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In this paper the author develops growth estimates for the solutions of
differential-delay equations having time-varying delays. Time-varying dif-
ferential-delay equations have a long history, and the literature on systems
defined by such equations is vast. Within this area, the special case of
systems in which the delay is itself a function of time has a much smaller
literature, and results are more rare [1-3, 5, 8].

The specific topic of interest in this paper wiil be the differential-delay
equation (1) x(f)= Ayx(?) + 4, x(z — h(1)), where 4., 4, are fixed members
of R**”, and h(r) is an absolutely continuous function having domain
[0, o) and range contained in a bounded subset of [0, o). We will
assume that h(¢) takes its values in the set H.={he[0, o ): fi(s)=
|sI—Ag—e ™A,| is nonzero for each complex s having Re(s) >y}, and
derive growth bounds for the solutions x(¢) of the system (). Particularly,
we give bounds for the functions |x()}°/e*" in terms of the behavior of
|A'(1)| and of the average values a(r) = (1/1) f§ |A'(1)] dr.

In order to clarify the discussion we now fix the notations used
throughout this paper, and recall those aspects of the autonomous system
(*) x(t)= Ayx(t)+ A, x(t — h) which will be useful as a point of reference
in our investigation. To begin, we let H=[0, cc), and for each he H, we
let o, denote the delay operator having duration A. A simple and uscful
way to form the characteristic function f,(s) for the system (* ) is to first
write p(s, o,)=|sI—Ag— A 0, =5"+a,_(6,)s" "'+ --- +ay(6,), where
for k=0, .., n—1, each a,(c,)e R[o,], the ring of real polynomials in the
operator a,. We then have f,(s) = p(s, e ). The utility of this formula is
clearly seen in the following lemma.

LEMMA 1.1. Let Ay, A, e R"™*", let >0, and let vy € R. Then there exists

453

0022-247X/92 $3.00

Copyright ¢ 1992 by Academic Press. Inc.
All rights of reproduction in any form reserved



454 JAMES LOUISELL

wo=wolh,y)>0 such that for all he[0, k], the characteristic function
fuls)=|sI— Ay —e~*"A4,| has no zeros in {|s| > w,, Re(s)=7}.

Proof. For zeC, write pi(s,z)=|s[—Ay,—A,z|=s"+a,_ ,(z)s" '+
<o« +ag(z). Then p(s, z)=s"[1 + (a, _(2)/s)+ - +(ay(z)/s")], and thus
p(s, z)/s" > 1 uniformly for |z| <e™ as |s| - oc. Since |e | <e™! for
Re(s)=7, he[0,h], we thus see that f,(s)/s"— 1 uniformly for
(h,s)e[0,h]x {Re(s)=7)} as |s| - o, and the lemma is now apparent.

Q.E.D.

It is well known that for any fixed A,>0, the characteristic function
fi(s) has at most a finite number of zeros to the right of any vertical line
in C. Thus, if f, (s) has no zeros in {Re(s)> 7}, then there exists &, >0 for
which f, (s) has no zeros in {Re(s)>7—¢,}. One can now note that the
mapping (h, s)— |sI—A,— A,e | is continuous over HxC, and set
wo = wolh, y— &), where wo(-.-) is as in Lemma 1.1 and %> h,. It is then
seen from continuity of the above mapping that for m=inf{|f, (s
[s| Swq, Re(s)=7—¢,}, one has m>0. Again using continuity of the
above mapping, we see that there is re(0,A—h,) such that
| fu(s)— fr(s)| =m/2 for each (h,s) lying in the compact subset
(Hn {|h—hol <r})x {|s| <wq, Re(s)=y—¢,} of HxC. Thus |f,(s)]>0
for he H, |h—hyl <r. Re(s)=y—¢, and one arrives at the following
lemma.

LEMMA 1.2, Let hoe H, and suppose f,(s) has no zeros in {Re(s)=7v}.
Then there exist a real number ¢,>0 and a relatively open set
U=Hn{lh—hol<r} such that if heU, then f,(s) has no zeros in
{Re(s) 27— ¢}

By applying Lemma 1.2 and a compactness argument, one immediately
obtains Lemma 1.3 below.

Lemma L3, If D is any compact subset of H , then there exist £,>0 and
a relatively open subset U of H having H, ., >U> D.

£y

2

The purpose of this section is to present the basic facts for a matrix func-
tion found necessary in the construction and use of a Lyapunov functional
introduced in Section 3.

We begin by taking any two matrices Ay, 4, € R"*". We take any
fixed yeR, and for each heH, we define the matrix functions
T(s)=(s+7)[—Ag—e 5+7%4, M, (s)=T,(s)" ', and the scalar func-
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tion g,(s)=|T,(s)|. It will frequently be useful to denote T,(s) by T(h, s)
and M,(s) by M(h,s). Finally, we recall the subset H. of H defined as
H.,={heH: f,(s)=|sI—A,—A,e | is nonzero for each complex s
having Re(s) >y}, and note that f,(s) is the characteristic function for the
system (x) x(f)= Ayx(t)+ A, x(1 —h).

Noting that g,(s) = f,(s+7), one sees that H.= {he H: g,(s) is nonzero
for each complex s having Re(s) >0}, and H. , = {he H: g,(s) is nonzero
for each complex s having Re(s)> —¢,}. From Lemma 1.3 one now sees
that if D is any compact subset of H_, then there exist £,>0 and a
relatively open subset U of H such that both (1) U> D, and (2) if he U,
then g,(s) is nonzero for each complex s having Re(s)> —¢;. Noting that
T(s)=sI—(A,—7y1)— (e ""4,) e ", we see that g,(s) is the characteristic
function for the system () 3(¢)=(4o—71) y(1)+ (e ™A4,) y(t—h).
To complete this commentary linking the systems (x) and (%), we
note that if x(r) is the solution to the differential equation (x)
X(t)=Ayx(1)+ A, x(t—h) having initial data ¢e C[—h, 07, then the
function y(f)=e "'x(r) is the solution to the differential equation (x,)
#(1)=(Ae—yD) y(t)+ (e "A4,) y(t—h) having initial data (u), where
Ylu)=e "p(u) for —h<u<0.

The simple formula T,(s)=(s+ M — (1/(s+ 7)) Aq— (/(5s+ 7))
Aye "M valid for seC—{—7}, immediately yields M,(s)=
(s+7) U= (1/(s+y)) Ag— (1/(s+y)) Aye“*7")~1 valid throughout
{s# —y, gus)#0)}. Setting F(h, iw)=(I— (1/{iv+7)) Ag— (1/(iw+ 7))
Aje "+~ we immediately see for any k>0 that F(h,iw)—I
uniformly over [0,%] as |w| — . Given any symmetric matrix W >0,
noting that M (iw)=(1/{iw+7)) F(h,iw), we write (M, )* (i) WM (iw)=
(1 (w* +72)) F*(h, iw) WE(h, iv). We thus see that if g,(iw) is nonzero for
each we R, then each of the entries of the matrix (M,)* (iw) WM ,(iw) will
be absolutely integrable over the unbounded interval ( — x, oc). For each
he H,, we now form the matrix Q(h, a), defined for every a € R as

Q(h, a)=ijj (Mh)* ([w) WM;,(I(,{)) e do.
2n

-

There are several basic formulas which simplify the analysis of the matrix
function Q(h, «). First among these is the formula for f,(s) given in Sec-
tion 1. Recall that there we wrote f,(s)= p(s,e "), where p(s, g,)=
IsI—Ay— A0, =5"+a,_(c,)s" '+ --- +ay(d,), and o, is the delay
operator of duration /. Using this formula and noting that g,(s) = f,(s + ),
it is seen that if K is any compact subset of C, and h, is any member of
H, then g,(s) — g,,(s) uniformly for se K as h— h,.

