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For fixed u and v such that 0 � u < v < 1/2, the monotonicity of the quotients of
Jacobi theta functions, namely, θ j(u|iπt)/θ j(v|iπt), j = 1,2,3,4, on 0 < t < ∞ has been
established in the previous works of A.Yu. Solynin, K. Schiefermayr, and Solynin and the
first author. In the present paper, we show that the quotients θ2(u|iπt)/θ2(v|iπt) and
θ3(u|iπt)/θ3(v|iπt) are convex on 0 < t < ∞.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let q = eπ iτ with Imτ > 0. The Jacobi theta functions are defined by [8, p. 355, Section 13.19]

θ1(z|τ ) = 2
∞∑

n=0

(−1)nq(n+ 1
2 )2

sin(2n + 1)π z,

θ2(z|τ ) = 2
∞∑

n=0

q(n+ 1
2 )2

cos(2n + 1)π z,

θ3(z|τ ) = 1 + 2
∞∑

n=1

qn2
cos 2nπ z,

θ4(z|τ ) = 1 + 2
∞∑

n=1

(−1)nqn2
cos 2nπ z.

We denote θi(z|τ ) by θi(z), i = 1,2,3 and 4, when the dependence on z is to be emphasized and that on τ is to be
suppressed. Moreover when z = 0, we denote the above theta functions by θi , i.e., θi := θi(0|τ ), i = 1,2,3 and 4, where it is
easy to see that θ1 = 0.

For u, v ∈ C and τ = iπt with Re t > 0, define S j(u, v; t), j = 1,2,3 and 4, to be the following quotient of theta functions:

S j := S j(u, v; t) := θ j(u/2|iπt)

θ j(v/2|iπt)
. (1.1)
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Fig. 1. S2(u, v; t) for u = π
8 , v = π

7 and 0.2 � t � 0.8.

Monotonicity of these quotients has attracted a lot of attention in recent years. Monotonicity of S2(u, v; t) on 0 < t < ∞
arose naturally in the work of A.Yu. Solynin [14] where it is related to the steady-state distribution of heat. In particular,
Solynin used it to prove a special case of a generalization of a conjecture due to A.A. Gonchar [4, Problem 7.45] posed by
A. Baernstein II [1]. (For complete history and progress on Gonchar’s conjecture, the reader should consult [3,7].) We note
here that the proof for S2(u, v; t) in [14] contained a small error since the constant term c0 (see (2.6) below) is missing
in formula (4.20) in [14]. This error was corrected by A.Yu. Solynin and the first author in [7], where they also proved
monotonicity of S1(u, v; t), S3(u, v; t) and S4(u, v; t). It turns out that K. Schiefermayr [13, Theorem 1] independently
proved the same results on monotonicity of S3(u, v; t) and S4(u, v; t). It is worth mentioning that the proofs presented in
[14] and [7] and the proof in [13] use entirely different ideas. These results on monotonicity of S j(u, v; t), j = 1,2,3,4, are
stated in [7] as follows.

For fixed u and v such that 0 � u < v < 1, the functions S1(u, v; t) and S4(u, v; t) are positive and strictly increasing on 0 <

t < ∞, while the functions S2(u, v; t) and S3(u, v; t) are positive and strictly decreasing on 0 < t < ∞.

At the end of the paper [7], based on numerical calculations, it was conjectured that S j(u, v; t), j = 1,2,3,4, are com-
pletely monotonic on 0 < t < ∞. A function f is said to be completely monotonic on [0,∞) if f ∈ C[0,∞), f ∈ C∞(0,∞)

and (−1)k f (k)(t) � 0 for any k non-negative and t > 0. Several functions related to gamma function, digamma function,
polygamma function and modified Bessel function etc. have been shown to be completely monotonic, see [5,9,11]. For a sur-
vey on properties of completely monotonic functions, see [12]. The above-mentioned conjecture can be precisely formulated
(and corrected) as follows.

Conjecture 1.1. Let S j(u, v; t) be defined as in (1.1). For fixed u and v such that 0 � u < v < 1, the functions ∂
∂t S1(u, v; t), S2(u, v; t),

S3(u, v; t) and ∂
∂t S4(u, v; t) are completely monotonic on 0 < t < ∞.

If this conjecture is indeed true, by a theorem of S.N. Bernstein and D. Widder [6, p. 95, Theorem 1] there exist non-
decreasing bounded functions γ j such that S j(u, v; t) = ∫ ∞

0 e−st dγ j(s) for j = 2,3, and ∂
∂t S j(u, v; t) = ∫ ∞

0 e−st dγ j(s) for
j = 1,4.

In the present paper, we study convexity of S2(u, v; t) and S3(u, v; t) as functions of t . Figs. 1 and 2 seem to indicate
that these quotients are convex on 0 < t < ∞, which is consistent with the above conjecture. Our main result given below
shows that this is indeed true.

Theorem 1.2. For fixed u and v such that 0 � u < v < 1, the functions S2 and S3 are strictly convex on 0 < t < ∞. In other words,
∂ S2
∂t and ∂ S3

∂t are negative and strictly increasing on 0 < t < ∞.

