FO-LTI systems with order 0 < α < 1 described by a
state-space form was discussed. In [17], a complex Lyapunov inequality was utilized to find the maximum eigenvalue of a
Hermitianmatrix, and a robust stability checkingmethod for interval FO-LTI systemswith order 1 < α < 2was proposed. As
an extension of [17], a necessary and sufficient condition for robust stability for uncertain FO-LTI systemswith order 1 ≤ α <
2 was proposed in [18]. Further, in [19], necessary and sufficient conditions for stability and stabilization of fractional-order
interval systems with order 1 < α < 2 were presented. A sufficient and necessary condition for the robust asymptotical
stability of fractional-order interval systems with order 0 < α < 1 was presented in [20], and a sufficient condition for
the robust asymptotical stabilization was also derived. All the results in [19,20] were obtained in terms of linear matrix
inequalities. For more knowledge about stability conditions for interval fractional-order systems, please refer to [21–24].

For more general uncertainties in control systems theory, polytope-type uncertainty and norm-bounded uncertainty
are two representative forms of structured and unstructured uncertainties. Norm-bounded [25] uncertainty is mainly used
along with the small gain theory in the robust stability analysis, and the polytope-type [26] uncertainty is primarily used
for quadratic stability analysis. To the best of our knowledge, there exist no results about robust stability for fractional-
order systems with these two kinds of uncertainties. With motivation from the fact mentioned above, robust stability for
fractional-order systemsof orderα ∈ (0, 1)with structured andunstructureduncertainties is discussed in the current paper.
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This paper is organized as follows. Some preliminary results are recalled in Section 2. Themain results on robust stability
for fractional-order systems with structured and unstructured uncertainties are addressed in Section 3. Two numerical
examples are given to verify the proposed conditions in Section 4, and a conclusion is given in Section 5.

2. Preliminaries

In this paper, we adopt the well-known Caputo definition for the fractional derivative [4],

Dα f (t) := 0Dα
t f (t) =

1
Γ (α − n)

 t

0

f (n)(τ )dτ
(t − τ)α+1−n

with α ∈ R+ satisfying n − 1 < α < n, f (t) ∈ Cn(0, ∞).
In general, FO-LTI systems can be described by the transfer function [4]

G(s) =
bmsβm + bm−1sβm−1 + · · · + b1sβ1 + b0
ansαn + an−1sαn−1 + · · · + a1sα1 + a0

(1)

where ai, αi, bj, βj ∈ R (i = 0, 1, . . . , n, j = 0, 1, . . . ,m), an ≠ 0, αn > αn−1 > · · · > α1 > 0, βm > βm−1 > · · · > β1 > 0
and αn > βm.

Assume that the FO-LTI system (1) can be converted into a commensurate form under some algebraic operations:

G(s) =
bmsm/v

+ bm−1s(m−1)/v
+ · · · + b1s1/v + b0

ansn/v + an−1s(n−1)/v + · · · + a1s1/v + a0
, (v > 1)

We focus our attention on the commensurate FO-LTI systems in the current paper.
The stability issues of FO-LTI systems were given in [3] as the following.

Lemma 1. An FO-LTI system described by the transfer function

G(s) =

m
k=0

bk(sα)k

n
k=0

ak(sα)k
=

Q (sα)

P(sα)
, (0 < α < 2)

is asymptotically stable if and only if |arg(σi)| > α π
2 , with σi being the ith root of the pseudo-polynomial P(σ ), σ = sα .

Lemma 2. An FO-LTI system described by the state-space form

Dαx(t) = Ax(t), (0 < α < 2)

is asymptotically stable if and only if |arg(eig(A))| > α π
2 , where eig(A) are eigenvalues of the matrix A.

The stable regions denoted as the Dα-stable regions for 0 < α < 1, α = 1 and 1 < α < 2 are shown in Fig. 1.
To proceed with our discussion about the robust stability for the uncertain fractional-order systems, the following

lemmas need to be recalled.

Lemma 3 ([27]). An FO-LTI system described by

Dαx(t) = Ax(t), (0 < α < 1)

is asymptotically stable if and only if there exist two positive definite Hermitian matrices Q1 and Q2 such that

eiθQ1A∗
+ e−iθAQ1 + e−iθQ2A∗

+ eiθAQ2 < 0,

where θ = (1 − α)π/2.

