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SUMMARY

The lack of understanding of the interplay between
hematopoietic stem cells (HSCs) and the immune
system has severely hampered the stem cell
research and practice of transplantation. Major prob-
lems for allogeneic transplantation include low levels
of donor engraftment and high risks of graft-versus-
host disease (GVHD). Transplantation of purified allo-
geneic HSCs diminishes the risk of GVHD but results
in decreased engraftment. Here we show that ex vivo
expanded mouse HSCs efficiently overcame the
major histocompatibility complex barrier and repo-
pulated allogeneic-recipient mice. An 8-day expan-
sion culture led to a 40-fold increase of the allograft
ability of HSCs. Both increased numbers of HSCs
and culture-induced elevation of expression of the
immune inhibitor CD274 (B7-H1 or PD-L1) on the
surface of HSCs contributed to the enhancement.
Our study indicates the great potential of utilizing
ex vivo expanded HSCs for allogeneic transplanta-
tion and suggests that the immune privilege of
HSCs can be modulated.

INTRODUCTION

Hematopoietic stem cells (HSCs) have been used in transplanta-

tion to treat patients with leukemia, lymphoma, some solid

cancers, and autoimmune diseases (Bryder et al., 2006). In

particular, allogeneic bone marrow (BM) transplantation is

potentially curative for both inherited and acquired hematopoi-

etic diseases (Gyurkocza et al., 2010). Two major problems,

failure of engraftment and graft-versus-host disease (GVHD),

have severely limited the progress in the field, however. Although

the inclusion of donor T cells in transplantation enhances donor

engraftment and has graft-versus-leukemia effects, it causes

life-threatening GVHD. Transplantation of purified allogeneic

HSCs diminishes the risk of GVHD but also results in decreased

engraftment (Shizuru et al., 1996; Wang et al., 1997). It is not

clear why most allogeneic HSCs cannot escape immune rejec-
tion and whether the allograft efficiency of HSCs can be

improved. The resolution of these questions will promote the

understanding of the immunology of HSCs and other stem cells

and greatly improve the practice of allogeneic transplantation.

We recently developed an efficient culture system for ex vivo

expansion of HSCs (Zhang and Lodish, 2008). This system is

based on the use of serum-free culture medium supplemented

with several growth factors including SCF, TPO, FGF-1/Flt3-L,

IGFBP2, and angiopoietin-like proteins (Angptls) (Huynh et al.,

2008; Zhang et al., 2006, 2008). In vivo studies suggested that

Angptls are newmolecular components of themicroenvironment

of fetal liver and adult HSCs (Chou and Lodish, 2010; Zheng

et al., 2011), and Angptl1 and 2 are essential to HSC develop-

ment in zebrafish (Lin and Zon, 2008, ASH 50th Annual Meeting,

abstract). We and others have used this culture system to

expand mouse and human HSCs for transplantation or genetic

modification purposes (Akala et al., 2008; Carter et al., 2010;

Chen et al., 2009; Drake et al., 2011; Heckl et al., 2011; Huynh

et al., 2008; Khoury et al., 2011; Kiel et al., 2007; Stern et al.,

2008; Zhang et al., 2006, 2008; Zhao et al., 2010). There are

two important features of this HSC culture system: the increased

number of repopulating HSCs (Huynh et al., 2008; Zhang et al.,

2006, 2008) and the change of surface expression of many

surface proteins (Zhang and Lodish, 2005). While the expansion

of repopulating HSCs were validated by transplanting cultured

HSCs into congeneic or immune-deficient mice in these previous

studies, we hypothesized that ex vivo expansion of HSCs may

also modulate the immunological properties of HSCs so that

they possess an altered ability to cross the immune barrier

upon allogeneic transplantation. To test this hypothesis, we

started to compare the allograft abilities of freshly isolated

HSCs and ex vivo expanded HSCs in allogeneic transplantation

models.

RESULTS

Ex Vivo Expanded HSCs Have Dramatically Enhanced
Allograft Ability
With a well-established mouse model for fully allogeneic trans-

plantation (see Figure S1 available online), we compared the allo-

graft abilities of freshly isolated and ex vivo expandedHSCs from

CD45.1 C57BL/6 donors transplanted into lethally irradiated
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Figure 1. Ex Vivo Expanded HSCs Over-

come MHC Barrier in Noncompetitive

Allogeneic Transplantation

Indicated numbers of freshly isolated Lin�Sca-1+

Kit+CD34�Flk2� HSCs (A–C) or their 8 day

culturedprogenies (DandE) fromCD45.1C57BL/6

donors were transplanted into lethally irradiated

BALB/c (CD45.2) recipients without competitors

(n = 4–5). HSCs were cultured in STFIA medium,

which allows ex vivo expansion of HSCs (Zhang

et al., 2006), and there were�200-fold increase of

total cells after 8 days of culture (with 1.16 ± 0.143

104 cultured cells derived from the input 50 cells).

(A andD)Numbers ofmicewith failed or successful

donor engraftment after being transplanted by

indicated numbers of freshly isolated HSCs or their

cultured equivalents at 16 weeks posttransplant.

The 0% repopulated mice included both survived

and dead ones.

(B) Representative flow cytometry analysis of the

multilineage repopulation of 2,500 freshly isolated

HSCs at 16 weeks posttransplant.

(C and E) Multilineage contribution of indicated

numbers of freshly isolated HSCs or cultured

equivalent at 16weeks posttransplant, respectively

(n = 4–5).

Data are expressed as mean ± SEM. See also

Figure S1.
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BALB/c (CD45.2) recipients. The culture was performed in our

optimized STFIA medium (Huynh et al., 2008; Zhang et al.,

2006) for 8 days that allows ex vivo expansion of HSCs. Consis-

tent with previously reported results (Shizuru et al., 1996; Wang

et al., 1997), a relatively large number (1,000 or more) of freshly

isolated BM Lin�Sca-1+Kit+CD34�Flk2� HSCs were needed

for successful allograft (Figures 1A–1C). By striking contrast,

the cultured progeny of 50 or more input equivalent HSCs

were capable of achieving the same level of allograft (Figures

1D and 1E). Similar to freshly isolated HSCs, cultured HSCs

were capable of multilineage differentiation in allogeneic mice

(Figures 1B, 1C, and 1E) and no sign of GVHD was observed.