2. Preliminary results

In this section, we collect main ingredients all of which are subsequently required in the proofs of our results. We
then prove certain lemmas also to be used in the later sections. Then in Section 3, we prove Theorem 1.2 for ∂ S2

∂t . Finally,

Section 4 is devoted to the proof of Theorem 1.2 for ∂ S3
∂t .

We first start with some important properties of the Weierstrass elliptic function. For z ∈ C, let ℘(z) denote the Weier-
strass elliptic function with periods 1 and τ . It is known [8, p. 376] that ℘(z) maps the period parallelogram R (rectangle in
our case) with vertices 0, ω = 1/2, ω +ω′ = 1/2 + τ/2 and ω′ = τ/2 conformally and one-to-one onto the lower half-plane
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Fig. 2. S3(u, v; t) for u = π
37 , v = π

19 and 0.5 � t � 1.7.

{ω: Imω < 0}. Moreover, ℘(z) is real and decreases from ∞ to −∞ as z describes the boundary of R in the counterclock-
wise direction starting from 0. It is known that ℘(z) and ℘′(z) are respectively even and odd functions of z.

Let g2 and g3 denote the invariants of ℘(z). The following differential equations for ℘ are well known and can be found
in [8, p. 332]:

℘′2(z) = 4℘3(z) − g2℘(z) − g3,

℘′′(z) = 6℘2(z) − g2

2
,

℘′′′(z) = 12℘(z)℘′(z). (2.1)

The first equation in (2.1) can also be represented in the form [8, p. 331]

℘′2(z) = 4
(
℘(z) − e1

)(
℘(z) − e2

)(
℘(z) − e3

)
, (2.2)

where e1, e2 and e3 are values of the ℘(z) at z = 1/2, (τ + 1)/2 and τ/2 respectively [8, p. 330]. As can be easily seen
from (2.2), ℘′(z) vanishes at these values of z. It is known that e3 < e2 < e1, that e3 < 0 and that e1 > 0. Again, from
[8, p. 332], we find that

e1 = −e2 − e3,

g2 = −4(e1e2 + e2e3 + e3e1),

g3 = 4e1e2e3. (2.3)

Further, the quantities e1, e2 and e3 are related to theta functions by [8, p. 361]

(e1 − e3)
1/2 = πθ2

3 ,

(e1 − e2)
1/2 = πθ2

4 . (2.4)

From [7, Eq. (2.6)], we have(
θ ′

1(x)

θ1(x)

)′
= −(

℘(x) − c0
)
, (2.5)

where c0 is a multiple of weight 2 Eisenstein series [2, p. 87, Eq. (4.1.7)] given by

c0 := c0(q) := −π2

3

(
1 − 24

∞∑
n=1

nqn

1 − qn

)
, (2.6)

see [7]. Using [7, Eq. (4.4)], we have

e3 < c0 < e2 < e1. (2.7)

We note that θ2(x|iπt) and θ3(x|iπt) are related to θ1(x|iπt) by the following simple relations:

θ2(x|iπt) = θ1

(
1

2
− x|iπt

)
,

θ3(x|iπt) = iq−1/4e−iπxθ1(x|iπt). (2.8)
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Observe that from [7, Eq. (2.9)], we have on 0 < x < 1/2,

2
θ ′

1(x)

θ1(x)
+ ℘′(x)

℘ (x) − c0
> 0,

which when combined with (2.8) implies that on 0 < x < 1/2,

2
θ ′

2(x)

θ2(x)
+ ℘′(x − 1/2)

℘ (x − 1/2) − c0
< 0. (2.9)

Finally, we use the fact that each of the theta functions θ j(x/2|iπt), j = 1,2,3 and 4, satisfies the heat equation
[8, Section 13.19]

∂θ

∂t
= ∂2θ

∂x2
. (2.10)

We now prove an inequality which will be instrumental in our proof of the monotonicity of ∂
∂t S2(u, v; t) on 0 < t < ∞.

Lemma 2.1. Let 0 < q < 1. Let e1, g2, g3 and c0 be defined as above. Then the following inequality holds:

e2
1

(
g2 − 12c2

0

) + e1(6g3 + 4g2c0) +
(

g2
2

4
+ g2c2

0 + 6g3c0

)
< 0. (2.11)

Proof. Let T (q) denote the left-hand side of (2.11). We view T (q) as a quadratic function in c0 rather than that in e1, i.e.,

T (q) = (
g2 − 12e2

1

)
c2

0 + (6g3 + 4g2e1)c0 +
(

g2
2

4
+ g2e2

1 + 6g3e1

)
. (2.12)

Employing (2.3) in (2.12), we see that

T (q) = −4
(
2e2

2 + 5e2e3 + 2e2
3

)
c2

0 − 8
(
2e3

2 + 7e2
2e3 + 7e2e3

3 + 2e3
3

)
c0 + (

8e4
2 + 44e3

2e3 + 76e2
2e2

3 + 44e2e3
3 + 8e4

3

)
= −4(2e2 + e3)(e2 + 2e3)

(
c2

0 + 2(e2 + e3)c0 − (
e2

2 + 3e2e3 + e2
3

))
. (2.13)