Lemma 4 ([20]). An FO-LTI system described by

Dαx(t) = Ax(t), (0 < α < 1)

is asymptotically stable if and only if there exist two real symmetric positive definite matrices Q11 and Q21, and two skew-
symmetric matrices Q12 and Q22, such that

2
i=1

2
j=1

sym{Θij ⊗ (AQij)} < 0,
Q11 Q12

−Q12 Q11


> 0,


Q21 Q22

−Q22 Q21


> 0
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Fig. 1. Stable regions for 0 < α < 1, α = 1 and 1 < α < 2.

where θ = (1 − α)π/2, and the Θij (i, j = 1, 2) are defined as follows:

Θ11 =

sin
πα

2


− cos

πα

2


cos

πα

2


sin
πα

2


 , Θ12 =

 cos
πα

2


sin
πα

2


− sin

πα

2


cos

πα

2


 , (2)

Θ21 =

 sin
πα

2


cos

πα

2


− cos

πα

2


sin
πα

2


 , Θ22 =

− cos
πα

2


sin
πα

2


− sin

πα

2


− cos

πα

2


 . (3)

3. The main results

In this section, robust stability for fractional-order systems of order α ∈ (0, 1) with structured and unstructured
uncertainties are analyzed.

3.1. The polytope-type uncertainty case

Consider an uncertain FO-LTI system described by

Dαx(t) = Ax(t), (0 < α < 1) (4)

where x(t) ∈ Rn, and A ∈ Rn×n belongs to a polytope-type domain A. Any matrix inside the domain A can be written as a
convex combination of the known vertices Ai of the uncertainty polytope [26], i.e.,

A :=


A(ξ) : A(ξ) =

N
i=1

ξiAi;

N
i=1

ξi = 1; ξi ≥ 0


. (5)

Remark 1. Polytopes of matrices have been established as one of standard representations of uncertainties involved in
control systems described by the state-space models [28]. It is natural to discuss the robust stability problem when the
system matrices of uncertain systems are formulated in terms of a polytope of matrices.

On the basis of Lemma 3, the following definition is given.

Definition 1. The uncertain FO-LTI system (4) is said to be robustly stable if there exist positive definite Hermitianmatrices
Q1(ξ) and Q2(ξ) such that

eiθQ1(ξ)A∗(ξ) + e−iθA(ξ)Q1(ξ) + e−iθQ2(ξ)A∗(ξ) + eiθA(ξ)Q2(ξ) < 0,

for any A(ξ) ∈ A, where θ = (1 − α)π/2.

Due to convexity, robust stability of the uncertain FO-LTI system (4) can be easily verified through the existence of positive
definite Hermitian matrices Q1 and Q2 such that

eiθQ1A∗

i + e−iθAiQ1 + e−iθQ2A∗

i + eiθAiQ2 < 0, (i = 1, 2, . . . ,N), (6)

where θ = (1 − α)π/2.

Remark 2. Note that (6) yields a conservative result, as the Hermitian matrices Q1(ξ) and Q2(ξ) are restricted to constant
positive definite HermitianmatricesQ1 andQ2. A less conservative alternative for testing the robust stability of the uncertain
FO-LTI system (4) is given as the following theorem.
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Theorem 1. If there exist positive definite Hermitian matrices Q1i and Q2i (i = 1, 2, . . . ,N) such that

eiθQ1iA∗

i + e−iθAiQ1i + e−iθQ2iA∗

i + eiθAiQ2i < −I, (i = 1, 2, . . . ,N), (7)

eiθQ1jAi + e−iθA∗

i Q1j + eiθQ1iAj + e−iθA∗

j Q1i + e−iθQ2jAi + eiθA∗

i Q2j + e−iθQ2iAj + eiθA∗

j Q2i <
2

N − 1
I

(i = 1, 2, . . . ,N − 1, j = i + 1, . . . ,N), (8)

then the uncertain FO-LTI system (4) is robustly stable.

