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Motile organelles: The importance of specific tubulin isoforms
Susan K. Dutcher

The requirements for building flagellar axonemes and
centrioles are beginning to be uncovered. The carboxyl
terminus of a specific ββ tubulin isoform plays an
important role in forming the ‘9 + 2’ structure of the
axoneme; δδ tubulin plays an essential role in forming
the triplet microtubules of centrioles and basal bodies.
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Flagella and cilia are structurally conserved motile organ-
elles found on diverse cell types, ranging from single-
celled protozoa and algae to multicellular tissues in
vertebrates. They have diverse roles, for example, they
can propel cells such as sperm through their environment
or move fluid across a cell surface, as in ciliated epithelia
such as the respiratory tract and oviduct. Monocilia on
cells in the embryonic node and on kidney cells are also
critically important: motile cilia in the embryonic node
play a role in left–right axis determination [1–3] and in
kidney function [4]. Nonmotile cilia are found in rod and
cone cells of the vertebrate eye, where they may be impor-
tant for transport [5].

Microtubules found in the cytoplasm, axons or spindles of
eukaryotic cells occur as singlets that usually consist of 13
protofilaments. Protofilaments are made up of repeating
units of α and β tubulin, organized head-to-tail to form a
linear substructure. The protofilaments associate laterally
to form a hollow tube, the singlet microtubule (Figure 1).
One of the most striking structural features of motile cilia
and flagella is the presence of nine doublet microtubules

that surround two central singlet microtubules to make a
characteristic ‘9 + 2’ structure. Each doublet microtubule
consists of one complete microtubule, usually containing
13 protofilaments, with an incomplete 11-protofilament
structure fused to it (Figure 1). 

Flagella and cilia are templated by basal bodies and the
doublet microtubules are continuous with the microtubules
of the basal bodies. Basal bodies and centrioles are struc-
turally related and contain triplet microtubules at their
proximal end (Figure 1). The additional microtubule in a
triplet also has 11 protofilaments. The mechanism by
which singlet, doublet or triplet microtubules are assem-
bled remains elusive. But recent studies, one recently pub-
lished in Current Biology [6], are beginning to reveal the
importance of specific tubulin isoforms in the assembly of
these morphologically different microtubules.

Although many protozoa and algae have only a single
gene each for α and β tubulin, these unicellular organisms
can build singlet, doublet or triplet microtubules from a
single species of α–β tubulin dimer. Clearly, other pro-
teins or modifications must be involved in building these
different types of microtubule. Multicellular organisms, in
contrast, have multiple genes encoding different isoforms
of α and β tubulin [7], and it has been suggested that these
different isoforms may have different functions, including
building distinct microtubule structures [8,9]. 

The specificity of different tubulin isoforms has been
addressed using transgenic flies. The fruitfly Drosophila
melanogaster has four β tubulin isoforms. Basal bodies and
flagella use the same α tubulin, but different β tubulin iso-
forms. The β1 isoform is used for assembly of the centriole
and basal body during spermatogenesis, and in nonmotile
sensory cilia of other tissues [10]. The β2 isoform is used

Figure 1

The diagram on the left shows how
protofilaments are arranged to form a singlet
microtubule, and the arrangement of the α–β
dimer. On the right are shown cross-sectional
diagrams of singlet, doublet and triplet
microtubules; in these diagrams, each circle
represents a protofilament.
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in the sperm tail, and when the gene encoding β2 tubulin
is deleted, spermatogenesis fails [11,12]. Raff and col-
leagues [12] have suggested that the β tubulin used in
motile flagella has a unique sequence motif (Figure 2): they
noted that the motif D/NEEGEFDE is found in β tubu-
lins used to assemble motile flagella or cilia, but is not con-
served in the other β tubulins from the same organism or
in other organisms that lack motile cilia and flagella. The β
tubulins of nematode Caenorhabdtitis elegans, which has
nonmotile sensory cilia, do not share this motif.