This suggests that ex vivo expanded HSCs have enhanced allo-

graft abilities compared with freshly isolated cells.

The above strategymay result in the death of micewhen donor

HSCs are not capable of engrafting recipients. To ensure that

recipient mice survive after transplantation and to better quanti-

tate the allograft abilities of different donor cells, we performed

allogeneic transplantation by including competitors (Figure S1).

These competitors are total BM cells freshly isolated from the

same type of mice as the recipients; these cells provide short-

term radio-protection and serve as internal controls but also

significantly enhance the host immune rejection and increase

the difficulty of donor engraftment. Figure 2 shows the result of

a representative competitive allogeneic transplantation from

donorC57BL/6 (CD45.1) toBALB/c (CD45.2) recipients. Although

10,000 freshly isolated CD45.1 C57BL/6 BM Lin�Sca-1+Kit+

CD34�Flk2� HSCs failed to engraft into the BALB/c recipients

in the presence of competitors (0%; Figure 2A, left), their cultured

progenies had dramatically increased engraftment (55%; Fig-

ure 2A, right). Similar results were obtained from the measure-
120 Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc.
ment of major histocompatibility complex (MHC) markers of

donors and recipients (Figure 2B). This allogeneic reconstitution

sustained over time (Figure 2C) and the donor cells repopulated

the lymphoid andmyeloid lineages (Figures 2D and 2E), attesting

to the engraftment of the donor long-termHSCs. Again, no signof

GVHD was observed in the transplanted mice. To test whether

allogenic donor HSCs were tolerated in the host, we performed

secondary transplantation by isolating BM cells from the primary

recipients and transplanting them into secondary BALB/c recipi-

ents. We found that the original CD45.1 donor cells successfully

repopulated secondary recipients (Figures 2F and 2G). The

successful secondary transplantation indicates that the alloge-

neic donor HSCs were already tolerated after the primary trans-

plantation. This result was further confirmed by the mixed

lymphocyte reaction (MLR) experiment, showing that BALB/c

T cells were not stimulated by the original donor-derived cells in

primary transplanted mice, but reacted to the counterpart cells

isolated from CD45.1 C57BL/6 mice (Figure 2H). Therefore, the

competitive allogeneic transplantation (Figure 2) gave similar

results as the noncompetitive allograft (Figure 1).

We further employed a third transplantation model to compare

the abilities of donor HSCs before and after ex vivo expansion to

engraft the allogeneic recipient mice with sublethal irradiation.

Again the ex vivo expanded HSCs achieved markedly increased

allograft compared to their uncultured counterparts (Figure S2A).

All these results indicate a dramatic enhancement of allograft

ability of HSCs after ex vivo expansion.

Moreover, to directly compare the allograft capacities of HSCs

before and after ex vivo expansion, we cotransplanted freshly

isolated CD45.2 C57BL/6 HSCs and ex vivo expanded proge-

nies of CD45.1 C57BL/6 HSCs into the same BALB/c recipient



Figure 2. Ex Vivo Expanded HSCs Overcome MHC Barrier in Competitive Allogeneic Transplantation

(A–E) Freshly isolated 10,000 Lin�Sca-1+Kit+CD34�Flk2� HSCs or their 8 day cultured progenies from CD45.1 C57BL/6 donors were transplanted into lethally

irradiated BALB/c (CD45.2) recipients alongwith 100,000 total bonemarrow cells freshly isolated fromBALB/cmice as competitors. HSCswere cultured in STFIA

medium, which allows ex vivo expansion of HSCs. Similar results were obtained in at least two independently repeated experiments.

(A and B) Representative flow cytometry plots show that 10,000 freshly isolated donor HSCs had no engraftment (left), whereas the cultured progeny of 10,000

input donor HSCs (right) had significant engraftment (54.83% CD45.1 or 49.07% H-2Kb donor chimerism in A or B, respectively) in allogeneic recipients.

(C) Summary of donor engraftment in allogeneic recipients at 4, 8, 16, and 40 weeks posttransplant (*p < 0.05, n = 6).

(D and E) Multilineage contribution of cultured cells in allogeneic recipients at 16 weeks posttransplant (n = 6).

(F andG) Summary of donor engraftment at 3, 8, and 15weeks after secondary transplantation into BALB/cmice (n = 5). Multilineage contribution of cultured cells

in allogeneic recipients at 15 weeks posttransplant is shown (G).

(H) MLR assay was performed in which splenocytes from C57BL/6 mice stimulated the proliferation of BALB/c T cells (bar 3) whereas splenocytes isolated from

cultured C57BL/6 donor HSCs repopulated BALB/c recipients lost the ability to stimulate the proliferation of BALB/c T cells (bar 2). *p < 0.05, n = 3.

(I) Comparison of the allograft abilities of freshly isolated and cultured HSCs by limiting dilution analysis. Three types of donor cells, including freshly isolated

C57BL/6 CD45.1 Lin�Sca-1+Kit+CD34�Flk2�, progenies after 8-day culture in ST medium (which does not support HSC expansion), and progenies after 8-day

culture in STFIA medium (which supports HSC expansion), were compared. Transplantation into lethally irradiated BALB/c mice was conducted along with

100,000 total BM competitors isolated fromBALB/cmice. Limiting dilution analysis was performed and L-Calc software was used to calculate the HSC frequency

(*, **p < 0.05, compared to uncultured HSCs).

Data are expressed as mean ± SEM. See also Figures S1 and S2 and Table S1.
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mice (Figure S2B). Ex vivo expandedHSCs demonstrated a clear

advantage over freshly isolated HSCs in this direct competitive

allograft setting (Figure S2B).