Proof. Let Q1(ξ) =
N

i=1 ξiQ1i, Q2(ξ) =
N

i=1 ξiQ2i, where
N

i=1 ξi = 1 and ξi ≥ 0. It is clear that Q1(ξ) and Q2(ξ) are
positive definite parameter dependent Hermitian matrices. From (5), the following equation can be obtained:

eiθQ1(ξ)A∗(ξ) + e−iθA(ξ)Q1(ξ) + e−iθQ2(ξ)A∗(ξ) + eiθA(ξ)Q2(ξ)

= eiθ


N
i=1

ξiQ1i


N
i=1

ξiA∗

i


+ e−iθ


N
i=1

ξiAi


N
i=1

ξiQ1i



+ e−iθ


N
i=1

ξiQ2i


N
i=1

ξiA∗

i


+ eiθ


N
i=1

ξiAi


N
i=1

ξiQ2i



=

N
i=1

ξ 2
i (eiθQ1iA∗

i + e−iθAiQ1i + e−iθQ2iA∗

i + eiθAiQ2i) +

N−1
i=1

N
j=i+1

ξiξj(eiθQ1jA∗

i + e−iθAiQ1j + eiθQ1iA∗

j

+ e−iθAjQ1i + e−iθQ2jA∗

i + eiθAiQ2j + e−iθQ2iA∗

j + eiθAjQ2i).

Since

(N − 1)
N
i=1

ξ 2
i − 2

N−1
i=1

N
j=i+1

ξiξj =

N−1
i=1

N
j=i+1

(ξi − ξj)
2

≥ 0,

from conditions (7) and (8), one gets

eiθQ1(ξ)A∗(ξ) + e−iθA(ξ)Q1(ξ) + e−iθQ2(ξ)A∗(ξ) + eiθA(ξ)Q2(ξ) < −


N
i=1

ξ 2
i −

N−1
i=1

N
j=i+1

ξiξj
2

N − 1


I ≤ 0.

This completes the proof of the theorem. �

Remark 3. It is important to note that if the polytope obtained in (5) is known to be robustly stable, then any positive
combination of its vertices can also produce stable matrices for the uncertain FO-LTI system (4), since a strictly positive
scalar number clearly does not affect the arguments of the eigenvalues of the system matrix.

3.2. The norm-bounded uncertainty case

Consider an uncertain FO-LTI system:

Dαx(t) = A(∆)x(t), (0 < α < 1) (9)

where A(∆) ∈ A∆ := {A + D∆E | ∥∆∥ ≤ 1}, A, D and E are known real matrices with appropriate dimensions.
On the basis of Lemma 4, we have the following definition.

Definition 2. The uncertain FO-LTI system (9) is said to be robustly stable if for any ∆ satisfying ∥∆∥ ≤ 1, there exist two
real symmetric positive definite matrices Q11 and Q21, and two skew-symmetric matrices Q12 and Q22, such that

2
i=1

2
j=1

sym{Θij ⊗ (A(∆)Qij)} < 0,
Q11 Q12
−Q12 Q11


> 0,


Q21 Q22
−Q22 Q21


> 0,

where the Θij (i, j = 1, 2) satisfy (2)–(3).

On the basis of Definition 2, the following theorem is given.
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Theorem 2. The uncertain FO-LTI system (9) is robustly stable if and only if there exist two real symmetric positive definite
matrices Q11 and Q21, two skew-symmetric matrices Q12 and Q22, and scalar constants λij > 0 (i, j = 1, 2) such that

P11 P12
PT
12 P22


< 0 (10)

Q11 Q12
−Q12 Q11


> 0,


Q21 Q22
−Q22 Q21


> 0 (11)

where the Θij (i, j = 1, 2) are defined in (2)–(3), sym{X} is defined as sym{X} := X + XT , and P11 =
2

i=1
2

j=1{sym{Θij ⊗

(AQij)} + λij(I2 ⊗ DDT )},

P12 =

I2 ⊗ (EQ11)
I2 ⊗ (EQ12)
I2 ⊗ (EQ21)
I2 ⊗ (EQ22)


T

, P22 = −diag(λ11, λ12, λ21, λ22) ⊗ I2n.