Another formula useful for analyzing the matrix Q(h, a) is the formula
for M ,(s) in terms of the matrix adjugate to T,(s), i.c., M,(s)=T,(s) ' =
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(1/g,(s))adj T,(s}) for each complex s having g,(s) # 0. From this formula
it is seen that, given any h,€ H, if g, (s) is nonzero for every complex s
lying in some compact subset K of C, then M ,(s) is defined throughout K
for each h lying in some relatively open neighborhood U=Hn
{|h—hol <r}, and in fact M,(s)— M, (s) uniformly for se K as h — h,.
With these comments as background, we can now present the first of
several lemmas dealing with the matrix Q(4, x) found useful in Section 3.

LemMMma 2.1, Let hye H,. Then there exist £,>0 and a neighborhood
U=Hn {lh—hel <r}, contained in H, ,, for which Q(h, a) is defined and
continuous throughout U x R. Furthermore, Q(h, &) — Q(hy, a) uniformly
throughout R as h - hy.

Proof. Existence: For any Aye H,, we know from Lemma 1.2 that there
is a neighborhood U=Hn {|h—ho| <r} with H, , > U. For any he U,
since he H,, we know that Q(h, a) is defined for each xeR.

Continuity: Let U be as immediately above, and for each he U, set
R(h, @)= (12n)(M,)* (iv) WM, (i»), and R(h, w)= R(h, w)— R(hy, w).
For any fixed w, >0, we write

O(h, &) — Q(ho, o) =[ Rih, w) e dor + J R(h, ) e do.

| < wy o] 2wy

Since hye H,, we know from the comments preceding this lemma that for
any w,>0, R(h, )— 0 uniformly for |w| <w, as h— h,. Thus, for any
w,; >0, we have

J' IR(h, ©)| do—0  as h— hq.

lw| €

Again referring to the comments preceding this lemma, we write
2nR(h, w) = (1/(w?+?)) - [F*(h, i) WF(h, iw) — F*(h,, iv) WF(h,, i®)],
and recall that F(h, iw) — I uniformly over bounded subsets [0, h] of H as
|w| — 2. We thus see that

[ 1Rk @) do—0

fw| =z w|

uniformly over bounded subsets [0, %] of H as w, — .

Now writing

10tk 2) = Qlho, )| <[ IR @) do+| IR o)l do,

|wl < e Jol 2w
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and recalling that for any w, >0,

J‘ || R(h, »)|| dew — 0 as h—hg,

|l <y

we conclude that ||Q(h, @) — Q(hg, #)|| = 0 uniformly for ae R as 4 — h,.
If we now set S(h, w, )= R(h,w)e "% and for fixed a,e R we set
S(h, w, x) = S(h, , &) — S(hy, @, &), then by applying an argument similar
to the above, using the functions S(k, w, «) and S(h, w, o), one will find
that |Q(h, a) — Q(hy, o) — O as (h, a) = (hy, %5). Since the original choice
of hoe H was arbitrary, the proof is compiete. Q.ED.

The next lemma, which is actually a basic fact of real analysis, is
included for use in the two lemmas which immediately follow this lemma.
The proof is derived from standard real analysis techniques, and is not
given here.

LEMMA 2.2. Ler U, be any real interval, and let U, be either of
(—oc, oo), [, o), where T is any member of R. Let fU, xU,— C""",
where both f and D, f are continuous throughout U, x U,. For any 20, set
J(B)=U,n {|x,| =B}, and now suppose that there exist >0 and a real
Sfunction ¢: J(By) — [0, oc) having the properties (a), (b) written below:

(a) _[J([}O) $lxy) dx; <
(b) for each (x,,x,)e U, x U, having |x,| 2 By, both | f(x,,x5)| <
#(x2), and | D, f(x,, x2)| < P(x2).

Then for F(x\)= [, f(x, x,) dx,, we know that F(x,) is defined and finite
for all x,e U\, and in fact the derivative F'(x,) exists and is continuous
throughout U, with F'(x,)={,. D, f(x,, x,) dx,.

In the next lemma, we again examine the behavior of the function
R(h, w)=(1/2n) M*(h, iw) WM(h, iw). Here we employ two formulas for
(CR/Oh)(h, w) to prove existence and continuity of (8Q/0h)(h, a). To obtain
the first of these formulas, we recall that M(h, iw)=T ~'(h, iw), where
T(h, iw)=(iw+7)[— Ag—e "+ 4 Setting N,(h, w)= — (({iw+7)/2r)
e TRy ME(h, iw) WM(h, iw) A, M(h, i), we can give the first of the
two formulas for (¢R/0h)(h, w):

JéR oM * oM
OoR (M . . il oM
2n D (h, w) <8h (h, tw)) WM(h, iv)+ M*(h, iw) W( e (h, 1w)>

=(—=M(h, iw) A, M(h, io)(io+7y) e "+ V)* WM(h, i)
+ M*(h, iw) W(—M(h, iw) A, M(h, io)(io +7) e ™" +11%)
—20[N*(h, )+ N, (h, 0)].
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le.,

R
7 (h,)=N¥(h, o)+ N,(h, w)

for any (4, w) having |T(A, iw)| #0.

We now return to the formula R(h, w)=(1/2n(w?+ %)) F*(h, i)
WF(h,iw), where F(h,iw)= (I-(1/(io+7y)) Ag—(L/(iw+7y)) A e ety -1
Setting  N,(h, @)= — (1/2n) e " *V*F*(h, iw) WE(h, iw) A, F(h, iw), we
can give the second of the formulas for (¢R/éh)(h, w),

, . OR
2 2 )2
n(w* + 9 )Eh (h, w)

oF * F
= (—- (A, iw)) WE(h, iw)+ F*(h, io) W<a— (h, iw))
ch ch

=(—F(h, io) A, F(h, iw) e """ WE(h, iw)
+ F*(h, i) W(—F(h, iw) A, F(h, io) e ")
=2n[N¥(h, )+ N,(h, w)],

Le.,

OR |
—(hw)=——— [N¥(h, @)+ Ni(h, w)]
oh W+

+7
for (h, w) having (w, 7) # (0, 0), |T(A, iw)] #0.

LEMMA 23. Let hoeH, Then there exist ¢,>0 and U=Hn
{lh—hol <r}, contained in H., ., for which (6Q/oh)(h, a) is defined
and continuous throughout Ux R, with (8Q/oh)(h, a)=|* _ (OR/3h)(h, w)
e~ "*dw. Furthermore, (3Q/0h)(h, a) — (8Q/0h)(hy, o) uniformly through-

out R as h— h,.

Proof. Let hye H., and let U be the neighborhood of Lemma 2.1, ie.,
U=Hn {lh—hol<r}, with H. _ >U, and with Q(4, «) defined and
continuous throughout UxR. Noting the formulas 2nR(h, w)=
M*(h, io) WM(h, iw), and (éR/éh)(h, w)= N¥h, w)+ N,(h, w), both
valid throughout Ux R, with —2aN,(h, w)= (iw+7y)e " MM*(h, iw)
WM(h, in) A, M(h, iv), we see that both R(h, w), (0R/h)(h, w) are
continuous throughout U x R.

Now note the formulas 2nR(h, w) = (1/(w?+ 7)) - F*(h, iw) WF(h, iw),
and (OR/0h)}(h, w)=(1/(w®+7?)) - [N¥(h, w)+ N,y(h, )], both valid
for helU, (w,7)#(0,0), where —2nN,(h, w)=e “TI"F*(h iw)
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WEF(h, in) A, F(h, iw). Since U is bounded, we know that F{h, iw)—1[
uniformly for he U as |w| - oc. Now set c=sup{e " he U}, and set
K=max{| W2+ 1, (c|A4,]-||W])2n+1}. Then there is some f,>0
such that for |w|>pf, and heU, both |R(h, w)|<Kw > and
(@R/Ch)(h, w)| < Kw > Writing Q(h a)=["_ R(h,w)e “*dw, we
can apply Lemma22 with U, =U, U,=(—2, %), and ¢(w)=Ko *
for |w|=pBy. and conclude that for each aeR, (2Q/ch)(h, a) exists
and is continuous in A4 throughout U, with (&Q/¢h)h, 2)=
{7, (@R/ChY(h, w) e " dw.