This ability of cultured HSCs to overcome the allogeneic

barrier was not restricted to the use of particular allogeneic

transplantation models. In addition to using C57BL/6 mice and

BALB/c mice as the donor and recipient, respectively, we tested

a number of other donor/recipient combinations and reached

the same conclusion. For example, ex vivo expanded HSCs
isolated from FVB (CD45.1) mice had much greater ability to re-

populate CD45.2 C57BL/6 recipients than their freshly isolated

counterparts (Figure S2C).

Both the Increase of HSC Numbers and Expansion-
Independent Characteristics Acquired during Ex Vivo
Culture Contribute to the Improved Allograft Efficiency
Because we used a culture system that expands HSCs, we

sought to determine the contribution of the increase of HSC
Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc. 121
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numbers during ex vivo expansion to the increased allograft

ability by conducting limiting dilution analyses (Huynh et al.,

2008; Zhang et al., 2006; Zheng et al., 2011). First, we used

competitive syngeneic transplantation to calculate the numbers

of repopulating CD45.1 C57BL/6 BM HSCs before and after

ex vivo expansion. When we cultured HSCs in the optimized

STFIA medium for 8 days, we obtained 11-fold (= 69/6; Table

S1A, Figure S2D) expansion in the number of HSCs as deter-

mined by limiting dilution analysis in syngeneic transplantation.

Next, we quantitated the allograft abilities of these HSCs before

and after culture by competitive allogeneic transplantation into

BALB/c mice. For freshly isolated donor HSCs, the frequency

of allograftable cells was 1/43,818, whereas the frequency in

those cells cultured in the STFIA medium was 1/945 of input

equivalent cells, determined by the competitive allogeneic trans-

plantation (Figure 2I; Tables S1B and S1C). This represents

a �40-fold (= 43,818/945) increase of allograft ability when cells

were ex vivo expanded. Hence, in this experiment, ex vivo

expansion led to 11-fold increase of HSC numbers and 40-fold

increase of allograft ability. This result is concordant with

previous reports that an increased number of HSCs enhances

reconstitution of the hematopoietic compartment across the

MHC barrier (Shizuru et al., 1996; Wang et al., 1997). Neverthe-

less, since the ex vivo expansion of HSCs had 40-fold increase

of allograft ability and the net increase of HSC number was

11-fold, another �4-fold increase (= 40/11) should be contrib-

uted by culture independent of expansion of HSCs.

To further determine whether culture enhances allograft ability

independent of expansion, we cultured HSCs in conditions that

do not support HSC expansion and used these cells for trans-

plantation. To this end, we cultured HSCs in serum-free medium

supplemented with only SCF and TPO (as ST medium; Figure 2I;

Tables S1A–S1C, Figure S2D), based on previous results (Huynh

et al., 2008; Zhang et al., 2006; Zhang and Lodish, 2004, 2005)

and our syngeneic transplantation (Table S1A), this condition

does not support HSC expansion. We determined that the allo-

graft frequency for these cultured but unexpanded HSCs was

1/12,332 input equivalent cells (Figure 2I). This represented a

�4-fold increase (= 43,818/12,332) of allograft ability compared

to freshly isolated HSCs. This number is in perfect agreement

with the above estimate of a �4-fold of increase of allograft

ability by expansion-independent mechanism(s) based on

comparison of results in syngeneic transplantation and alloge-

neic transplantation. Therefore, increase of allograft ability of

HSCs does not necessarily need HSC expansion. In summary,

our results indicate that both the increase of HSC numbers and

expansion-independent characteristics acquired during ex vivo

culture contribute to the improved allograft efficiency.

Accessory Cells Produced during Culture Does Not
Contribute to the Enhanced Allograft Ability of HSCs
To identify the expansion-independent mechanism for cultured

HSCs to cross the MHC barrier, we explored two possibilities:

the presence of certain accessory hematopoietic or mesen-

chymal cells and a change of HSC immunogenicity during

culture. To test the first possibility, we examined whether facili-

tating cells (Gandy et al., 1999; Kaufman et al., 1994), regulatory

T cells (Taylor et al., 2008), or other cells produced during culture

supported allograft. It has been established that unique differen-
122 Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc.
tiated BM populations as facilitating cells improve allogeneic

reconstitution and result in donor-specific transplantation toler-

ance across MHC disparities (Gandy et al., 1999; Kaufman

et al., 1994). The reported facilitating cells express conventional

T cell components such as CD8 but are not T cells because they

do not express TCR (Kaufman et al., 1994; Bridenbaugh et al.,

2008). Interestingly, facilitating cells induce an increase in

numbers of donor regulatory T cells (Treg) (Taylor et al., 2008),

which directly facilitate allograft. Although freshly isolated

HSCs do not contain CD3+ cells (Figure S3A), after HSCs were

cultured for 8 days in STFIA medium, approximately 0.3% of

cells possessed the surface phenotype of CD8+CD45R+TCR�

(Figure S3B), the same phenotype as the previously character-

ized facilitating cells (Kaufman et al., 1994). To test whether the

phenotypic ‘‘facilitating cells’’ produced in culture supported

allograft, we collected these culture-produced CD8+CD45R+

TCR� cells by FACS and cotransplanted them with freshly iso-

lated HSCs (1:1 as reported) (Kaufman et al., 1994) for allogeneic

transplantation. We did not observe improved transplantation

efficiency by including these cultured phenotypic facilitating

cells, suggesting that they were not functional facilitating cells.

In parallel, we were unable to detect phenotypic Treg (FoxP3+

CD4+CD25+) cells in the cultures we examined, suggesting the

increased allograft of cultured cells was probably not contrib-

uted by production of Treg cells. To further test whether differen-

tiated hematopoietic cells affected allograft, we isolated Lin+

cells from the HSC culture and cotransplanted them with freshly

isolated HSCs. These Lin+ cells did not alter allogeneic trans-

plantation efficiency (Figure S3C). In addition, there were no

apparent adherent cells during our 8-day culture, and a CFU-F

assay showed that no meshenchymal stem cells were produced

from the cultured HSCs (Figure S3D). These results indicate that

there is no engraftment-enhancing effect from mesenchymal

stem cells. Taken together, we concluded that the accessory

cells produced during the culture did not significantly contribute

to increased allograft ability of ex vivo expanded HSCs.