Proof (Sufficiency). As
2

i=1

2
j=1

sym{Θij ⊗ (A(∆)Qij)} =

2
i=1

2
j=1

sym{Θij ⊗ (AQij)} +

2
i=1

2
j=1

sym{Θij ⊗ (D∆EQij)},

then for any given ∥∆∥ ≤ 1, i.e., ∆∆T
≤ I , one has

(I2 ⊗ ∆) (I2 ⊗ ∆)T = (I2 ⊗ ∆) (I2 ⊗ ∆T ) = (I2 ⊗ ∆∆T ) ≤ I. (12)

Note that ΘijΘ
T
ij = I2 (i, j = 1, 2). It is known from (12) and Lemma A.3 that for any real scalars λij > 0 (i, j = 1, 2),

sym{Θij ⊗ (D∆EQij)} = sym{(Θij ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQij)}

≤ λij(Θij ⊗ D)(I2 ⊗ ∆)(I2 ⊗ ∆)T (Θij ⊗ D)T + λ−1
ij (I2 ⊗ EQij)

T (I2 ⊗ EQij)

≤ λij(I2 ⊗ DDT ) + λ−1
ij (I2 ⊗ EQij)

T (I2 ⊗ EQij).

Then
2

i=1

2
j=1

sym{Θij ⊗ (A(∆)Qij)} ≤

2
i=1

2
j=1

(sym{Θij ⊗ (AQij)} + λij(I2 ⊗ DDT ))

+

2
i=1

2
j=1

λ−1
ij (I2 ⊗ EQij)

T (I2 ⊗ EQij). (13)

As (10) and (11) hold, then by using the Schur complement [29] of (13), one has

2
i=1

2
j=1

sym{Θij ⊗ (A(∆)Qij)} < 0.

Then it is known from Definition 2 that the uncertain FO-LTI system (9) is robustly stable.
(Necessity) As the uncertain FO-LTI system (9) is robustly stable, then it is known from Definition 2 that there exist two real
symmetric positive definite matrices Q11 and Q21, and two skew-symmetric matrices Q12 and Q22, such that

2
i=1

2
j=1

sym{Θij ⊗ (A(∆)Qij)} < 0, (14)

where the Θij (i, j = 1, 2) satisfy (2)–(3). From (14), one has

T00 :=

2
i=1

2
j=1

sym{Θij ⊗ (AQij)} +

2
i=1

2
j=1

sym{(Θij ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQij)} < 0. (15)

Let Φ11 = T00 − sym{(Θ11 ⊗D) (I2 ⊗∆) (I2 ⊗ EQ11)}; then from (15) one knows that for any ξ1, ξ2 ∈ Rn, ξ = [ξ T
1 , ξ T

2 ]
T

≠ 0,

ξ TΦ11ξ < −2ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ .
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Define Γ := {ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ , ∥∆∥ ≤ 1}; then −x ∈ Γ for any x ∈ Γ . So one has

max
∥∆∥≤1

{ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ} ≥ 0.

Therefore,

ξ TΦ11ξ < −2 max
∥∆∥≤1

{ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ} ≤ 0.

And for any given ξ ∈ R2n, ξ ≠ 0, one obtains

(ξ TΦ11ξ)2 > 4

max
∥∆∥≤1

{ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ}

2

,

and then
max
∥∆∥≤1

{ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ}

2

= max
∥∆∥≤1

(ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ)2. (16)

On the basis of Lemma A.1, it is known from (12) and (16) that

(ξ TΦ11ξ)2 > 4(ξ T (Θ11 ⊗ D)(Θ11 ⊗ D)T ξ)(ξ T (I2 ⊗ EQ11)
T (I2 ⊗ EQ11)ξ). (17)

Then it is known from Lemma A.2 that there exists a real scalar λ11 > 0 such that

λ2
11(Θ11 ⊗ D) (Θ11 ⊗ D)T + λ11Φ11 + (I2 ⊗ EQ11)

T (I2 ⊗ EQ11) < 0.

Thus,

T11 := Φ11 + λ11(Θ11 ⊗ D) (Θ11 ⊗ D)T + λ−1
11 (I2 ⊗ EQ11)

T (I2 ⊗ EQ11)

= T00 − sym{(Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)} + λ11(Θ11 ⊗ D) (Θ11 ⊗ D)T + λ−1
11 (I2 ⊗ EQ11)

T (I2 ⊗ EQ11) < 0.

Let Φ12 = T11 − sym{(Θ12 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ12)}; from the above inequality one knows that for all ξ1, ξ2 ∈ Rn,
ξ = [ξ T

1 , ξ T
2 ]

T
≠ 0,

ξ TΦ12ξ < −2ξ T (Θ12 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ ,

and hence,

ξ TΦ12ξ < −2 max
∥∆∥≤1

{ξ T (Θ12 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ12)ξ} ≤ 0.