Raff and colleagues [6] have now dissected the role of β2
tubulin in the assembly of the 9 + 2 axonemal structure in

post-meiotic germ cells, by constructing chimeras between
β1 tubulin and β2 tubulin. These two tubulins differ at only
25 of 447/446 amino acids, respectively. When β1 tubulin
is expressed exclusively, the flies remain infertile; they have
immotile sperm, and electron microscopy showed that their
sperm have the usual nine doublet microtubules, but lack
the central pair microtubules. Eight of the differences
between the β1 and β2 tubulins lie near the carboxyl ter-
minus (Figure 2). When the carboxyl terminus of the β1
isoform is replaced with that of β2, flagella with a 9 + 2
axoneme are made. Even more strikingly, the replacement
of just two amino acids — glutamic acid and glycine for
aspartic acid and alanine — is sufficient to allow the

Figure 2

Carboxy-terminal sequences of β tubulins from
a variety of species. Nielsen et al. [6] have
shown that the carboxy-terminal motif eegefde
(red) is needed to assemble the two central
pair microtubules in the axoneme. Organisms
that lack cilia and flagella, or lack motile cilia,
lack this motif. The motif eyqqyq (blue) is
common to β tubulins, and was used to align
the sequences. The eegefde motif is present
in most β tubulins expressed in ciliated or
flagellated tissues or organisms; the eg motif
that is necessary for building the 9 + 2
axoneme is highlighted in bold.

The carboxyl terminus of beta tubulin
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Protozoa and animals (with
motile flagella/cilia)

eyqqyq eatadeegefdedeegggde Drosophila melanogaster beta2 (85D)
eyqqyq datieeegefdeeeqy Trypanosoma brucei
eyqqyq datveeegefdeeeeay Leishmania tropica
eyqqyq dataeeegefeeegeq Paramecium tetraurelia
eyqqyq dasaeeegefegeeeea Chlamydomonas reinhardtii
eyqqyq dataeeegefdeeeegdeeaa Strongylocentrotus purpuratus
eyqqyq dataeeegefdenegaegeeqpady Naegleria gruberi
eyqqyq dataeeegefdeeegemgaeega Toxoplasma gondii
eyqqyq datadeegefdedemeg Thalassiosira weissflogii
eyqqyq dataeeegefdedeelddamg  Ectocarpus variabilis (brown alga)
eyqqyq dataeeegefeeeaeeeva Homo sapiens beta2

eyqqyq datadeqgefeeeegedea Rattus norvegicus
eyqqyq datadeqgefeeegeedea Gallus gallus b2
eyqqyq datadeqgefeeeegedea Homo sapiens
eyqqyq dataeeeedfgeeaeeea Homo sapiens beta1
eyqqyq dataegegv Homo sapiens betab4Q
eyqqyq dataeeegemyeddeeeseaqgpk Homo sapiens beta4 (16)
eyqqyq datadeqgefeeeegedea Homo sapiens beta (6p)
eyqqyq dataeeeedfgeeaeeea Homo sapiens beta5
eyqqyq eatadedaefeeeqeaevden Drosophila melanogaster beta1 (56D)
eyqqyq eataddefdpevnqeevegdci Drosophila melanogaster beta3  (60C)

Plants (without flagella or cilia)
eyqqyq datvgeeeyeedeeeeea Arabidopsis thaliana 9
eyqqyq datadeegeydveeeeegdyet Arabidopsis thaliana 5
eyqqyq dataeeyeeeehdgeeeha Zea maize

Fungi (without flagella or cilia)
eyqqyq dasisegeeeyleeeeplehee Aspergillus viridinutans (benA)
eyqqyq easvddeameddaeaeggagqneaveef Physarum polycephalum
eyqqyq datadeegeyedeeegdlqd

eyqqyq dagvdeeeeeyeeeaplegee Neurospora crassa
eyqqyq eatveddeevdengdfgapqnqdepitenfe Saccharomyces cerevisiae
eyqqyq eagidegdedyeieeekepley Schizosaccharomyces pombe
eyqqyq natvddedmeyedelpledem Geotrichum candidum
eyqqyq easideeeleyadeipledaame Candida albicans

Animal (without motile
cilia or flagella)

eyqqyq eaaadedaaeafdge Caenorhabdtitis elegans
eyqqyq eaaadedaaeafdge Caenorhabditis elegans (mec-7)
eyqqyq eaaadedaaeafdge Caenorhabditis elegans



assembly of 9 + 2 axonemes. This short motif is thus
required for the assembly of the central pair microtubules.