The quadratic in c0 in the last expression in (2.13) has discriminant

4(e2 + e3)
2 + 4

(
e2

2 + 3e2e3 + e2
3

) = 4(2e2 + e3)(e2 + 2e3) = 4(e1 − e2)(e1 − e3),

where we utilized (2.3) in the last equality. Hence,

T (q) = −4(e1 − e2)(e1 − e3)
(
c0 − (−(e2 + e3) + π2θ2

3 θ2
4

))(
c0 − (−(e2 + e3) − π2θ2

3 θ2
4

))
= −4(e1 − e2)(e1 − e3)

(
c0 − e1 − π2θ2

3 θ2
4

)(
c0 − e1 + π2θ2

3 θ2
4

)
, (2.14)

where we invoked (2.4) in the first equality and (2.3) in the second. Using (2.7) and (2.14), it suffices to show that e1 − c0 >

π2θ2
3 θ2

4 . To that end, observe that using [2, p. 15, Eq. (1.3.32)], we have

θ3θ4 = θ2
4 (0|2τ ). (2.15)

Also, from [10, Eq. (4)],

θ4
4 = 1 + 8

∞∑
n=1

(−1)nqn

(1 + qn)2
. (2.16)

Using (2.15) and (2.16), we deduce that

π2θ2
3 θ2

4 = π2 + 8π2
∞∑

n=1

(−1)nq2n

(1 + q2n)2
. (2.17)

But from [7, Eq. (4.1)],

e1 − c0 = π2 + 8π2
∞∑

n=1

q2n

(1 + q2n)2
. (2.18)

Thus (2.17) and (2.18) along with the fact that 0 < q < 1 imply the inequality e1 − c0 > πθ2
3 θ2

4 . This proves (2.11). �
Next, we give a lemma which will be used in establishing the monotonicity of ∂ S3(u, v; t) on 0 < t < ∞.
∂t
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Lemma 2.2. Let 0 < q < 1. Let e2, g2, g3 and c0 be defined as above. Then the following inequality holds:

e2
2

(
g2 − 12c2

0

) + e2(6g3 + 4g2c0) +
(

g2
2

4
+ g2c2

0 + 6g3c0

)
> 0. (2.19)

Proof. Let U (q) denote the left-hand side of (2.19). From (2.3) and (2.7),

U (q) = (
g2 − 12e2

2

)
c2

0 + (6g3 + 4g2e2)c0 +
(

g2
2

4
+ g2e2

2 + 6g3e2

)
= −4(e2 − e3)(2e2 + e3)

(
c2

0 − 2e2c0 − (
e2

2 − e2e3 − e2
3

))
= 4(e1 − e2)(e2 − e3)

(
(c0 − e2)

2 + (e1 − e2)(e2 − e3)
)

> 0. �
3. Proof of monotonicity of ∂ S2

∂t

From [7, Theorem 1], since S2(u, v; t) is decreasing on 0 < t < ∞, we see at once that ∂ S2
∂t < 0. Let L2 := log S2(u, v; t).

Observe that
∂ S2

∂t
= S2

∂L2

∂t
. (3.1)

In order to show that ∂ S2
∂t is increasing on 0 < t < ∞, it suffices to show that ∂2 S2

∂t2 > 0. Now from (3.1),

∂2 S2

∂t2
= ∂

∂t

(
S2

∂L

∂t

)
= S2

(
∂2L2

∂t2
+

(
∂L2

∂t

)2)
.

We claim that ∂2 L2
∂t2 > 0 whence we will be done. Using (2.10) twice, we see that

∂2

∂t2
θ2(x/2|iπt) = ∂

∂t

(
∂2

∂x2
θ2(x/2|iπt)

)
= ∂2

∂x2

(
∂

∂t
θ2(x/2|iπt)

)
= ∂4

∂x4
θ2(x/2|iπt).

Hence,

∂2L2

∂t2
= ∂

∂t

( ∂
∂t θ2(u/2|iπt)

θ2(u/2|iπt)
−

∂
∂t θ2(v/2|iπt)

θ2(v/2|iπt)

)

= θ
(4)
2 (u/2|iπt)

θ2(u/2|iπt)
− θ

(4)
2 (v/2|iπt)

θ2(v/2|iπt)
−

((
θ ′′

2 (u/2|iπt)

θ2(u/2|iπt)

)2

−
(

θ ′′
2 (v/2|iπt)

θ2(v/2|iπt)

)2)
.

Thus it suffices to show that the function θ
(4)
2 (x|iπt)/θ2(x|iπt)− (θ ′′

2 (x|iπt)/θ2(x|iπt))2 decreases on 0 < x < 1/2. From now
on, we fix t where 0 < t < ∞ and henceforth suppress the dependence of θ2(x/2|iπt) on t . From (2.8) and (2.5), we find
that (

θ ′
2(x)

θ2(x)

)′
= −(

℘(x − 1/2) − c0
)
, (3.2)

since ℘(x) is an even function of x. Then by a repeated application of the quotient rule for derivatives and (3.2), it is easy
to see that the following are true:

θ ′′
2 (x)

θ2(x)
=

(
θ ′

2(x)

θ2(x)

)2

− (
℘(x − 1/2) − c0

)
,

θ ′′′
2 (x)

θ2(x)
=

(
θ ′

2(x)

θ2(x)

)3

− 3
θ ′

2(x)

θ2(x)

(
℘(x − 1/2) − c0

) − ℘′(x − 1/2),

θ
(4)
2 (x)