Therefore, for any given ξ ∈ R2n, ξ ≠ 0, one has

(ξ TΦ12ξ)2 > 4

max
∥∆∥≤1

{ξ T (Θ12 ⊗ D)(I2 ⊗ ∆) (I2 ⊗ EQ12)ξ}

2

= 4 max
∥∆∥≤1

(ξ T (Θ11 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ11)ξ)2.

On the basis of Lemma A.1, one has that

(ξ TΦ12ξ)2 > 4(ξ T (Θ12 ⊗ D)(Θ12 ⊗ D)T ξ)(ξ T (I2 ⊗ EQ12)
T (I2 ⊗ EQ12)ξ).

Then it is known from Lemma A.2 that there exists a real scalar λ12 > 0 such that

λ2
12(Θ12 ⊗ D) (Θ12 ⊗ D)T + λ12Φ12 + (I2 ⊗ EQ12)

T (I2 ⊗ EQ12) < 0.

Thus,

T12 := Φ12 + λ12(Θ12 ⊗ D) (Θ12 ⊗ D)T + λ−1
12 (I2 ⊗ EQ12)

T (I2 ⊗ EQ12)

= T11 − sym{(Θ12 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ12)} + λ12(Θ12 ⊗ D) (Θ12 ⊗ D)T + λ−1
12 (I2 ⊗ EQ12)

T (I2 ⊗ EQ12) < 0.

Similarly, let Φ21 = T12 − sym{(Θ21 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ21)}; it is known that there exists a real scalar λ21 > 0 such that

λ2
21(Θ21 ⊗ D) (Θ21 ⊗ D)T + λ21Φ21 + (I2 ⊗ EQ21)

T (I2 ⊗ EQ21) < 0.

Thus,

T21 := Φ21 + λ21(Θ21 ⊗ D) (Θ21 ⊗ D)T + λ−1
21 (I2 ⊗ EQ21)

T (I2 ⊗ EQ21)

= T12 − sym{(Θ21 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ21)} + λ21(Θ21 ⊗ D) (Θ21 ⊗ D)T + λ−1
21 (I2 ⊗ EQ21)

T (I2 ⊗ EQ21) < 0.
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Let Φ22 = T21 − sym{(Θ22 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ22)}. It is known that there exists a real scalar λ22 > 0 such that

λ2
22(Θ22 ⊗ D) (Θ22 ⊗ D)T + λ22Φ22 + (I2 ⊗ EQ22)

T (I2 ⊗ EQ22) < 0.

Thus,

T22 := Φ22 + λ22(Θ22 ⊗ D) (Θ22 ⊗ D)T + λ−1
22 (I2 ⊗ EQ22)

T (I2 ⊗ EQ22)

= T21 − sym{(Θ22 ⊗ D) (I2 ⊗ ∆) (I2 ⊗ EQ22)} + λ22(Θ22 ⊗ D) (Θ22 ⊗ D)T + λ−1
22 (I2 ⊗ EQ22)

T (I2 ⊗ EQ22),

i.e.,

T22 =

2
i=1

2
j=1

sym{Θij ⊗ (AQij)} +

2
i=1

2
j=1

λij(Θij ⊗ D)(Θij ⊗ D)T +

2
i=1

2
j=1

λ−1
ij (I2 ⊗ EQij)

T (I2 ⊗ EQij) < 0. (18)

As ΘijΘ
T
ij = I2 (i, j = 1, 2), it can be found from (18) that

T22 :=

2
i=1

2
j=1

sym{Θij ⊗ (AQij) + λij(I2 ⊗ DDT )} +

2
i=1

2
j=1

λ−1
ij (I2 ⊗ EQij)

T (I2 ⊗ EQij) < 0.

By using the Schur complement of the above inequality, one obtains (10). This completes the proof of the theorem. �

Remark 4. Control systems with norm-bounded uncertainty are discussed frequently when no structured information
about the uncertainties is assumed. In other words, the basic robust control theory addressing the norm-bounded
uncertainty problem can accommodate uncertainties with arbitrary structure. On the basis of Lemma 4, LMI methods have
been used for testing the robust stability for the uncertain FO-LTI system (9), and Theorem 2 provides a robust stability
condition for (9) no matter what the structure of ∆ is.