Having established this formula for (éQ/0h)(h, 2) throughout U x R, we
can now return to the formulas (¢R/0h)(h, w)= N¥(h, w)+ N, (h, w), and
(6R/Gh)(h, w) = (1j(w> +7%))- [N¥(h, w) + N»(h, w)], and employ techni-
ques comparable to those used in Lemma 2.1. One can then prove that
(0Q/ch)h, o) = (8Q/Ch)(hy, «) uniformly throughout R as h-—h,.
Similarly, it can be shown for cach ax,eR that (8Q/ch)(h, x)—
(CQ/h)hy, 2y) as (h, %)= (hy, %y). Since the choice of hoe H. was
arbitrary, we conclude that (éQ/¢h)(h, ) is continuous throughout U x R.

Q.E.D.

Before introducing a formula for dealing with Q(A, «) for use throughout
this paper, we first recall some basic facts from Fourier transform theory
[9]. Consider any matrix function f(r) having domain (—c, oc) and
range in C"” If fe L*(—xc, ). the Fourier transform foff is defined as
flo)=(1}y 2n)j'7, f(t)e”“’ dr. The function f will lie in L?(— 0, o),
and in fact flty= 1/\, 2n)j . flw)e™ dw. We let # denote the operator
F:L(—o, ) LY —o0, ) defined by #(f)=/, and we let F '
denote the inverse operator. Defining the convolution of any two members
fig of L (—o0,c) by (f*g)t)=(", flu) g(t—u)du, we recall that
F(f*g)= (\/"ﬂ)(/ )(g) provided f, geL (— =, = ). Finally, we shall use
the formula I’;I\ Tw) glu—tydu=["_ (/)*(w) §(w) e " dw, valid for
fige(L'n L) —x, x)iff, g have range in R"". This formula is readily
derived by noting first that (f)* = f,,, where fy(1) = f 7(—1). by next writing

i _ . 1
=" o) fo) e do = (F NN~ 1) == (fo = £X—1)
/2n /

and by then using the variable substitution #= —u in the expression
(for e)—=t)=0"_ fT(—u) g(—1—u)du.

The next formula, which proves extremely useful as a characterization of
the matrix Q(h, a), arises from the link between M,(s) and its inverse
Laplace transform. To explore this further, for any he H., we denote the
inverse Laplace transform of M ,(s) by Y,(t), or, when A is fixed and under-
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stood from the context, merely by Y{(r). Then Y{(-) is the solution to the
differential-delay equation Y(t)= Y(t)(4o—7I)+ Y(t—h) A e " having
initial data Y(u)= ¥(u) for —h<u <0, where Y(u)=0if —h<u<0, and
lI’(O)—I Noting that Y(r)=0 for 1 <0, we write M, (s)= {7 Y(1)e “di=
{*, Y(tye " di Since he H,, we know there exist C>1, g,>0 such
that || Y(r)| < Ce ' for all +20. Thus Y(:)e(L'nL*)—x., x), and
with Y= 1Y‘ we have ?(w)=(1"’ /2m) M,liw). If we now set
f= g—(\ ) Y in the previously given formula {*  f7(u) g(u—a) du=
[~ (f)* (w) glw)e “*dw, we obtain the 1mportant formula
Io T(u WY(u—(x)du-—( 2=, (M)* (io) WM (io) e “*do, e,
Y=g Y1) WY(t—a)dL

From this formula it is obvious that Q(h, x)eR"*" for he H., x€R.
Noting the definition Q(h, x)=(1/2n) [*, (M,)* (iw) WM, (iw)e “* dw,
one easily sees that Q*(h, x)=Q(h, —a). Thus for he H,, xe R, we have
Q"(h, x) = Q(h, —a). Based also on the formula for Q(h, x) just derived,
one may now refer to Infante and Castelan [6], or to Datko [4], and
deduce the formulas for (¢Q/cx)(h, 2} given in the following lemma. Alter-
natively, one may note the formula just derived for Q(h, «), and for =
some interval containing 0, one can write (Q(h, a+z)—Qlh, a))/z=
[ W((Y(t —a—z)— Y(t —a))/z)dr. After some elementary
analy31s one can directly apply Lemma 2.2, and differentiate the integral
for Q(h, o) with respect to x.

LemMMa 2.4. Let hye H,. Then there exist &,>0 and a neighborhood
U=Hn {|h—ho| <r}, contained in H, . for which (éQ/da)(h, a) is
defined and continuous throughout U x (R—1{0}). In fact, the following
Sformulas hold for (8Q/0a) h, a):

(a) (8Q/0u)(h,a)= —Q(h.aNAg—yI)—Q(h,a+h)A e " for (h,a)e
Ux(—0,0)

(b) (8Q/0x)(h, )= (Ag— 3T QT(h, —a)+e (4,)" Q7 (h, —a+h)
Sfor (h, 2)e Ux (0, < ).

CorOLLARY 2.4. Let V| be any compact subset of H.,, and let V, be any
bounded subset of R — {0}. Then |(8Q/0a)(h, )| is bounded over V x V,.

Proof. Choose «a,,0,eR* such that [—x,,0)u(0,2,]>V,. Set
Pi(h,a)= —Q(h,a)(Aq—7I)— O(h,a+h) A,e” ", and note that for
heH,, a<0, we have (¢Q/0x)(h, x)=P(h,a). Noting continuity of
P,(h, o) and compactness of V,, we see that ||P,(h, a)| is bounded over
Vix[—a,,0], and hence ||[(¢Q/da)(h, x)| is bounded over V', x [—a,, 0).
Setting  P,(h, 2)=(Aq—yDT QT(h, —a)+e ™(A,)T Q7(h, —a+h), and
noting that (8Q/da)(h, a) = P,(h, a) for he H,, o >0, we similarly find that
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[(¢Q/0x)(h, a)| is bounded over V,x(0,x,]. We now conclude that
1(2Q/da)(h, a)| is bounded over V| x V5. Q.E.D.

It is worth noting that for any he H,, the matrix function Q(h, -) is
differentiable from the right at a =0, with right derivative given by the
formula

0
(5(}1, d)]1=0+>= '—I—Q(h,O)(AO~«,|[)_Q(/1’h)Ale—;h'

In fact, the matrix function Q(4, -) is also differentiable from the left at
a =0, with left derivative given by

0
<£(h, %) ]y—0- ) = —Qh.0)(Ay—3I)— Q(h, h) A e "

Since these formulas will not be used in any of the lemmas or theorems
in this paper, the proofs of these formulas will not be given here. The
interested reader will find several more formulas for (¢Q/¢x)(h, «) in a
paper of Datko on autonomous differential-delay equations in Hilbert
space [4].

3

In this section we introduce a Lyapunov functional for the autonomous
differential-delay system (*) x(¢)=Aox(t)+ A, x(t—h). In the form that
we shall use, this functional was first presented by Infante and Castelan
[6], who gave a simple differential inequality relating the derivative of the
functional along trajectories of the system (x) to the value of the functional
itself. Here, by expressing this functional in terms of a Lyapunov functional
given in a later paper of Infante [7], we are able to somewhat simplify the
analysis given by the above authors. The point of view we adhere to will
emphasize those aspects of the functional which make it possible to adapt
our analysis to the time-varying system (1) x(¢) = A, x(1)+ A, x(t — k(1)) in
the following section.