θ2(x)
=

(
θ ′

2(x)

θ2(x)

)4

− 6

(
θ ′

2(x)

θ2(x)

)2(
℘(x − 1/2) − c0

) − 4
θ ′

2(x)

θ2(x)
℘′(x − 1/2) + 3

(
℘(x − 1/2) − c0

)2 − ℘′′(x − 1/2),

from which it easily follows that

θ
(4)
2 (x)

θ2(x)
−

(
θ ′′

2 (x)

θ2(x)

)2

= −4

(
θ ′

2(x)

θ2(x)

)2(
℘(x − 1/2) − c0

) + 2
(
℘(x − 1/2) − c0

)2

− 4
θ ′

2(x)
℘′(x − 1/2) − ℘′′(x − 1/2).
θ2(x)



324 A. Dixit et al. / J. Math. Anal. Appl. 386 (2012) 319–331
Again using (3.2), we find that

d

dx

(
θ

(4)
2 (x)

θ2(x)
−

(
θ ′′

2 (x)

θ2(x)

)2)
= 8

θ ′
2(x)

θ2(x)

(
℘(x − 1/2) − c0

)2 − 4

(
θ ′

2(x)

θ2(x)

)2

℘′(x − 1/2)

+ 8
(
℘(x − 1/2) − c0

)
℘′(x − 1/2) − 4

θ ′
2(x)

θ2(x)
℘′′(x − 1/2) − ℘′′′(x − 1/2).

From the monotonicity of ℘ along the boundary of the rectangular lattice as mentioned in Section 2, in the case at hand,
we have in particular that ℘(x) is strictly decreasing on 0 < x < 1/2. Hence ℘(1/2 − x) is strictly increasing on 0 < x < 1/2.
Since ℘(1/2 − x) = ℘(x − 1/2), this implies that ℘′(x − 1/2) > 0 on 0 < x < 1/2. Define the function F2(x) as

F2(x) := 1

℘′(x − 1/2)

d

dx

(
θ

(4)
2 (x)

θ2(x)
−

(
θ ′′

2 (x)

θ2(x)

)2)

= 8
θ ′

2(x)

θ2(x)

(℘ (x − 1/2) − c0)
2

℘′(x − 1/2)
− 4

(
θ ′

2(x)

θ2(x)

)2

+ 8
(
℘(x − 1/2) − c0

) − 4
θ ′

2(x)

θ2(x)

℘′′(x − 1/2)

℘′(x − 1/2)
− ℘′′′(x − 1/2)

℘′(x − 1/2)
.

(3.3)

It suffices to prove that F2(x) < 0. We prove this by showing that F2(1/2) = 0 and F ′
2(x) > 0, since then, the mean value

theorem implies that for any x ∈ (0,1/2), F2(x) − F2(1/2) = F ′
2(c)(x − 1/2) for some c ∈ (x,1/2). We begin by showing

F2(1/2) = 0. We require the following series expansions in order to establish this. First, from [8, p. 358, Section 13.19],

θ ′
2(z)

θ2(z)
= −π tanπ z + 4π

∞∑
n=1

(−1)n q2n

1 − q2n
sin 2nπ z

=
(

1

z − 1/2
− π2

3
(z − 1/2) − · · ·

)
+ 4π

∞∑
n=1

(−1)n q2n

1 − q2n
sin 2nπ z. (3.4)

Further, the Laurent series expansions of ℘(z −1/2) and ℘′(z −1/2) around z = 1/2 are as follows [8, p. 330, Section 13.12].

℘(z − 1/2) = 1

(z − 1/2)2
+ g2(z − 1/2)2

22.5
+ g3(z − 1/2)4

22.7
+ g2

2(z − 1/2)6

24.3.52
+ · · · ,

℘′(z − 1/2) = −2

(z − 1/2)3
+ g2(z − 1/2)

10
+ g3(z − 1/2)3

7
+ g2

2(z − 1/2)5

23.52
+ · · · . (3.5)

Using (3.4), (3.5), the third differential equation in (2.1) and simplifying, we find that F2(1/2) = 0. Differentiating both sides
of (3.3) with respect to x, using (2.1), (3.2) and simplifying, we get

F ′
2(x)

4
= θ ′

2(x)

θ2(x)
· ℘2(x − 1/2)(g2 − 12c2

0) + ℘(x − 1/2)(6g3 + 4g2c0) + (
6g3c0 + g2c2

0 + g2
2

4

)
℘′2(x − 1/2)

+ ℘(x − 1/2)(g2/2 − 6c2
0) + g3 + 2c3

0 + g2c0/2

℘′(x − 1/2)
. (3.6)

Now we show that F ′
2(x) > 0. Let

A1(x) := ℘(x − 1/2)
(

g2/2 − 6c2
0

) + g3 + 2c3
0 + g2c0/2,

A2(x) := ℘2(x − 1/2)
(

g2 − 12c2
0

) + ℘(x − 1/2)(6g3 + 4g2c0) + (
6g3c0 + g2c2

0 + g2
2/4

)
. (3.7)

By Remark 1 in [7], we have

e1 <
−(2g3 + 4c3

0 + g2c0)

g2 − 12c2
0

. (3.8)