Remark 5. In [30], it is pointed out that the control problems of controlled systems with unstructured uncertainties are the
main issues in nonlinear robust control, which is an important approach in engineering application, e.g., it is extensively
applied in motion control of flying robots [31]. Therefore, the robust control of uncertain fractional-order systems with
unstructured uncertainties should be a future topic of ours due to its significance both in theory and in application.

4. Numerical examples

In this section, two numerical examples are presented to demonstrate the effectiveness of the proposed theorems.

Example 1. Consider an uncertain FO-LTI system (4) with α = 0.5, N = 2, A1 =


−3.4885 2.8677
−1.1614 −10.5115


and A2 =

−3.1198 4.7278
−5.1389 −8.8802


.

By solving complex LMIs (7) and (8), one obtains positive definite Hermitian matrices

Q11 =


10.1770 1.4741 + j2.7719
1.4741 − j2.7719 3.5683


, Q12 =


10.2520 2.5827 + j3.3649

2.5827 − j3.3649 5.8371


,

Q21 =


10.1770 1.4741 − j2.7719

1.4741 + j2.7719 3.5683


, Q22 =


10.2520 2.5827 − j3.3649

2.5827 + j3.3649 5.8371


.

By Theorem 1, one can conclude that the uncertain FO-LTI system (4) is robustly stable. For numerical confirmation, we
chose 100 random numbers for ξ1 in [0, 1] with the uniform distribution; then 100 matrix pairs (A(ξ),Q1(ξ),Q2(ξ)) were
obtained for the following inequality to be satisfied for each matrix pair (A(ξ),Q1(ξ),Q2(ξ)):

eiθQ1(ξ)A(ξ) + e−iθA∗(ξ)Q1(ξ) + e−iθQ2(ξ)A(ξ) + eiθA∗(ξ)Q2(ξ) < 0.

Thus, Theorem 1 is confirmed numerically.

Example 2. Consider an uncertain FO-LTI system described by (9) with α = 0.5, A =


−4.3228 0.4066
0.5306 −3.6772


, D =

0.6555 0.7060
0.1712 0.0318


, and E =


0.6324 0.2785
0.0975 0.5469


. By solving (10) and (11), one obtains

Q11 =


4.4590 0.8436
0.8436 1.6910


, Q12 =


0 0.0852

−0.0852 0


,

Q21 =


4.4590 0.8436
0.8436 1.6910


, Q22 =


0 −0.0852

0.0852 0


,

and λ11 = λ12 = λ21 = λ22 = 10.9045.
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Therefore, by Theorem 2, the uncertain FO-LTI system (9) is robustly stable.
To confirm this conclusion numerically, we choose 100 randomuncertainmatrices∆ satisfying ∥∆∥ ≤ 1. It can be shown

that |arg(eig(A(∆)))| > α π
2 holds for any chosen ∆. Thus, Theorem 2 is verified numerically.

5. Conclusions

Robust stability for uncertain FO-LTI systems of order α ∈ (0, 1) with structured and unstructured uncertainties was
discussed in this paper. For fractional-order systemswith polytope-type uncertainty, a less conservative sufficient condition
was given: that the robust stability can be guaranteed by the existence of two positive definite parameter dependent
Hermitian matrices. For fractional-order systems with norm-bounded uncertainty, a sufficient and necessary condition for
robust stability was shown, in terms of two real symmetric positive definite matrices and two skew-symmetric matrices,
which can be obtained by solving a set of linear matrix inequalities. Finally, two numerical examples were presented to
illustrate the effectiveness of our results.
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Appendix

Lemma A.1 ([32]). Given any x ∈ Rn, the following equation holds:

max
∥∆∥≤1

{(xTD∆Ex)2 : ∆T∆ ≤ I, ∆ ∈ Rn×n
} = xTDDT xxTETEx.

Lemma A.2 ([32]). Let X, Y and Z be given n×n realmatrices such that X ≥ 0, Y < 0 and Z ≥ 0. Assume (xTYx)2−4xTXxxTZx >
0 holds for all x ∈ Rn, with x ≠ 0. Then there exists a constant λ > 0 such that

λ2X + λY + Z < 0.

Lemma A.3 ([25]). For any matrices X and Y with appropriate dimensions, we have

XTY + Y TX ≤ λXTX + (1/λ)Y TY

valid for any λ > 0.
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