We begin by taking any two matrices Ay, A€ R"*". We then let
7€R, >0 be any fixed real numbers such that he H, ie., such
that fy(s)=|sI—Ay—e *A4,| has no zeros in [Re(s)>7}. For any
$peC[—h 0], we let x(t)=x(¢,1) denote the solution, defined for
0 <t < o0, to the differential-delay equation (*) X(1) = Agx(1) + A, x(t — h)
having initial data ¢ on [ —hA, 0]. For each 7 >0, as in Section 2, we define
v(g, t) by y(¢, t)=e""x(¢, t), and note that y(g, 1) is the solution, defined
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for 0<t<x, to the differential equation (*.) y(t)=(Aq—yI) y(1)+
e ™A, p(t— h) having initial data y, where (1) = e ~"@(u) for —h<u<0.

The characteristic function g,(s) for the system (,) is given by
gis)=IsI—(Ag—yD)— (e ™A e ™|, ie., g,(s) = fi(s+7). It is important
to recall here that there exist ¢, >0, C =1 such that both (1) g,(s) has no
zeros in {Re(s) > —e&o}, and (2) || Y(r)| < Ce '™ for all >0, where Y(r)
is the inverse Laplace transform of M ,(s). Noting that for 1 >0, y(¢. 1) has
the representation y(¢, )= Y(1} Y(0) + {* , e ™A, Y(t — h— u) Y(u) du, one
can apply the Cauchy-Schwartz inequality. and after some elementary
calculations, one will see that

|3(g, 1)l < Ce “‘“"-[|¢(0)| F AR et ol

0 12
x<[ |¢(u)|2du> ] for all 130,
Y -h

We now consider the valuable positive functional n(h,-), defined
for ¢eC[—h,0] by nh, ¢)2=¢T(0)¢(0)—+—j°_,,¢T(u)¢(u)du. Setting
C'=C-(1+||4,]-h"%"*"), we see that C’'>1 and |y(d, 1)<
C'n(h, ¢) e " for all t>0. From this it is clear that y(g, -)e L*(0, o).
Given any symmetric matrix W >0, we here introduce the functional
Vo(-)=Vo(h,-), defined for each ¢eC[—h 0] by Vihd)=
& »7(¢, 1) Wi, 1) d.

In order to analyze the behavior of V() along the trajectories of the
system (*) x(1)= Agx(t)+ A, x(t—h), we first take any trajectory x(-) of
the system (=), with corresponding sections x,€ C[ —h, 0] defined for >0
by x(u)=x(r+u) for —h<u<0. For t, t 20, we can set ¢ = x, in y(¢, 7).
Since the function z(t)= x(7+ t) is the solution to the differential-delay
equation (*) Z(1)=Ayz(t)+ A,z(t—h) having initial data z,=x,€e
C[—h, 0], we see that y(x,,t)=cz(t)e " =x(t+7)e " for t=0. This
yields

~r

VO(xr) = J -VT(xra T) VV}‘(X,, T) dr= J‘ x XT“ + T) WX([ +71) 972?: dr.

0 0
Setting ' =t + 7, we obtain

Volx,) = . CxT(T) Wx(t) e B 0 dr,

vt

Volx,)=e". J‘X xT(t) Wx(t)e 5" dr.

t
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Noting the continuity of the integrand in this expression for Vi(x,), we
write

(W%’—)=2}*V0(x,)——el""(xT('t) Wx(t)e %)= 2yV(x,)— xT(1) Wx(t),

ie.,
Volx,) = 2yVo(x,) — xT(1) Wx(1).

Given any symmetric matrices M, R, W>0, we now introduce the
functional V(-)= V{(h, -), defined for each ¢ € C[ — 4, 0] by

~0
Vih, ¢)=¢"(0) M¢(0) + 9"’"’~J . ¢"(u) Rp(u) e ™" du+ Vo(h, §).

By expressing the functional V(A, -) in terms of y(¢, t) and Y(u) = e ~"d(u),
we can give this functional a more natural appearance as follows:

Vih, ¢)=y7(0) M¢(0)+e*”"ﬁ, ¥ T(u) RY(u) du

+ J"' YT, 1) W, 1) dt.
(4]

It is routine to establish an inequality in which a constant multiple of
n(h, $)* is majorized by V(h, ¢). In fact, letting A, (-) denote the minimum
eigenvalue of a symmetric matrix, we set c¢,=c,(h)=min(4,(M),
e i, (R)-inf{e 7 —h<u<0}). Noting that V(-)=0, we see for
each ge C[—h, 0] that ¢, - (¢7(0) #(0) + [, #7(u) p(u) du) < V(h, §), ie.,
c(h)-n(h, ¢)> < V(h, ¢). Finally, noting that min(l, e**)=inf{e 2"
—h<u<0}, it is easily seen that ¢,(h) = min(4,,(M), e """ 1 _(R)). As in
Infante and Castelan [6], we have shown:

Let ¢, =c,(h)=min(A,(M),e """ .4 (R)). Then for
each ¢ e C[—h, 0], we have c,(h)-n(h, ) < V(h, §).

Any method of expressing V(¢) directly in terms of ¢, without referring
to the function y(¢, 1), would immediately yield a direct expression for V().
Such an expression is possible [6, 7]. In fact, we can first recall the nota-
tion H(w) = F(¢, w) for F{1(4, t)}, the Fourier transform of the function
y(t)= v(4, t). Recalling that y(¢, -)e L*(0, oc) for each ¢ C[—h, 0], we
can apply Parseval’s equality to see that

2

V@) =[" s Watg.ndi=[" (5)* (4 0) Wil 0) do.

— =

409:164.2-11
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Letting &(s)=¢&(¢, s) denote the Laplace transform of the function
»(t)= (¢, 1), we mnote that PHw)=<E(iw)// 2n.  Hence, 2nVy(¢) =
jfx E¥(@, i) WE(J, iw) dw, and it is relevant here to recall the differential
equation for y(-),

WO =(Ag—7I) y()+ e A, v(t —h), )
*‘.
vu)=yu)=e "Pu) for —h<u<O. :

Taking Laplace transforms of both sides of (*,), we obtain

sE(s)—Y(0)=(Ag—7]) E(s)+ e (A e ") E(s)
e (A, e *T")-Ji Ylu) e du.
Noting that M,(s) = (s]—(4do—yI)— (e "4} e *")~"', we simplify this to
obtain
E(s)=M(s) l/l(0)+Mh(S)(Ané’*"'h)'J‘i,, Ylu)e *“*" du.

Setting [, (w)= [, Y(u)e ““*" du, we have &(iw)=M,(iw)P(0)+
M (io)(Ae™? ”) Ih(w) Expanding the expression &*(iw) Wé(iw) and
applying some elementary analysis, one uses Fubini’s Theorem, and finds
that

Vol )= (0) QU 0) (0) +27(0)- [ QU u+h)e ™ () di

J f W (u)e ™A,)T Qh, v — u)(A,e ") Yy(v) dv du,
h

where Q(A, a) is the matrix which was the subject of Section 2. From this
one immediately sees, as established in Infante [7], that

0
Voth, $)=¢7(0) Q(h, 0) $(0) + 2€77h¢r(0)'J,h Q(h.u+h) A, p(u)e ™ du

0 0
te 2 [T 7 §T)(A) Qh, v —u) A (o) e do dh.
~hY—h

We have written the functional ¥V directly in terms of ¢. To express the
functional ¥ in a similar way, we write

0
Vih, 8)=¢7(0) Mp(O)+ e~ [ ¢7(u) R§(u) e~ " du+ V.(h, ),

—h
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Le.,

Vi, )= $7(0) Mp(O)+¢ - [ 47(u) Ro(u) e~ di

~0
+¢7(0) Q(h, 0) $(0) + 2¢ " ¢7(0)- | QU u+h) A, p(u)e * du
Y —h
0 0
-+—e*~""' .[ f ¢T(u)(A1)TQ(h’ U_“)A1¢(U)£’7".(“+”dv du.
-hY -h

Using the above formula it is easily seen that for any h,>h, the
functional V(#, -) can be extended to the space C[ —h,, 0]. In fact, for any
®eC[—h,0], we first define ¢ =r(P) as the restriction of @ to the
interval [ —#, 0]. We now naturally define V(h, @) as V(h, ¢). In the same
sense, for any A, > h and ¢ C[—h, 0], we set n(h, ®)=n(h, ¢), where
¢ =r(®). This simple point has been included for its value in the following
section.