Upregulation of CD274 during Culture Supports
HSC Allograft
Next we tested the possibility that the immunogenicity of HSCs

changes during culture by examining the expression of surface

immune proteins, including MHC-I, MHC-II, CD274 (B7-H1 or

PD-L1), CD275 (B7-H2), CD47, CD80, and CD86. The expres-

sion of these surface proteins on freshly isolated and cultured

cells, as determined by flow cytometry, are summarized in

Figures 3A and 3B. Almost all the freshly isolated HSCs and

cultured cells expressed MHC-I and CD47, whereas very few

of either population expressed MHC-II, CD275, CD80, or

CD86. By contrast, there was a significant increase of surface

expression of CD274 upon culture, as evidenced by an increase

of CD274+ cells from 61% to 88% (Figure 3A). Importantly,

cultured cells contained a new population with more than

10-fold increase of CD274 expression (Figures 3C and 3D, and

fold increase of CD274 staining intensity = 10,270/752 in Fig-

ure 3C). There was a greater portion of CD274-positive cells in

the phenotypic cultured HSCs as Lin�Sca-1+Kit+CD48� cells

(Noda et al., 2008) than in differentiated cultured cells (Figure 3E),

although the expression intensities of CD274 were similar in all

fractions of cultured cells (Figure 3F).



Figure 3. Altered Expression of Certain Surface

Immune Molecules on Phenotypic HSCs during

Culture

(A and B) A summary of the result of flow cytometry

analysis of surface expression of indicated immune

molecules after 8 days of culture of HSCs in STFIA

medium (*p < 0.05, n = 3–5).

(C and D) CD274 surface expression was increased in

cultured cells. In (C), MFI of CD274 expression determined

by flow cytometry analysis in freshly isolated and cultured

HSCs are shown (*p < 0.05, n = 3–5). Shown in (D) are

representative flow cytometry plots indicating 43.5%

freshly isolated HSCs were CD274 positive (as CD274low),

whereas 69% of cultured cells were CD274low and 20.0%

as CD274high. Gatings were set based on isotype controls.

(E and F) Percentages of CD274high cells and MFI of

CD274 expression in different fractions of cultured HSCs.

Data are expressed as mean ± SEM. See also Figure S3.
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B7 immune proteins belong to the immunoglobulin (Ig) super-

family, with two Ig-like extracellular domains and short cyto-

plasmic domains. CD274 is a member of the B7 family that is

expressed or induced on dendritic cells or non-antigen-present-

ing cells and inhibits T cell or innate activation (Francisco et al.,

2010; Zou and Chen, 2008). While Figure 3D shows that

CD274might be upregulated on cultured HSCs based on pheno-

typic analysis, because the exact surface phenotype of cultured

HSCs is not defined (Zhang and Lodish, 2005), we used the ‘‘gold

standard’’ BM reconstitution analysis to test whether CD274was

expressed on functional HSCs and whether its level was altered

upon culture. We first sorted freshly isolated BM cells into frac-

tions negative and positive for immunostaining with antibodies

against CD274. The repopulation activities of these fractions

were then analyzed in the competitive syngeneic transplantation

model. All the repopulating activity was within the CD274-posi-

tive fraction (Figures 4A–4C), indicating that all freshly isolated

HSCs express CD274 on their surface. Since CD274 level was

elevated more than 10-fold on some cultured cells (Figures 3C
Cell Stem Cell 9,
and 3D), we sought to determine whether

surface expression of CD274 was increased

on functional repopulating HSCs after culture.

To this end, we fractioned the low positive and

high positive cultured cells (as CD274low and

CD274high, respectively) followed by competi-

tive syngeneic transplantation. The repopulat-

ing activity was found in both CD274low and

CD274high fractions (Figures 4D and 4E; Fig-

ure S4). This reveals that indeed a fraction of

HSCs increased their surface expression of

CD274 more than 10-fold under our culture

conditions. Interestingly, different culture condi-

tions did not change the CD274 upregulation

(Figure 4F), suggesting that the increase of

CD274 expression was induced by general

proliferation signals in culture and was indepen-

dent of HSC expansion.

To determine the role of CD274 in transplan-

tation of HSCs, we utilized mice that are defi-

cient in CD274 (Dong et al., 2004). We showed
that CD274-null mice had higher frequency of phenotypic

HSCs than wild-type (WT) mice (Figure S5A), and the same

number of freshly isolated CD274-null HSCs or ex vivo expanded

null HSCs had slightly higher or similar long-term repopulation as

WT HSCs in competitive syngeneic transplantation (Figures 5A–

5D). These results suggest that CD274 per se does not signifi-

cantly support the HSC activity in homeostatic and cultured

conditions, concordant with the general normal phenotype of

the CD274-null mice in homeostasis (Zou and Chen, 2008). By

contrast, cultured CD274-null HSCs showed significantly

decreased long-term repopulation in the competitive allogeneic

repopulation compared to WT HSCs at 16 weeks posttransplant

(Figures 5E and 5F). The deficiency of B7-H4, another B7 family

immune inhibitor, did not decrease allograft efficiency at

8–16 weeks posttransplant compared to WT HSCs (Figures 5E

and 5F). To further confirm that the surface CD274 on cultured

HSCs facilitates allograft, we performed noncompetitive alloge-

neic transplantation and compared the allograft of 1,000 input

equivalent WT HSCs, anti-CD274 neutralizing antibody-treated
119–130, August 5, 2011 ª2011 Elsevier Inc. 123



Figure 4. CD274 Is Upregulated on Repopulating

HSCs during Culture

(A–C) 2 3 105 freshly isolated CD45.2 CD274+ and

CD274� BM cells were transplanted, respectively,

together with 23 105 CD45.1 competitor cells into lethally

irradiated congenic CD45.1 mice (*p < 0.05, n = 5).

(A) Gating plots of CD274+ and CD274� BM cells.