This along with the fact that ℘(x − 1/2) is strictly increasing on 0 < x < 1/2 from e1 to ∞ implies that A1 has a unique
zero, say a1, in (0,1/2). Now Lemma 2 from [7] implies that g2 − 12c2

0 > 0. This along with the fact that ℘(x − 1/2) → ∞
as x → 1

2
−

implies that A2(x) → ∞ as x → 1
2

−
. Using the fact that ℘(1/2) = ℘(−1/2) = e1 and Lemma 2.1, we have

A2(0) < 0. Since A2 is quadratic in ℘(x − 1/2) and ℘(x − 1/2) is strictly increasing on 0 < x < 1/2, there exists a unique
value a2 of x in (0,1/2) such that A2(a2) = 0. Let P := ℘(a2 − 1/2). Note that a2 is not a double root of A2. Next, P has
two possibilities, say,

P = P1 := −6g3 − 4g2c0 − √
	

2(g − 12c2)
or P = P2 := −6g3 − 4g2c0 + √

	

2(g − 12c2)
,

2 0 2 0
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Fig. 3. Graphs of 10A1(x) and A2(x) on 0 < x < 1
2 .

where

	 := (6g3 + 4g2c0)
2 − 4

(
g2 − 12c2

0

)(
6g3c0 + g2c2

0 + g2
2/4

)
> 0, (3.9)

the last inequality coming from the above discussion. We now claim that P = P2. Now

P2 >
−6g3 − 4g2c0

2(g2 − 12c2
0)

(3.10)

and

−6g3 − 4g2c0

2(g2 − 12c2
0)

+ 2g3 + 4c3
0 + g2c0

g2 − 12c2
0

= −g3 − g2c0/2 − 2c3
0

(g2 − 12c2
0)

+ 6c3
0 − g2c0/2

g2 − 12c2
0

>
e1 − c0

2
> 0, (3.11)

where we utilized (3.8) in the penultimate step and (2.7) in the ultimate step. Therefore, by (3.8), (3.10) and (3.11),

e1 <
−(2g3 + 4c3

0 + g2c0)

g2 − 12c2
0

< P2. (3.12)

This shows that ℘(x − 1/2) attains the value P2 for a unique x in the interval (0,1/2). This combined with the facts that
P1 < P2 and A2 has a unique root in 0 < x < 1/2 implies that P = P2.

Remark 1. The above discussion implies that P1 < e1 < P2. As the real period of ℘ is 1, this tells us that there is no real
number x such that ℘(x − 1/2) = P1.

Using P = P2 and (3.12), it is clear that 0 < a1 < a2 < 1/2. Fig. 3 shows the graphs of 10A1(x) 2 and A2(x). Define

G2(x) := F ′
2(x)℘′2(x − 1/2)

4A2(x)

= θ ′
2(x)

θ2(x)
+

℘′(x − 1/2)
(
℘(x − 1/2) + 2g3+4c3

0+g2c0

g2−12c2
0

)
2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

) . (3.13)

Next, we differentiate the extreme sides of (3.13) with respect to x and use (3.2) so that θ ′
2(x)/θ2(x) is eliminated from the

right-hand side of (3.13) and we have everything in terms of ℘ and ℘′ . This along with the second differential equation
in (2.1) gives

G ′
2(x) = −(

℘(x − 1/2) − c0
) +

(
6℘2(x − 1/2) − g2

2

)(
℘(x − 1/2) + 2g3+4c3

0+g2c0

g2−12c2
0

)
2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)
+ ℘′2(x − 1/2)

2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)

2 The graph of A1(x) is scaled by the factor of 10 for better view without changing the fact 0 < a1 < a2 < 1/2.
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−
℘′2(x − 1/2)

(
℘(x − 1/2) + 2g3+4c3

0+g2c0

g2−12c2
0

)(
2℘(x − 1/2) + 6g3+4g2c0

g2−12c2
0

)
2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)2
. (3.14)

Simplifying the first three terms of (3.14), we obtain

G ′
2(x) = ℘′2(x − 1/2)(

℘2(x − 1/2) + ℘(x − 1/2)
6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)

−
℘′2(x − 1/2)

(
℘(x − 1/2) + 2g3+4c3

0+g2c0

g2−12c2
0

)(
2℘(x − 1/2) + 6g3+4g2c0

g2−12c2
0

)
2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)2
. (3.15)

Consider three cases: 0 < x < a1, a1 � x � a2 and a2 < x < 1/2.

Case 1: 0 < x < a1. Then, A1(x) < 0 and A2(x) < 0. We show that G2(x) < 0. Note that from (2.2), (3.4), (3.8) and
Lemma 2.1, it readily follows that G2(0) = 0. Since A1(x) < 0, A2(x) < 0 and g2 − 12c2

0 > 0, we have

℘(x − 1/2) + 2g3 + 4c3
0 + g2c0

g2 − 12c2
0

< 0, (3.16)

℘2(x − 1/2) + ℘(x − 1/2)
6g3 + 4g2c0

g2 − 12c2
0

+ 6g3c0 + g2c2
0 + g2

2/4

g2 − 12c2
0

< 0. (3.17)

From (3.16) and (3.11), we see that

2℘(x − 1/2) + 6g3 + 4g2c0

g2 − 12c2
0

< 0. (3.18)

Therefore, (3.16), (3.17) and (3.18) imply that G ′
2(x) < 0. By the mean value theorem, for any x ∈ (0,a1), G2(x) = xG ′

2(d) for
some d ∈ (0, x). Hence G2(x) < 0. Thus F ′

2(x) > 0 in 0 < x < a1.