In order to calculate V(x,), the time derivative of V(-) along solutions
x(-) of the differential equation (%) X(¢)= Aux(t)+ A, x(t—h), we first
write

~0
Vix,)— Volx,)=xT(t) Mx(t) +e " J xT(t4u) Rx(t+u) e " du.

- h

Now setting x(f)=e"'y(t) in the expression x7(t) Mx(t), and using the
variable substitution u'=t+u for the above integral, we obtain the
following expression for V' — V:

Vix,) = Volx,)=e¥yT(1) My(1)

~l
+e2""e"'"'~J xT(') Rx(u') e " du'.
t—h

After a long, direct computation one can obtain

dVix,)—Vo(x,)
dt

0
=2y- [xr(t) Mx(t)+e 7" J

xT(t+u) Rx(t+u) e 2 du]
—h

+2-[xT(aNAL— D)+ xT(1—h) AT] Mx(t)
+e~xT(1) Rx(1)— e™xT(t— h) Rx(t — h).
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It is convenient to write this as

V(x,) = Volx,) =2y - [V(x,)— Vo(x,)]
+ 2 (O[(AL —2]) M+ e "R) x(1)—e

) T _oarh Ty R MA1>( X(t) )
(xT(1)—e"x"(s h))(AlTM i enti—m)

Finally, noting that Vo(x,)=23Vo(x,) = x7(t) Wx(t), we obtain

Vix,)=23V(x,)—xT()[W—=2(AT —yI) M — 2e " R] x(1)

v (e Ty ok Ty R MA, ( x(1) >
e (x"(ty—e"x"(¢ h))<A1TM R ) et(i—h))"

Using this formula for ¥(x,), it can be seen that by properly choosing
the symmetric, positive matrices M, R, and W, one will have
V(g)—2yV(¢)<0 for all peC[—h,0]. Thus the function V(x,) will
satisfy V(x,)<2yV(x,) for all >0, and recalling elementary analysis, we
conclude that for any solution x(-) of the differential equation (*)
X(1)=Aox(1) + A, x(t — h), one will have F(x,) < V(xy)e™" for all 1>0.

4

In this section we examine the behavior of differential-delay systems
having time-varying delays. For this purpose we use a time-varying
modification of the Lyapunov functional constructed in the preceding
section for the autonomous system (x) x(1) = Agx(¢) + A, x(t —h). We shall
present an analysis of the behavior of this time-varying functional along the
trajectories of the system (1) x(¢)= Agx(1)+ A, x(¢— h(¢)). Although this
analysis will be quite laborious, the end result will be a new approach to
growth estimates for differential equations having time-varying delays A(r).

Before proceeding to the lemmas and theorems of this section, it is
appropriate to note the basic facts of existence and uniqueness of solutions
for the types of systems we will be considering. In this section we will be
considering differential-delay equations of the form () x(r)=Aex(t)+
A, x(t—h(r)), where h(-) is a bounded, absolutely continuous function
having domain [0, oc) and range contained in the set H=1[0, o). It
follows from basic resuits in the theory of functional differential equations
[5] that for any Z;sup{h(t): t >0} and for any initial data y e C[-h, 0],
there is a unique function x:[—h, o) R" having x(u)=yx(u) for
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—~h<u<0, which is C' over the interval [0, oc), and which satisfies the
differential equation (1) for all 1> 0.

We are now ready to modify the functional V(h, ¢) for use in the case
where the delay is a function of time. We begin by noting that an
absolutely continuous function is differentiable a.e. in Lebesgue measure.
Now taking any fixed 7 € R and a compact subset D of H,, we define S,(D)
as the class of all bounded, absolutely continuous functions A(t) with
domain [0. oc') and range in H, having the property (i) below:

(1) Ah(r)ye D for all +=0.

For constants g, y, with u, <O<p,, the subset S (D, u,, u,) of S,(D)
is now defined as the class of those members #(-) of S.(D) having the
property (ii) below:

(i) p, <A (1)<, ae. in Lebesgue measure over [0, co).

The constant sup D will be denoted by d, and finally, for any A(-)e S.(D),
we define the time-varying functional G(1, ¢), for +>0 and ¢ C[—d, 0],
as G(t, ¢)=V(h(1), §).

It is important to particularly note here a basic consequence of
Lemma 1.3. Since D is assumed to be a compact subset of H., we know
that there is a relatively open subset U of H having H, > U> D.

To assist in a technical detail occurring in our analysis of the behavior
of the functional G along trajectories of the system (1) X(r)=Adyx(r)+
A, x(t— h(t)), we now give the following lemma. This lemma will be useful
in finding an expression for G. Since this lemma is a basic fact of real
analysis, the proof will not be given here. However, it should not be
assumed that the proof is routine.

LEMMA 4.1. Let f: (a,b)x [c—0,d] — R"*" be continuous, where 6 is a
positive real number. Set U= (a, b)x {c—0<x,<d, x,#c}, and suppose
first that D, f(x, x,) is defined and continuous on U, and also that there is
a constant M such that | D, f(x, ;)| <M for (x,, x,)e U. Now, for each
X €(a, b), define F(x,)={? f(x,, x,) dx,. Then the derivative F’'(x,) exists
for each x € (a, b) and F'(xl)=j1’D1f(xl, X») dx,.

We now give a formula for G'(x,), the time derivative of the function
G(1, x,) along solutions of the differential equation (t) x(¢)= Ayx(¢)+
A x(t—h(1)).

LemMma 4.2, Let D be any compact subset of H,, and let h(-) be any
member of the class S(D). Consider the following functionals E(n, n’, ¢) and
F(n, ¢), defined for ne D, n'€R, and ¢ C[—d, 0]:
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E(n,n',¢)=—9¢"(0)[W—2(A] —yI) M —2¢ "R] 4(0)
—e - [¢T(0)—ePT(—n)]
( R (M+n’Q(r7,0))A,>( $(0) )
A{(M+n1'Q"(n,0)) (1+9R )\ —e"¢(—n))’
8
F(n,¢)=Y F.(n, ¢),
i
where

Fy(n, $)=47(0) D,Q(n, 0) 4(0),

A0
Fan == [ 90 R

L
~0
Fi(n, ¢)= —27'¢T(0)-J Qim. u+n)e A, p(u)e ™ du,

~0

Fan. 9)= _2)"J J‘O ¢T(u) e AT Q(n, v —u) Aye

-nv—n

“g(v)e 7T du du,

~0
Fyln, @) =2¢7"¢7(0)- | [(45—yD) Qln.u+1)
+e7TATQM w)] A, p(u) e di,

~0
Fo(n, )=2¢ "¢7(0)-| D, Q(n.u+n) A plu)e ™ du,

n

~0
Foln, )=2¢ "7 (=m) AT | QUn st ) A g(w) e du

-5

‘ 0 0 ) i
Fond)=[ [ #7we "ATD,Qn0—u) Are

—nvY—n

-B(v) e 7 do du.

Now let x(-) be any solution of the differential equation (%)
X(£)=Aogx(t)+ A, x(t — h(1)), and consider the function G(t, x,). For each
nonnegative value of t at which h(-) is differentiable, the following formula
holds for G(x,)=dG(t, x,)/dt. Particularly, the formula holds ae. in
Lebesgue measure for t = 0:

G(x,)=2yG(1, x,)+ E(h(1), (1), X,) + W' (1) - F(h(1), x,).