The assembly of 9 + 2 axonemes is not, however, suffi-
cient to restore fertility to the flies. The flies producing
the chimeric β tubulin fail to maintain the integrity of the
distal axonemal microtubules. The results of Nielsen et al.
[6] suggest that additional motifs in the carboxyl terminus
of β2 tubulin, and in the remainder of the protein, are
needed to build stable axonemes. Small sequence substi-
tutions are clearly not sufficient to restore structural
integrity to the axoneme. One could imagine that this
could be either because different β tubulin isoforms form
different lattices in singlet, compared to doublet, micro-
tubules [13], or because different proteins associate with
singlet or doublet microtubules to form these stable struc-
tures. Sensory cilia in Drosophila lack the central pair
microtubules and do not require the carboxy-terminal motif
of β2 tubulin for assembly.

Another conserved structural feature of cilia and flagella is
the presence of basal bodies and the ability to assemble
doublet and triplet microtubules. A number of additional
members of the tubulin superfamily have been identified
recently, and one of these, δ tubulin, has been shown to
have a critical role in the formation of triplet microtubules.
In the uni3-1 mutant strain of the green alga Chlamy-
domonas reinhardtii, deletion of the δ tubulin gene results
in basal bodies that have only doublet microtubules [14].
A similar phenotype has been observed in Paramecium
after depletion of δ tubulin by gene silencing [15]. It is
not clear what role δ tubulin plays in the assembly of
triplet microtubules; it may act as a nucleator at the proxi-
mal end of the microtubule, or it may recruit other essen-
tial factors. A comparison of the sequence of δ tubulin to
the solved structures of α and β tubulin suggests that δ
tubulin may be localized to the minus, or proximal, end of
microtubules [16].

In C. reinhardtii bld2 mutants, only a ring of singlet micro-
tubules is assembled, which is approximately one-tenth of

the normal basal body length (Figure 3). These mutant
cells fail to build flagella [17]. The Bld2 protein is thus
needed for both doublet and triplet microtubule formation
and elongation of the basal bodies. An extragenic suppres-
sor at the RGN1 locus restores the ability to assemble fla-
gella to some of the cells. Examination of the basal bodies
with electron microscopy shows that many of the basal
bodies have less than nine microtubules, and the struc-
tures that are present have a combination of singlet,
doublet and triplet microtubules (Figure 3) [18]. In rare
flagella, seven or eight doublet microtubules are observed
[19]. These mutant cells have thus lost the normal symme-
try of the axonemal doublets. It is possible that this loss
arises from an instability of the doublet microtubules.

In Drosophila that express β1 and β2 tubulin in a 2:1 ratio
in the postmeiotic germ cells, an additional tenth doublet
is observed [12]. The authors suggest that β1 tubulin in
combination with β2 tubulin creates a unique templating
mechanism for the formation of these new doublets. It
seems possible, however, given the structural instability of
axonemes at the distal end that the tenth doublet micro-
tubule is actually generated by broken fragments that have
been integrated into the axoneme. 

Cilia and flagella are complex molecular machines that
have over 250 different proteins [20] and move in complex
patterns. These complex structures are highly conserved.
Mutations that abolish the ability to assemble central pair
microtubules, or substitute singlet or doublet microtubules
for triplet microtubules, illustrate the complexity of ele-
ments needed to build these highly conserved and complex
structures. Continued genetic analysis may provide us
with a complete understanding of the role of tubulins and
associated proteins in building cilia and flagella.
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Figure 3

The microtubules of Chlamydomonas
reinhardtii basal bodies from wild-type, uni3,
bld2 and bld2-1 rgn1-1 cells. The UNI3 locus
encodes δ tubulin, but the gene products of
the BLD2 and RGN1 loci are not known.
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