Case 2: a1 � x � a2. Note that A1(a1) = 0, A2(a1) < 0, A1(a2) > 0 and A2(a2) = 0. Also, A1(x) > 0 and A2(x) < 0 when
a1 < x < a2.

Since ℘(x − 1/2) is strictly increasing on 0 < x < 1/2, we have ℘′(x − 1/2) > 0 and ℘(x − 1/2)− c0 > e1 − c0 > 0, where
we invoked (2.7) in the last step. This along with (2.9) shows that θ ′

2(x)/θ2(x) < 0 on 0 < x < 1/2. Using all the above facts
and (3.6), we observe that F ′

2(x) > 0 on a1 � x � a2.

Case 3: a2 < x < 1/2. Since A1(x) > 0, A2(x) > 0 and g2 − 12c2
0 > 0, we have

℘(x − 1/2) + 2g3 + 4c3
0 + g2c0

g2 − 12c2
0

> 0, (3.19)

℘2(x − 1/2) + ℘(x − 1/2)
6g3 + 4g2c0

g2 − 12c2
0

+ 6g3c0 + g2c2
0 + g2

2/4

g2 − 12c2
0

> 0. (3.20)

From (3.13), as x → 1
2

−
,

G2(x) = θ ′
2(x)

θ2(x)
+ ℘′(x − 1/2)

2℘(x − 1/2)

(
1 + O

(
1

℘(x − 1/2)

))
.

Using (3.4) and (3.5), it is easy to check that G2(1/2) = 0. Next we show that G ′
2(x) < 0. From (3.15),

G ′
2(x) = ℘′2(x − 1/2)(1 − Q (x))(

℘2(x − 1/2) + ℘(x − 1/2)
6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

) ,

where

Q (x) :=
(
℘(x − 1/2) + 2g3+4c3

0+g2c0

g2−12c2
0

)(
2℘(x − 1/2) + 6g3+4g2c0

g2−12c2
0

)
2
(
℘2(x − 1/2) + ℘(x − 1/2)

6g3+4g2c0
2 + 6g3c0+g2c2

0+g2
2/4

2

) . (3.21)
g2−12c0 g2−12c0
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Fig. 4. Graph of G2(x) on 0 < x < 1
2 .

We claim that Q (x) > 1. Note that the denominator of Q (x) can be simplified as follows:

2

(
℘2(x − 1/2) + ℘(x − 1/2)

6g3 + 4g2c0

g2 − 12c2
0

+ 6g3c0 + g2c2
0 + g2

2/4

g2 − 12c2
0

)

=
(

2℘(x − 1/2) + 6g3 + 4g2c0

g2 − 12c2
0

)(
℘(x − 1/2) + 6g3 + 4g2c0

2(g2 − 12c2
0)

)

+
(

2
6g3c0 + g2c2

0 + g2
2/4

g2 − 12c2
0

− (6g3 + 4g2c0)
2

2(g2 − 12c2
0)

2

)
. (3.22)

Now

2℘(x − 1/2) + 6g3 + 4g2c0

g2 − 12c2
0

> 2℘(a2 − 1/2) + 6g3 + 4g2c0

g2 − 12c2
0

= 2P + 6g3 + 4g2c0

g2 − 12c2
0

=
√

	

(g2 − 12c2
0)

> 0. (3.23)

From (3.11), we have

℘(x − 1/2) + 2g3 + 4c3
0 + g2c0

g2 − 12c2
0

> ℘(x − 1/2) + 6g3 + 4g2c0

2(g2 − 12c2
0)

. (3.24)

By (3.9), the last term on the right-hand side of (3.22) is negative. Hence, (3.22), (3.23), (3.24) and (3.20) imply that
Q (x) > 1. Therefore G ′

2(x) < 0. By the mean value theorem, for any x ∈ (a2,1/2), G2(x)− G2(1/2) = G ′
2(b)(x − 1/2) for some

b ∈ (x,1/2). Hence G2(x) > 0. Since A2(x) > 0, this implies that F ′
2(x) > 0.

From the above three cases, we conclude that F ′
2(x) > 0 in 0 < x < 1/2. Since F2(1/2) = 0, by another application of the

mean value theorem, we conclude that F2(x) < 0 in 0 < x < 1/2. This completes the proof. Fig. 4 shows the graph of G2(x)
on 0 < x < 1/2.

4. Proof of monotonicity of ∂ S3
∂t

The method for proving monotonicity of ∂ S3
∂t is similar to that of ∂ S2

∂t and so we will be brief. From [7, Theorem 1], since

S3(u, v; t) is decreasing on 0 < t < ∞, we see at once that ∂ S3
∂t < 0. Let L3 := log S3(u, v; t). Observe that

∂ S3

∂t
= S3

∂L3

∂t
.

It suffices to show that ∂2 S3
∂t2 > 0. Now,

∂2 S3
2

= ∂
(

S3
∂L

)
= S3

(
∂2L3

2
+

(
∂L3

)2)
.