GROWTH ESTIMATES AND ASYMPTOTIC STABILITY 469

Proof. We begin by explicitly displaying the functional G(t, x,) as
follows:

G(t, x)=xT(1)[M + Q(h(1), 0)] x(r)

0
+e""’"”.J. xT(t+u)Rx(t+u)e ¥ du

— hit)

4]
+ 20 MO T (). [ O(h(t), u+h(1)) A, x(t+u) e du

Y —hir}

~0 ~0
+e*2""’“’-J J X+ uy ATQh(1), v —u)
—htr)

—hin)

A x(t+vye MV du.

Now setting y(r)=e~"x(t) for 1>0, and using the variable substitution
u'=t+u, v'=1t+v for the above integrals, we obtain the identity for G
written below:

G(t, x,)—e¥'yT()[ M + Q(h(1), 0)] y(r)

t
=Y. [e Tk f xT(u') Rx(u'y e ™5 du’ + 2e 7+ M (1)

Y1 —htr)

QU W R = 1) Ay e d e

1—hir)
f J. xT(WYATQA(t), v —u') A, x(v') e 7 ) dy du’].
t—h{e) Y1 — h(t)

Referring to Lemma 2.3 on the existence and continuity of D,Q(h, «),
it is seen that if 4(-) is differentiable at r, then the function
»I(O[M + Q(h(r),0)] y(1) is differentiable at 7. Now set

Jilons )= [ () Reu') e~ i,

Xy

A

Jalay, &y, ag, ‘14)=J ) Qos, w' +ay) A x(u')e ™™ du',

X1

X2 x4
Ja(ay, oy, 03, 0y, a5)=f J xT(uw') AT Q(as, v/ —u')
X3 23
A x(v)y e Ty dy
and note that the integrals occurring on the right side of the above equa-
tion can be expressed, respectively, as J,(t)=j(t—h(1), 1), J,(t)=
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Jo(t —h(2t), t, h(2), h(tY—t), and J5(t) = j5(t —h(t), t, t — h(t), 1, h(1)). Noting
continuity of x(-) and of Q(-,-), and again referring to Lemma 2.3, we see
that the matrix functions J,(-), J5(-) are differentiable at ¢ if A(-) is, and
it is then routine to calculate their derivatives. The technical detail men-
tioned prior to Lemma 4.1 occurs in finding the derivative of the matrix
function J,( ). Here we recall Lemma 2.4 and Corollary 2.4, and then apply
Lemma 4.1 to calculate D,j,(r— h(1), 1, A(t), h(t)—t). One then makes
routine use of the chain rule to calculate the derivative of the matrix func-
tion J,(-) at all values of ¢ having A(.) differentiable at r. Finally, a
straightforward but very long computation will now yield the formula

dG(t, x,)

0 =2vG(1, x,)+ E(h(t), K'(1), x,)+ k(1) - F(h(1), x,). Q.E.D.

It will prove valuable to carefully examine the functionals E and F. For
this purpose we make the simplifying assumption that each of the matrices
M, R, and W is a constant multiple of the identity, i.e, M=k, [, R=kgl,
and W=kl with k,, kg, ku>0. We can then set Oy, a)=

(12m) ~ M*(n, io) M(n, i) e ~*dg for neH, and 2€R, and write
Qn,a)= k,, -Q(n, 2). If we note Lemmas 2.1 and 2 3, we now see that each
of the quantities §,, §,, and § defined below is finite:

g, =sup{|Q(n, a)|: ne D, —d<a<d},
7,=sup{|D,0(n, 2)|: ne D, —d<a<d},
g =max(g,, 4»)-
We are now prepared to examine the functionals E and F. To begin, we

expand the expression for E given in the above lemma, thus obtaining the
expression for E written below:

Enn', ¢)=—kw¢T(0) $(0) — ()1 + 1) kg (—n) $(—
+¢7(0)[ 2k p(Ag — 1)+ (e ~™) k1T $(0)
+20T(0) (ks I+ (1) kwO(n, 0)] A, ¢(—n).

Using straightforward applications of the Cauchy—Schwartz inequality, we

readily arrive at the inequality for E below, valid for neD, ' €R,

peC[—a,0]:
E(n,n', §)< —ky - [90)> —(e"W1+n'Y kg |(—n)?
+ (20145 =31 kpe+ (e ) k] - 14(0)1
+ 2|1 Al - (kag + |1'] Gk )OS —n))).
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We now turn to the functional F=3?} F,. Here we separately analyze
the cases y<0 and y>0, and find that for —p<u, v<0, one has
e Mg L e g Ame i Lol and e~ Me ™ L "7, Motivated by
the Cauchy-Schwartz inequality, we now define the quantities b, ..., bg:

by=4q; bz=|'/'|€"7|}'|§

by=2|y e A (@UA)'7 by=21y] €2""”||A1|\2(67)(3);

bs=2e"") A, I(JAT - ,11|+e”"|fA I)(g)d)'?
be=2e7"14,1(3)@) by=2e""] 4, ( q)(?z’)”;
bg=e"4,]%(q) 3

Recalling the formula Q(y, )=k, -O(n, «), and also recalling the
functional n(x, ¢)=[¢"(0) #(0) + {°, #7(u) #(u) du]"?, we see from the
Cauchy-Schwartz inequality that {° |¢(u | ) du<n'?-n(y, §). We can now
use straightforward applications of the Cauchy-Schwartz inequality in each
of the expressions for F;(n, ¢) given in the above lemma, with i=1, ..., 8.
Upon so doing, we obtain the following inequalities, valid for ne D,

$eC[—4d,07:
IFi(n, §)l < Gkw-n(n, 8)* =b,ky-n(n, $)%
|Fa(n, §)| < |yl ek g - n(n, )2 < byk - nln, ¢)%;
|Fy(n, 9N <20yl €™ A4, |l Gn' %k - n(n, $ < bsky - n(n, )%

0 0
Faln, 40 <21 A0 Gk | [ (190100 do d

—-n -7

2 3 o 0
=201 A gk ([ g0t d [ 1ot )

<2y] >N 4,12 gnk - nin, ¢)%,
and thus
|Fa(n, §) < baky-n(n, ¢)?;
|Fs(n, 8) <2e"™|1 4,1l (145 — Il + €| 4, 1)
-qn" %k y-n(n, §)° <bsk - n(n, $)%
|Fo(n, $)1 <2e™ || 4,1l gn'k - n(n, $)°
Sbeky -n(n, ¢)%
[Fs(n, $)1 <2e"N[ 4,112 gn' 2k (16(—nm)|) n(n, 8)
<brkw - (16(—m)) n(n, ¢);
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0 -0
|Fy(n, $)l <7 4,2 Q-kwf | (G (16(0))) dv du

—n*—n

~0

~0
=gk ([ ot a)([° o)

-n
<™ A, Gk - n(n, ),
and thus
|F8(’79 ¢)| Sbﬂkﬂ"n("’ ¢)2

Expressing this concisely, we can write the following inequalities, valid
for neD, ¢ C[—d, 0]:
|Fy(n, @)l < by kg -n(n, §)%
|Fo(n, $) < bsky - (I6(—n)) n(n, );
|Fi(n, §)| <bky-n(n, ¢)*  for i=1,3,4,568

It will be of special interest, in analyzing the functional
E(n,n', ¢)+ (1) F(n, ), to examine the functional E+ (') F; in light of
the preceding inequality for F,(n, ¢). Referring to the above inequality for
E(n,n', ¢), we now separately examine the cases |¢(—n)| <[4(0)],

|6(0)| < 1¢(—m)| <n(n, ¢), and n(n, §) <|d(—n)l. If [#(—n)| <I4(0)], then
E(n,n', ¢)+ (') F7(n, 9)
S[—ku+20lAg =71l kayp+ (e ™) kg
+ 20 A, - (ko + 10 G )] - 16(0)]
— (@) (147" Y kg 1=+ 10| brky - n(n, $)%;
if |#(0) <|¢(—n)l <n(n, ¢), then
E(n,n', )+ (n') Fa(n, )
ST—kuw+2045 =l ky+ (€7 k] -16(0)]?
+ L= (@)L +n")kg+204,] - (kp + 10"l Gk )]
A(=m+ 10’ brky - n(n, $);
if n(n, #) <|4(—n)l, then
Emn',¢)+ (') Fo(n, §) < [ —kpu-+ 21 A5 — 71l kop+ (e 7) k] - 14(0))
+ L= ("1 +n") ke + 204\l - (kps + 9] Ghw)
+ 10’ bk ] 18(—n)%
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Examining these inequalities, we can conclude that for all ne D, n'eR,
peC[—d, 0], one has

E(n,n'.¢)+(n") Fqn, ¢)
SU—=1+21A40H- 10"l Yk + (e ) kg
+ 20145 =3I+ 14, 1) koD 100N+ [ — (7)1 +7') kg
+ QA G+ ba) [0 ke + 20 A Ky ] - 19(—n)I
+ 10| bok - n(n, §)*.