(B) Peripheral blood engraftments at weeks 3, 10, and 16

after transplant.

(C) Multilineage contribution of cultured cells at 16 weeks

posttransplant.

(D and E) 9.63 104 sorted cultured CD45.2 CD274high and

CD274low total cultured cells were transplanted, respec-

tively, together with 1 3 105 CD45.1 competitor cells into

lethally irradiated congenic CD45.1 mice (*p < 0.05, n = 5).

(D) Peripheral blood engraftments at week 3, 5, and 16

after transplant.

(E) Multilineage contribution of cultured cells at 16 weeks

posttransplant.

(F) All tested culture condition induces CD274 expression

on the surface of HSCs (n = 3). Shown are the percentages

of cells that express CD274 on their surface after 8 days of

culture of HSCs in serum-free medium supplemented with

SCF+TPO(ST),SCF+TPO+FGF-1 (STF),SCF+TPO+FGF-1+

Angptl3 (STFA), SCF+TPO+FGF-1+IGFBP2 (STFI), and

SCF+TPO+FGF-1+Angtpl3+IGFBP2 (STFIA).

Data are expressed as mean ± SEM. See also Figure S4.

Cell Stem Cell

Cultured HSCs Enhance Allograft
WT HSCs, and CD274-null HSCs after culture (Figure 5G). Here

we used ST medium (that does not support expansion of HSCs)

to culture HSCs and specifically evaluate the expansion-inde-

pendent effect of CD274 onHSC allograft. The 1,000 input equiv-

alent WT HSCs engrafted 5 out of 17 recipients, whereas the

anti-CD274 neutralizing antibody treated WT HSCs or the

cultured CD274-null HSCs lost donor allograft activity (Fig-

ure 5G). Therefore, the deletion of CD274 or treatment with

a CD274 neutralizing antibody abrogated the ability of cultured

but unexpanded HSCs to cross the MHC barrier. A MLR exper-

iment confirmed that, whereas cultured WT HSCs significantly

inhibited allogeneic T cell activation, cultured CD274-null HSCs

did not exhibit this inhibitory effect (Figure 5H). Anti-PD-1 was

capable of decreasing the late apoptosis of activated T cells co-

cultured with precultured HSCs (Figure S5B). These results led

us to conclude that CD274, a ligand known to inhibit T cell

responses, is induced on cultured HSCs and possibly some

differentiated cells; PD-1-mediated apoptosis of host T cells is

one mechanism by which cultured HSCs overcome the MHC

barrier in allograft.
124 Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc.
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While many studies demonstrated direct

evidence that CD274 impedes T cell functions,

it was reported that CD274 can also suppress

the activation of innate immune cells (Yao

et al., 2009). We performed a further experiment

to distinguish the possible involvement of T cell-

mediated immune response and innate immu-

nity in the cultured HSC-enabled allograft. To

this end, we cultured WT and CD274-null

HSCs in the STFIA medium, followed by trans-

plantation into sublethally irradiated SCID

BALB/c mice (2.5 Gy). These recipient mice do
ot have functional T cells or B cells but do have normal NK cells.

WT and CD274-null HSCs do not have difference in repopula-

on in these mice, it would indicate that CD274 mainly works

rough suppressing allogeneic T cell activation but not innate

munity. Indeed we did not observe difference in allograft abil-

ies of cultured WT and null HSCs in these mice (Figure 5I).

herefore, consistent with previous studies showing that

D274 suppresses T cell-mediated allo-rejection (Francisco

t al., 2010; Zou and Chen, 2008), our result suggests that upre-

ulation of CD274 on cultured cells including HSCs inhibited

llogeneic T cell response.

x Vivo Expanded HSCs Can Cure the HSC Defective
isease by Allogeneic Transplantation
o test whether ex vivo expanded HSCs can be used to cure

enetic diseases, we ex vivo expanded allogeneic HSCs and

ansplanted these cells into homozygotic DNA-PK 3A/3A

nockin mice, in which three phosphorylation sites (Thr2605,

hr2634, and Thr2643) of DNA-PK were eliminated (Zhang

t al., 2011). These mice have defective HSC self-renewal during



Figure 5. Elevated CD274 Expression on Cultured HSCs Is Critical to Cross MHC Barrier in Allogeneic Transplantation

(A and B) CD274 does not affect repopulation of freshly isolated HSCs in syngeneic transplantation. Freshly isolated 1 3 105 BM cells from WT or CD274-null

CD45.2 C57BL/6 donors were transplanted into lethally irradiated CD45.1 C57BL/6 syngeneic recipients with 100,000 CD45.1 C57BL/6 total BM competitors

(*p < 0.05, n = 5).

(A) Donor repopulation at 3, 8, and 16 weeks posttransplant.

(B) Multilineage contribution of cultured cells at 16 weeks posttransplant.

(C and D) CD274 does not affect repopulation of cultured HSCs in syngeneic transplantation. Cultured progenies of 100 Lin�Sca-1+Kit+CD34�Flk2� HSCs from

WT or CD274-null CD45.2 C57BL/6 donors were transplanted into lethally irradiated CD45.1 C57BL/6 syngeneic recipients with 100,000 CD45.1 C57BL/6 total

BM competitors (n = 5). Cells were cultured in STFIA medium.

(C) Donor repopulation at 3, 12, and 17 weeks posttransplant.

(D) Multilineage contribution of cultured cells at 17 weeks posttransplant.

(E and F) CD274 enhances repopulation of cultured HSCs in competitive allogeneic transplantation. Cultured progenies of input equivalent 10,000 Lin�Sca-1+

Kit+CD34�Flk2�HSCs fromCD45.2 C57BL/6 donors were cotransplanted with 100,000 freshly isolated BALB/c (CD45.2) BM cells into lethally irradiated BALB/c

(CD45.2) recipients (*p < 0.05, n = 5). Cells were cultured in STFIA medium. This is an experiment representing two independent experiments that gave similar

results.

(E) Donor engraftment at 3, 8, and 16 weeks posttransplantation.