∂t ∂t ∂t ∂t ∂t
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We show that ∂2 L3
∂t2 > 0. Observe that using (2.10) twice, we have ∂2

∂t2 θ3(x/2|iπt) = ∂4

∂x4 θ3(x/2|iπt). It suffices to show that

the function θ
(4)
3 (x|iπt)/θ3(x|iπt)− (θ ′′

3 (x|iπt)/θ3(x|iπt))2 decreases on 0 < x < 1/2. Fix t where 0 < t < ∞. Using (2.8) and
(2.5), we find that(

θ ′
3(x)

θ3(x)

)′
= −

(
℘

(
x + τ − 1

2

)
− c0

)
. (4.1)

Observe that

θ
(4)
3 (x)

θ3(x)
−

(
θ ′′

3 (x)

θ3(x)

)2

= −4

(
θ ′

3(x)

θ3(x)

)2(
℘

(
x + τ − 1

2

)
− c0

)
+ 2

(
℘

(
x + τ − 1

2

)
− c0

)2

− 4
θ ′

3(x)

θ3(x)
℘′

(
x + τ − 1

2

)
− ℘′′

(
x + τ − 1

2

)
.

Using (4.1), we find that

d

dx

(
θ

(4)
3 (x)

θ3(x)
−

(
θ ′′

3 (x)

θ3(x)

)2)
= 8

θ ′
3(x)

θ3(x)

(
℘

(
x + τ − 1

2

)
− c0

)2

− 4

(
θ ′

3(x)

θ3(x)

)2

℘′
(

x + τ − 1

2

)

+ 8

(
℘

(
x + τ − 1

2

)
− c0

)
℘′

(
x + τ − 1

2

)

− 4
θ ′

3(x)

θ3(x)
℘′′

(
x + τ − 1

2

)
− ℘′′′

(
x + τ − 1

2

)
.

Since ℘(x + τ−1
2 ) decreases on 0 < x < 1/2, we have ℘′(x + τ−1

2 ) < 0. Define a function F3(x) as

F3(x) := 1

℘′(x + τ−1
2 )

d

dx

(
θ

(4)
3 (x)

θ3(x)
−

(
θ ′′

3 (x)

θ3(x)

)2)

= 8
θ ′

3(x)

θ3(x)

(
℘

(
x + τ−1

2

) − c0
)2

℘′(x + τ−1
2

) − 4

(
θ ′

3(x)

θ3(x)

)2

+ 8

(
℘

(
x + τ − 1

2

)
− c0

)

− 4
θ ′

3(x)

θ3(x)

℘′′(x + τ−1
2

)
℘′(x + τ−1

2

) − ℘′′′(x + τ−1
2

)
℘′(x + τ−1

2

) . (4.2)

It suffices to prove that F3(x) > 0. We prove this by showing that F ′
3(x) < 0 and F3(1/2) > 0, because then by the mean

value theorem, for any x ∈ (0,1/2), we have F3(x) − F3(1/2) = F ′
3(e)(x − 1/2) for some e ∈ (x,1/2) whence F3(x) > 0. We

first show that F3(1/2) > 0. Using the third differential equation in (2.1), we have

F3(1/2) = 8(e3 − c0)
2 lim

x→ 1
2

−
θ ′

3(x)/θ3(x)

℘′(x + τ−1
2

) − 4 lim
x→ 1

2
−

(
θ ′

3(x)

θ3(x)

)2

+ 8(e3 − c0)

− 4℘′′(τ/2) lim
x→ 1

2
−

θ ′
3(x)/θ3(x)

℘′(x + τ−1
2

) − 12e3. (4.3)

Now [8, p. 358, Section 13.19]

θ ′
3(z)

θ3(z)
= 4π

∞∑
n=1

(−1)n qn

1 − q2n
sin 2nπ z (4.4)

implies that θ ′
3(x)/θ3(x) vanishes at x = 1/2. Note that ℘′(x + τ−1

2 ) = 0 at x = 1/2 too. Hence, using L’Hopital’s rule in (4.3),
then (4.1), the second differential equation in (2.1) and simplifying, we see that

F3(1/2) = 16(e3 − c0)
3

g2 − 12e2
3

− 12c0.

Now using (2.3) and (2.7), note that

g2 − 12e2
3 = −4(e1e2 + e2e3 + e3e1) − 12e2

3

= 4(e3 − e1)(e2 − e3)

< 0.
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Fig. 5. Graphs of A1(x + τ
2 ) and A2(x + τ

2 ) on 0 < x < 1
2 .

Thus, we need to show that 16(e3 − c0)
3 − 12c0(g2 − 12e2

3) < 0 or equivalently, (e3 − c0)
3 < 3c0(e3 − e1)(e2 − e3). Consider

two cases.

Case 1: c0 � 0. By (2.7), the left-hand side is less than zero but the right-hand side is greater than or equal to zero. This
proves the required inequality.

Case 2: c0 > 0. Using (2.3),

3c0(e3 − e1)(e2 − e3) − (e3 − c0)
3 = (e1 + e2 + c0)

3 − 3c0(2e1 + e2)(e1 + 2e2)

= 1

27

((
(2e1 + e2) + (e1 + 2e2) + 3c0

)3 − 27 · 3c0(2e1 + e2)(e1 + 2e2)
)
.