After a careful inspection of this inequality, an elementary analysis will
show the following:

There exist constants pu,, u,, with —1<u,<0<yu,, and a choice of
constants k,,, kg, k>0, such that for ne D, u, <n'<p,, ¢ C[—d, 0],
one has both

(@) (142040101 @) ky+ (e ™ kg+2(1Ag =30+ 114,1]) k4 <O,
and

(b) —(e"M(1+n)kg+ Q2IANG+by) 0| ki + 2014, ke <O.

From this we immediately see, with such a choice of k,,, kg, k-, that

En,n', @)+ (') Fs(n, §)< 0’| boky--n(n, $).

It is elementary to show that the above constants k,,, kg, k,; can be
chosen with k z > k,, -e?"". In fact, if we now recall the constant ¢, =c,(1)
from Section 3, defined by c,(n)=min(k,,, k-e "), we see that
ci(m)=ky if neD and k> k,, -7 Noting that ¢,(n)-n(n, $)> < V(n, ¢),
we then have k, -n(n, ¢)><V(y,¢) for each neD. Recalling the
inequalities |F,(n, ¢)| <b kg -n(y, ¢)*, and |F.(n, #)| < bk -n(n, ¢)* for
i=1,3,4,56,8 we can now write the following inequalities with the
above choice of constants k,,, kg, ky:

k
|Fal, )] < bz = V01, 6);
M

k..
|F,-w,¢)l<b,-k—” Vin,¢) for i=1,3,4,56,8:
M

k..
E(n ', ¢)+ (') Fa(n, )< 0’| - b, k—” Vin, ¢).

M
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From these inequalities we can write
¥
E(n,n's¢)+ (') F(n, §) = E(n, ', §) + (') Y. Fi(n, )
1

=E(m,n',¢)+ () FAn, ¢)+(n') Y. F(n, )

i#7

1 8
<1 bukt bokact 3 bk | Vin ),

M i=3

Le.,

1 8
En, 1 6)+ (') Fin, )< 1] k—[blkwbzkﬁ 5 b,-kw] Vi, ¢)
i=3

M i3

for WEDa #1<'7'<l12’ ¢€C[_a»0]

Setting B = (1/ky)bkg+ (b, +33%_ ,b)ky]. we summarize this
laborious analysis in the theorem below.

THEOREM 4.1. Let D be a compact subset of H_.. Then there exist
constants i, U, having —1 <y, <0< pu,, and constants B, k ;, k r, k>0,
such that for neD, p, <y <u,, ¢$eC[—d 0], one has E(n,n,¢)+
(n") F(n, $)< Bln'| V(n, 4).

Noting Lemma 4.2 and the above theorem, we can finally address the
question of growth estimates for systems of the form (1) x(z)=A,x(t)+
A, x(t—h(1)). In order to simplify the proof of our basic growth estimate,
it is convenient to recall the following lemma of real analysis.

LEmMMA 4.3. Ler u: [0, c)—> [0, ¢} be absolutely continuous, and let
v: {0, c) > R be continuous. If w'(t) <u(t)yv(t) ae. for t =0, then in fact
u(1) <u(0) -exp( 4 v(t) dr) for all +=0.

Proof. Considering first the case where O¢range(u(-}), we have
u'(t)/u(ty<e(r) ae. for 120, and we note for g(¢)=In(u(t)) that g is
absolutely continuous over bounded intervals, with g'(t)=u'(t)/u(t) ae.
Now integrating both sides of the inequality u'(z)/u(t) <v(t) over [0, t],
and simplifying, we obtain the lemma in the case that 0¢ range(u(-)). In
the case that Oerange(u(-)), we let a=inf{s>0:u(r)=0}. If there were
any 1 with r>a, u(1)>0, we could set a,=sup{r:a<r <, u(i'y=0}.
Applying the lemma in the case that 0¢ range(u(-)), we find for o, <t <t
that u(r) <u(t)-exp(fi v), so that u(r)<u(t)-exp(fy Iv]). Letting | a,, we
find that u(r) =0. Concluding that u(z) =0 for 7 > a, we see that the lemma
is true in the case that 0 e range(u(-)). Q.E.D.
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THEOREM 4.2, Let D be a compact subset of H.,, and take yu,, u,, k,,,
krs kyw, and B as in Theorem 4.1. Let h(-) be any member of S.(D, y,, y1,),
and  consider the differential-delay equation () x(t)=Ayx(t)+
A, x(t—h(r)). For each solution x(-) of the system (1), form the function
G(t, x,)=V(h(1), x,), defined for t=0. Then for each t at which h(-) is
differentiable, and particularly ae., the inequality (a) below holds for
G(x,)=dG(t, x,)/dt. Furthermore, the inequality for G(1, x,) in (b) holds for
all r=20:

(@) G(x,)<2yG(1, x,)+ BlA'(1)] G(t, x,)
(b) Glr, x,) < G(0, xo) /", where f(t) =271+ B [§ |h'(z)| dr.

Proof. The inequality in (a) is an immediate consequence of Lemma 4.2
and Theorem 4.1.

To derive the inequality in (b), we first recall that Q(-,-) is continuous,
x(-) is continuously differentiable, and A(-) is absolutely continuous, and
examine the first of the formulas for G(s, x,) given in the proof of
Lemma 4.2. From an inspection of this formula one can show that for any
solution x(-) of the system (f) and any >0, the function G(1, x,) is
absolutely continuous over the interval [0, r]. The inequality in (b) now
follows from the inequality in (a) and the lemma immediately above.

Q.E.D.

If we note the inequality k,,-i#(0)]>< V(n, ), we immediately see for
each solution x(-) of (f) that k, -|x(:)|?<G(¢t, x,) for t>=0, and the
inequality (b) thus yields the inequality below:

ko 1x()]* < GO, x5) e’ for >0, where f(1) is as in (b) above.

It is interesting to note that the inequality (b) above can be expressed in
terms of the average value of the magnitude of A'(t) over the interval
[0, ¢]. In fact, if one writes a(r)=(1/r){{|h ()| dt for >0, then one
immediately obtains 2yt+Bj'(’) |h'(t)| dr =t(2y + Ba(t)), and thus one
writes the inequality (b) as in (b’) below:

(b)) G(1, x,) < G(O, xo) "% 84N for all ¢ > 0.

The next two theorems follow in a direct way from the above theorem.
The first of these expresses the inequality in Theorem 4.2(b) in terms of an
asymptotic upper bound on the value of a(¢) if such an upper bound exists.

THEOREM 4.3. Let D be a compact subset of H,, and again take
constants as in Theorem4.1. Let h(-) be any member of S.(D,u,, ),
and suppose there exists (>0 with limsup,_ , a(t)<, where
a(t)=1(1/r) _f{, |h'(t)| dr. Then there is v>0 such that for any solution x(-)
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of the differential equation (t) Xx(t)= Agx(t)+ A, x(t—h(t)), one has
G(1, x,) < G0, xu) e’ * "8 for all t = v.