(F) Multilineage contribution of cultured cells at 16 weeks posttransplant.

(G) CD274 enhances repopulation of cultured HSCs in noncompetitive allogeneic transplantation. Cultured progenies of input equivalent 1,000 Lin�Sca-1+

Kit+CD34�Flk2� WT or CD274-null HSCs were transplanted into lethally irradiated BALB/c (CD45.2) recipients without competitors. ST medium was used in

culture. Shown is donor engraftment at 16 weeks posttransplant (*p < 0.05, n = 10–17).

(H) MLR assay was performed in which culturedWTHSCs abrogated the proliferation of allogeneic T cells (bar 2) whereas cultured CD274-null HSCswere unable

to do so (bar 3). *p < 0.05, n = 3.

(I) CD274 enhances repopulation of cultured HSCs through inhibition of T cell response. Cultured progenies of input equivalent 5,000 Lin�Sca-1+Kit+CD34�Flk2�

WTor CD274-null HSCswere transplanted into sublethally irradiated (2.5 Gy) SCID-BALB/c (CD45.2) recipients. Cells were cultured in STFIAmedium. Shown are

donor engraftments at 7 and 16 weeks posttransplantation (n = 5).

Data are expressed as mean ± SEM. See also Figure S5.
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Figure 6. Culture of Allogeneic WT HSCs Rescues Lethal Phenotype

of DNA-PK Knockin Mice

Freshly isolated 10,000 Lin�Sca-1+Kit+CD34�Flk2� HSCs or their 8-day

cultured progenies from CD45.1 FVB donors were transplanted into lethally

irradiated C57BL/6/129 CD45.2 knockin mutation at DNA-PKcs T2605 phos-

phorylation cluster recipients at postnatal day 12 (*p < 0.05, n = 6–9). HSCs

were cultured for 8 days in STFIA medium that allows ex vivo expansion of

HSCs. When competitors were used, freshly isolated 2,000,000–4,000,000

Sca-1� bone marrow cells isolated from FVB mice were cotransplanted.

(A) Donor engraftment at 16 weeks posttransplant.

(B) Multilineage contribution of cultured cells in rescued DNA-PK knockin mice

at 16 weeks posttransplant.

Data are expressed as mean ± SEM.

Cell Stem Cell

Cultured HSCs Enhance Allograft
development and normally die around 1 month after birth (Zhang

et al., 2011). Figure 6A shows the result of transplantation of WT

FVB (CD45.1) donor into DNA-PK knockin mice of the CD45.2

C57BL/6/129 background. Whereas freshly isolated Lin�Sca-1+

Kit+CD34�Flk2� allogeneic HSCs transplanted with 2–4 3 106

Sca-1� helper cells (which made the total number of trans-

planted cells the same as or more than the number of cultured

cells transplanted) engrafted only one out of nine recipients, their

cultured progeny successfully engrafted and rescued all recipi-

ents. The rescued mice had almost 100% donor reconstitution

and lymphoid, myeloid, and erythroid lineages were repopulated

at 4 months posttransplantation (Figure 6B). Our result demon-

strated that ex vivo expanded HSCs can be successfully used

in fully nonmatched allogeneic transplantation to rescue the

lethal phenotype of genetically mutated mice.

CD274 Is Induced on Human HSCs upon Culture
It is important to know whether a similar alteration of CD274

occurs on human HSCs upon culture. To this end, we deter-

mined the expression of CD274 on freshly isolated and cultured

human cord blood HSCs. While only �10% of freshly isolated

human Lin�CD34+CD38�CD90+ cells express CD274 on their

surface, the CD274+ population increased to more than 50%

after culture (Figures 7A–7E). MLR analysis showed that the

elevated CD274 expression on cultured human cord blood

HSCs indeed suppressed the proliferation of allogeneic T cells,

and this ability was abrogated by the anti-CD274 neutralizing

antibody treatment (Figure 7F). When we cultured human cord

blood HSCs followed by transplantation into immune-deficient

NOD/SCID/gamma(c)(null) (NSG) mice, we observed a stimu-

lating effect of Angptl5 on HSC expansion as previously reported

(Figure S6; Drake et al., 2011; Khoury et al., 2011; Zhang et al.,

2008). Nevertheless, this enhanced ability to engraft NSG

mice was not affected by anti-CD274 neutralizing antibody (Fig-

ure S6). This result is similar to what we observed in allograft in

SCID BALB/c mice (Figure 5I), suggesting that human CD274

suppresses allogeneic T cell activation but not innate immunity.

The upregulation of CD274 on cultured human HSCsmay enable

these stem cells to possess an enhanced allograft ability.
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DISCUSSION

In this study, we demonstrated that ex vivo expanded HSCs

more efficiently overcameMHC barriers and repopulated alloge-

neic recipient mice than freshly isolated HSCs. As measured by

limiting dilution analysis, there was a 40-fold increase in the allo-

graft ability of HSCs cultured for only 8 days compared to that of

the freshly isolated HSCs. To identify the underlying mecha-

nisms, we found that both increased numbers of HSCs and

cultured-induced elevation of expression of the immune inhibitor

CD274 on the surface of HSCs contributed to the enhanced allo-

graft efficiency. As a proof of principle that ex vivo expanded

HSCs can be used to cure genetic diseases in allogeneic recip-

ients, we used ex vivo expanded allogeneic HSCs for transplan-

tation and successfully rescued the lethal phenotype of DNA-PK

knockin mice.

We used three models of allogeneic transplantation: noncom-

petitive transplantation into lethally irradiated recipients,

competitive transplantation into lethally irradiated recipients,

and noncompetitive transplantation into sublethally irradiated

recipients. Whereas the first model was well-established and

allows fewer numbers of donor cells for engraftment, it may

result in themouse death if donor HSCs cannot repopulate recip-

ients. The second and third models ensure the survival of all

recipients and better mimic the human transplantation scenario

in which reduced intensity conditioning is often applied. Never-

theless, because of the enhanced host immune rejection, more

than 10-fold of freshly isolated allogeneic donor HSCs are

needed for successful engraftment in these models. This also

underscores the importance of the increased number and

MHC matching of donor HSCs in the clinical setting.