The last expression is clearly positive by the arithmetic mean–geometric mean inequality and since 2e1 + e2, e1 + 2e2 are
positive by (2.7) and since 3c0 is positive. From the above two cases, we conclude that F3(1/2) > 0. Our next task is to
show that F ′

3(x) < 0. From (4.2), we have

F ′
3(x)

4
= θ ′

3(x)

θ3(x)

A2
(
x + τ

2

)
℘′2

(
x + τ−1

2

) + A1
(
x + τ

2

)
℘′(x + τ−1

2

) ,

where A1(x) and A2(x) are defined in (3.7). Now

A′
2

(
x + τ

2

)
= ℘′

(
x + τ − 1

2

)(
2
(

g2 − 12c2
0

)
℘

(
x + τ − 1

2

)
+ (6g3 + 4g2c0)

)
.

From (2.7), (3.8) and the facts that e3 < ℘(x + τ−1
2 ) < e2 and ℘′(x + τ−1

2 ) < 0 on 0 < x < 1/2, we find that A′
2(x + τ

2 ) > 0.
Also by Lemma 2.2, A2(

τ
2 ) > 0. By the mean value theorem, for any x ∈ (0,1/2), we have A2(x+ τ

2 ) = A2(
τ
2 )+xA′

2(k+ τ
2 ) > 0

for some k ∈ (0, x). Fig. 5 shows the graphs of A1(
τ
2 ) and A2(

τ
2 ) on 0 < x < 1/2. Now define G3 by

G3(x) := F ′
3(x)℘′2

(
x + τ−1

2

)
4A2

(
x + τ

2

)

= θ ′
3(x)

θ3(x)
+

℘′(x + τ−1
2

)(
℘

(
x + τ−1

2

) + 2g3+4c3
0+g2c0

g2−12c2
0

)
2
(
℘2

(
x + τ−1

2

) + ℘
(
x + τ−1

2

) 6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

) . (4.5)

From the above discussion, it suffices to show that G3(x) < 0. Now, from (4.4) and the fact that ℘′( τ−1
2 ) = 0 = ℘′( τ

2 ), it is
easy to see that G3(0) = 0 = G3(1/2). This implies that G ′

3(x) has at least one zero in 0 < x < 1/2. Differentiating both sides
of (4.5) with respect to x and simplifying, we observe that

G ′
3(x) = ℘′2

(
x + τ−1

2

)(
1 − Q

(
x + τ

2

))
(
℘2

(
x + τ−1

2

) + ℘
(
x + τ−1

2

) 6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

) ,

where Q (x) is defined in (3.21). Now
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Fig. 6. Graph of G3(x) on 0 < x < 1
2 .

1 − Q

(
x + τ

2

)
= 1 −

(
℘

(
x + τ−1

2

) + 2g3+4c3
0+g2c0

g2−12c2
0

)(
2℘

(
x + τ−1

2

) + 6g3+4g2c0

g2−12c2
0

)
2
(
℘2

(
x + τ−1

2

) + ℘
(
x + τ−1

2

) 6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

)

=
2℘

(
x + τ−1

2

) g3+g2c0−4c3
0

g2−12c2
0

+ C

2
(
℘2

(
x + τ−1

2

) + ℘
(
x + τ−1

2

) 6g3+4g2c0

g2−12c2
0

+ 6g3c0+g2c2
0+g2

2/4

g2−12c2
0

) , (4.6)

where

C := 2(6g3c0 + g2c2
0 + g2

2/4)

g2 − 12c2
0

− (6g3 + 4g2c0)(2g3 + 4c3
0 + g2c0)

(g2 − 12c2
0)

2
.

The numerator in the last expression of (4.6) has at most one zero since it is linear in ℘(x + τ−1
2 ) and ℘(x + τ−1

2 ) is
monotone. Hence, G ′

3(x) has exactly one zero, say x0, in 0 < x < 1/2. Thus we will be done if we can show that G3(x) < 0
at some point in the interval 0 < x < 1/2. In fact, we show that G3(x) < 0 on (0, x0).

For any x in (0, x0), we have ℘(x + τ−1
2 ) > ℘(x0 + τ−1

2 ). Also,

g3 + g2c0 − 4c3
0

g2 − 12c2
0

= g3 + g2c0/2 + 2c3
0

g2 − 12c2
0

+ c0(g2/2 − 6c2
0)

g2 − 12c2
0

<
−(e1 − c0)

2
< 0,

where the last two inequalities follows from (3.8) and (2.7). Therefore

2℘

(
x + τ − 1

2

)
g3 + g2c0 − 4c3

0

g2 − 12c2
0

+ C < 2℘

(
x0 + τ − 1

2

)
g3 + g2c0 − 4c3

0

g2 − 12c2
0

+ C = 0,

where the last equality comes from the fact that G ′
3(x0) = 0. Hence, G ′

3(x) < 0 for 0 < x < x0. Then it is clear by the mean
value theorem that for any x ∈ (0, x0), G3(x) = xG ′

3(x1) < 0 for some x1 ∈ (0, x). So finally G3(x) < 0 for 0 < x < 1/2. This
completes the proof. Fig. 6 shows the graph of G3(x) on 0 < x < 1/2.
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