Proof. If limsup, , . a(r) <, then there is v>0 with a(r) < for all
t 2 v. The theorem now follows immediately from the inequality (b’) above.
Q.E.D.

CoroLLARY 4.3.  Let D be a compact subset of H., with constants as in
Theorem 4.1. Then for each ¢ >0, there exists { = {(g) for which the following
holds:

If h(-) is any member of S.(D, ., i) having lim sup, _, .. a(t) <¢, then
there is v > 0 such that for every solution x{-) of the differential equation (¥},
one has G(t, x,) < G(0, xq) "%+ for all t>v.

Proof. Take {=¢/B in the above theorem. Q.E.D.

We particularly note that in the case 7 <0, the above corollary states
that there exists { > 0 such that if lim sup, , ., a(f) <{, then the system (t)
is exponentially asymptotically stable. In the next theorem we display a
simplification occurring in the special case that |A’(¢)| has finite integral
over [0, =¢).

THEOREM 4.4. Let D be a compact subset of H,, and take constants as
in Theorem 4.1. If h(-) is any member of S.(D,p,,u,) having
fo IW' (1)l dr < oc, then for k= [ |h'(t)| dt and B=e®, the inequality in
Theorem 4.2(b) can be sharpened to the inequality below:

G(t,x )< B-G(0, xg) e forall 120.

Proof. This follows immediately from Theorem 4.2. Q.ED.

[t is interesting to investigate the important special case that y = 0. Here
we remove the hypothesis that 4(-) is a member of S.(D, u,, u,), and
instead merely stipulate that A(-) is absolutely continuous, with range(A(-))
contained in some compact subset D of H,, i.e., we stipulate that A(-) is a
member of Sy(D) for some compact subset D of H,. In this case, we again
apply Lemma 4.2, and we thus have a formula for G(x,) = dG(t, x,)/dt at all
nonnegative values of ¢ at which A(-) is differentiable, and particularly a.e.
in Lebesgue measure. Since y = 0, we immediately see that 2yG(t, x,) =0 for
all +>0. If we now set M=0=R and W=1, and expand the resulting
expression for G(x,), we then obtain the following expression for the time
derivative of G(z, x,) along solutions of the differential-delay equation (1)
X(t)=Agx(t)+ A, x(t —h(1)):

G(x,)= —x"(1) x(t) + W ([ L, (h(t), x,) + Ly(h(1), x,)],
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where L(1, ¢)=L,(n, )+ Lo(n, ¢) is defined, for ne D, pe C[—d, 0]. by

0
Ly(n, ¢)=26"(=n) AT[Qm, 0)6(0)+

-

O, u+n) A, $lu) du],

and

A0
La(n, 6)=$7(0) D, 0(n,0) $(0) +267(0) | [45Q(n, u+n)

-n

+A7Q(n, u)+D,Q(n, u+n)] A $(u) du

0 [
+[ [ 87w 47D, 00 v~ ) 4,6(0) do du

—-nv-n

Now recalling the constant § defined after Lemma 4.2, noting since
W=1I here that Q(.,-)=0(-,-), and again motivated by the
Cauchy-Schwartz inequality, we define the following quantities 5;,

i=1,..,5:
by =2414,l;  by=2@NdNAN%E by=§;
By=2G0NA NI Aol + 14,01 + 1) bs=(d)14,|d)

If we now apply the Cauchy-Schwartz inequality to the functionals
L(n, ¢} and L,(n, ¢), we readily obtain the following lemma.

LEMMA 44. Let D be any compact subset of H,, and let h(-) be any
member of So(D). Set M=0=R and W=1 in the functional V(n, ¢), and
consider the differential-delay equation (1) x(t)= Agx(t)+ A, x(t—h(1)).
For any solution x(-) of the system (1) and any t =0, let |x,| denote
|x,| =sup{|x(t+u)|: —h(1)<u<O0}. Then for each t at which h(-) is dif-
ferentiable, and particularly a.e., the following inequality holds for G(x,), the
time derivative of the function G(1, x,):

G(x) < — |X(OF + 1B ()] - [lx(e = h(ED] (B3 1x(2)] + by lx,])
+ Ix()] (B3] x(1)] + B3] x|} + b5lx, ],

The above lemma will be useful in showing that for a{r), the average
magnitude of 4'(-) over the interval [0, ¢], any bounded solutions of the
differential-delay equation (1) will adhere, in a specific sense that will be
defined, to arbitrarily small values over time provided a(¢) at least attains
arbitrarily small values over time. As a corollary, we will find for bounded
solutions x(¢) of (1) that lim inf, _ , |x(¢)] =0 if lim inf, , . a(¢)=0. Before
giving a theorem on this topic, it is convenient to introduce the notation
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|E| to denote the Lebesgue measure of a Lebesgue measurable subset E
of R.

THEOREM 4.5. Let D be any compact subset of H,, and again let h(-) be
any member of Sy(D). Let a(t)=(1/t) j(’) W' (t)| dv for t>0, and now
consider the differential-delay system (1) x(t)= Aox(t)+ A, x(t—h(1)).
Suppose liminf,_, _ a(t)=0. Then for each bounded solution x(-) of the
system (1) and for any ¢ >0, Be (0, 1), there is a sequence {t;} having 1,1
and |{t: |x(1)| Z¢ 0< <1} < B,

Proof. Let x(-) be any bounded solution of the system (1), with
|x(1)] <y for all r>0. Noting Lemmadd, we set B’ =33b!, and
immediately obtain the following inequality for G(x,), holding a.e. for + > 0:

Glx,) < —xT(t) x(r)+ B2 |0 (1)].

Just as in Theorem 4.2, we can refer to the expression for G(¢, x,) given in
Lemma 4.2, and find that for each 1 >0, the function G(z, x,) is absolutely
continuous over the interval [0, ¢]. For t>0, we now write the above
inequality in the variable 7, and integrate both sides of this inequality over
the interval [0, ¢], obtaining the inequality below for G(z, x,), holding for
all r=0:

G(t, x,)< — J ) x(1) dr+B’)(2J |h'(2)] dt + G(0, x,).

For ¢>0, t+>0, we now define the set E,,=E, (¢) as E, (e)}=
{r: |x(t)| =& 0< 1<}, and we denote the Lebesgue measure of this set by
|Eq. |- From the above inequality for G(¢, x,), we immediately see that

G(t, x,) < —&%|Eq | + B'y? J]h(r)ldr+G(0 xo) for ¢>0.

Given any fixed ¢>0, f€(0, 1), we examine the sets £, (¢) for 1> 0. If
we had some t,> 0 with |E, | = B¢ for all ¢>1,, then we would have

G(1, x,) < — 2Bt + B'y 2j IW'(7) dt +G(O, x,)  forall t>1,,
ie.,

for all 1>1,.

Gt x)<t- ( —&2f + B’xza(t)+i0’tfﬁ>
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Since liminf, , , a(r)=0, there would be some r*>r, with —&’f+
B'y’a(t* )+ G(0, x,)/t * <0. Hence, we would have G(t*, x,+) <0. Since G
is nonnegative, we see that it is not the case that |Ey | > f¢ for all +> ¢,
ie., there is ' > 1, with |E, ,(¢)| < ft’. We have shown that for any 1,>0,
there exists 1> 1, with |E, . (¢)] <ft. We now conclude that there is a
sequence {7,} having 7,1 oc and |E, , (¢)| < ft,. Q.E.D.

CoOROLLARY 4.5. Let D be any compact subset of H, and let h(-) be
any member of So(D). If liminf,_ , a(t)=0, then for each bounded
solution x(-) of the system (1) X(t)=Ayx(t)+ A, x(t—h(t)), we have
liminf, |, , |x(¢)| =0.

Proof. This follows immediately from the above theorem. Q.E.D.
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