Our findings may shed new light on allogeneic transplantation

of human HSCs into patients, which cannot be appropriately

modeled by xenograft into immune-deficient mouse recipients.

Two major problems, failure of engraftment and GVHD, have

limited the progress in allogeneic transplantation. A strategy

that significantly improves donor engraftment and reduces the

risk of GVHD compared to current practice is needed. Trans-

plantation of freshly isolated allogeneic HSCs indeed decreases

the risk of GVHD but results in much lower engraftment (Shizuru

et al., 1996; Wang et al., 1997). Here we show that ex vivo

expanded mouse HSCs possess two advantages: increased

HSC numbers and the enhanced immune feature to evade

host rejection, therefore having dramatically enhanced alloge-

neic engraftment. Importantly, similar to freshly isolated HSCs

(Shizuru et al., 1996; Wang et al., 1997), no sign of GVHD was

observed after allogeneic transplantation of ex vivo expanded

HSCs. This is expected because the condition of our (or other)

HSC culture supports expansion of HSCs, along with production

of differentiated myeloid but not much lymphoid cells. The

culture thus does not seem to produce the source cells including

T cells that may cause GVHD. Therefore, ex vivo expanded

mouse HSCs appear to be an appropriate cell source to solve

the problems of allogeneic transplantation in the mouse model.

Based on these results of mouse HSCs and the elevation of

CD274 on cultured human HSCs, we propose that ex vivo

expansion of human HSCsmay benefit the practice of allogeneic

transplantation for patients. This would apply to nonmatched

or low-matched donor human cord blood, BM, or mobilized



Figure 7. CD274 Is Upregulated in Cultured Human HSCs

Human cord blood Lin�CD34+CD38�CD90+ cells were cultured in serum-free medium supplemented with SCF, TPO, and Flt3-L for 8 days.

(A and B) Representative plots of CD34+CD38�CD90+ cells that express CD274 on their surface before (A) and after (B) culture. Gatingswere set based on isotype

controls.

(C) Representative plot of CD34 and CD274 high or low staining in cultured human cells.

(D) Summary of percentages of CD274+ and CD274high cells in uncultured and cultured human cells (*p < 0.05, n = 5).

(E) MFI of CD274 expression determined by flow cytometry analysis in freshly isolated and cultured human cells (*p < 0.05, n = 5).

(F) MLR assay was performed in which cultured human cord blood HSCs abrogated the proliferation of allogeneic T cells (bar 2) whereas CD274 antibody

reversed the inhibitory effect of cultured human cord blood HSCs (bar 3). *p < 0.05, n = 6.

Data are expressed as mean ± SEM. See also Figure S6.
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peripheral blood HSCs. If donor human HSCs can be expanded

in culture and engraft nonmatched or low-matched patients

without GVHD, this strategy will possibly lead to an ultimate solu-

tion to problems in allogeneic transplantation.

It is known that some adult stem cells, such as mesenchymal

and amnion stem cells, but not embryonic stem cells, are

capable of avoiding rejection through production of immuno-
suppressive molecules and can be used in intra- and even

interspecies transplantation (Salem and Thiemermann, 2010;

Swijnenburg et al., 2008). Here we demonstrated that the

immune inhibitor CD274 is expressed on freshly isolated HSCs

and that its expression dramatically increased upon culture.

Interestingly, CD274 does not appear to significantly affect the

repopulation of long-term HSCs before and after culture as
Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc. 127
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determined by syngeneic transplantation, suggesting that its

main role is not regulation of the regular activity of HSCs, but

modulation of immunological properties of these cells. This

was confirmed by the result that the deletion of CD274 or treat-

ment with a CD274-neutralizing antibody abrogated the ability of

cultured but unexpandedHSCs to cross theMHCbarrier. CD274

was shown in previous studies to be expressed on activated

immune cells and parenchymal cells and in immune-privileged

sites such as eyes and placenta (Francisco et al., 2010; Zou

and Chen, 2008). CD274 is also selectively expressed by various

cellular components in the tumor microenvironment, where it

inhibits tumor-specific T cell immunity by inducing T cell

apoptosis and delay rejection (Zou and Chen, 2008). Here we

provided an example suggesting that HSCs possess the ability

to evade the rejection of the acquired immune system by regu-

lating the expression of their own surface immune inhibitor

such as CD274. Besides HSCs, the elevation of CD274 on

hematopoietic progenitors produced during culture also might

have contributed to the enhanced allograft. However, it is inter-

esting to note that more differentiated Lin+ cells elicit no effect,

although they also express CD274. This may be contributed by

the different cellular locations of HSCs/progenitors and more

differentiated hematopoietic cells home after transplantation. It

therefore will be interesting to study where the T cell-mediated

immune response occurs for allogeneic transplanted HSCs in

the future. In addition, it is noteworthy that CD274 may not be

the only immune-suppressor acts on the HSC allograft. This is

because that, although CD274-null HSCs behave much worse

in allogeneic transplantation than their WT counterparts, they still

possess a certain ability for allogeneic engraftment. Consistent

with the elevation of the expression of immune inhibitor CD274

upon culture, costimulatory molecules such as CD80 and

CD86 lost their expression on some cells after culture. All these

observations clearly indicate that ex vivo culture significantly

modulates the immunogenicity of stem cells. The identification

of additional immune molecules whose alterations can regulate

allograft will enable the complete resolution of the issue of

immune rejection in allogeneic transplantation.

While our study suggests that the upregulation of CD274 on

cultured cells including HSCs inhibited allogeneic T cell

response, a related example is surface expression of CD47,

which enables HSCs and leukemia cells to evade innate macro-

phage phagocytosis (Jaiswal et al., 2009). Based on these

results, we hypothesize that all homeostatic HSCs express low

levels of surface immune suppressors, and the levels of these

suppressors can be induced by stress or immune signals. These

immune suppressors may thus modulate HSC immunogenicity

and, therefore, contribute to the ‘‘immune privilege’’ of HSCs.

This regulatable immune privilege should be advantageous to

HSCs, because it may allow these important stem cells to rapidly

adjust to altered environment or to protect them from the exces-

sive immune activation and even potential autoimmune disorder.

Whether the expression of CD274 on HSCs or cancer cells can

be regulated in vivo and its biological significance warrants

further investigation.

Furthermore, we speculate that a common mechanism exists

for regulation of expression of immune inhibitory signals in some

other types of stem cells—similar to that in tumor cells. The

expression and regulation of immune inhibitors on stem cells
128 Cell Stem Cell 9, 119–130, August 5, 2011 ª2011 Elsevier Inc.
per se may allow these cells to survive an unexpected immune

attack. It will be interesting to study the immunology of stem cells

by investigating the roles of surface immune molecules on

embryonic stem cells, induced pluripotent stem cells, other adult

stem cells, and cancer stem cells.

In summary, our study demonstrated the great benefits of

ex vivo expansion of HSCs for overcoming problems in alloge-

neic transplantation and revealed the importance of an immune

inhibitor on the surface of HSCs. This work should shed new light

on understanding the immunology of HSCs and other stem cells

and may lead to development of novel strategies for successful

allogeneic transplantation of human patients.
EXPERIMENTAL PROCEDURES

Mouse HSC Culture

Indicated numbers of BM Lin�Sca-1+Kit+ CD34�Flk-2� cells were isolated

from 8- to 12-week-old mice and 150–200 of them were plated into each

well of a U-bottom 96-well plate (3799; Corning) with 200 ml of the indicated

medium. STFIAmediumwas defined as Stemspan serum-free medium (Stem-

Cell Technologies) supplemented with 10 mg/ml heparin, 10 ng/ml mouse

SCF, 20 ng/ml mouse TPO, 10 ng/ml human FGF-1, 100 ng/ml IGFBP2, and

500 ng/ml Angptl3 as described (Huynh et al., 2008), which was used in Fig-

ure 2 experiments. In repeated experiments and experiments described in

other figures, we refer STFIA medium as the same above medium except

with serum-free conditioned medium collected from Angptl2-transfected

293T cells as described (Zhang et al., 2006) (that contains both IGFBP2 [Huynh

et al., 2008] and Angptl2) to replace recombinant IGFBP2 and Angptl3. This

Angptl2-supplemented medium worked equivalently and reproducibly

supported HSC expansion in all experiments. ST medium was defined as

Stemspan supplemented with 10 mg/ml heparin, 10 ng/ml mouse SCF, and

20 ng/ml mouse TPO. STF medium was ST medium supplemented with

10 ng/ml human FGF-1. STFA medium was STF medium supplemented with

500 ng/ml Angptl3. STFI medium was STF medium supplemented

with 100 ng/ml IGFBP2. Unless otherwise described, cells were cultured for

8 days at 37�C in 5% CO2 and the normal level of O2. The culture duration

of 8 days was shorter than that we described in previous studies (Huynh

et al., 2008; Zhang et al., 2006). Because a substantially more number of cells

were needed for allogeneic transplantation, we plated 150–200 HSCs per well

in our experiments, instead of 20 HSCs described previously (Huynh et al.,

2008; Zhang et al., 2006) for congeneic transplantation. We typically observed

a�200-fold increase of total number of cells after 8 days of culture. Therefore,

a 100 input cells produced 2.32 ± 0.283 104 total cells after 8 days of culture.

This 8-day culture thus allowed us to harvest cells from the culture wells before

the expanded cells exhausted themedium. For the purpose of transplantation,

we pooled cells from at least 10 culture wells before the indicated numbers of

cells were transplanted into each mouse. Flow cytometry analysis was per-

formed to confirm multilineage reconstitution as we described (Simsek et al.,

2010; Zheng et al., 2011). Calculation of CRUs in limiting dilution experiments

was conducted with L-Calc software (StemCell Technologies) (Huynh et al.,

2008; Simsek et al., 2010; Zheng et al., 2011).
Mouse HSC Allogeneic Transplantation

For allogeneic transplantation without competitors, the indicated numbers of

mouse donor cells before or after culture were injected intravenously via the

retro-orbital route into each of a group of 6- to 9-week-old recipient mice

immediately after irradiation with a lethal dose of 9 or 9.5 Gy for BALB/c or

10 Gy for C57BL/6 mice. Sublethal irradiation of BALB/c mice in Figure S2A

and of SCID-BALB/c mice in Figure 5I were performed at a dose of 7.5 Gy

and 2.5 Gy, respectively. For competitive allogeneic transplantation, the indi-

cated mouse donor cells before or after culture were mixed with 1–23 105 (as

indicated) freshly isolated competitor bone marrow cells before transplanta-

tion. When indicated, 1,000,000 bone marrow cells collected from primary

recipients were used for the secondary transplantation into lethally irradiated

BALB/c mice. The antibody blocking treatment was conducted by incubating
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cultured HSCs with 50 mg/ml CD274 neutralizing antibody (Cat# 16-5982-81,

eBioscience) for 2 hr followed by washing before transplantation.

Mixed Lymphocyte Reaction

MLR was performed similarly as we described (Curiel et al., 2003). In brief, for

mouse MLR in Figure 5H, BALB/c splenocyte CD90.2+ T cells were plated in

96-well plate (flat-bottom) precoatedwith 1 mg/ml anti-CD3, followed by cocul-

ture with 8 days precultured irradiated C57BL/6 HSCs. For human MLR in Fig-

ure 7F, peripheral blood CD3+ cells were plated in the presence of 2.5 mg/ml

anti-CD3 and cocultured with 8 days precultured irradiated allogeneic cord

blood HSCs. Proliferation was measured at day 3 of incubation at 37�C and

5% CO2 following pulsing with [3H]TdR with a liquid scintillation counter.

When indicated, 50 mg/ml anti-CD274 neutralizing antibody (Cat# 16-5983-

82) was used to treat the cultured cells for 2 hr.
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