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Abstract

A flock of a quadratic cone of PG(3, q) is a partition of the non-vertex points into plane sections. It
was shown by Thas in 1987 that to such flocks correspond generalized quadrangles of order (q2, q),
previously constructed algebraically by Kantor (q odd) and Payne (q even). In 1999, Thas gave a
geometrical construction of the generalized quadrangle from the flock via a particular set of elliptic
quadrics in PG(3, q). In this paper we characterise these sets of elliptic quadrics by a simple property,
construct the generalized quadrangle synthetically from the properties of the set and strengthen the
main theorem of Thas 1999.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An oval of PG(2, q) is a set of q + 1 points of PG(2, q) no three of which are collinear.
Let � be a line of PG(2, q), then � is incident with zero, one or two points of an oval and is
accordingly called an external line, a tangent or a secant to the oval.
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A cap of PG(3, q) is a set of points of PG(3, q) no three of which are collinear. A line of
PG(3, q) will be called external, tangent or secant to a cap according to whether it contains
zero, one or two points of the cap. An ovoid of PG(3, q) is a cap of size q2 + 1 such that
the tangents at a point form a plane, called the tangent plane at the point. Every plane not
tangent to an ovoid meets the ovoid in an oval. If q > 2, then a cap of PG(3, q) of maximal
size is an ovoid. Every ovoid of PG(3, q), q odd, is a non-degenerate elliptic quadric of
PG(3, q). For q even, q = 2h, the two known isomorphism classes of ovoids are the non-
degenerate elliptic quadrics, which exist for all h�1, and the Tits ovoids which exist for h
odd, h�3. (See [5–7] for details and references for the above.)

Let (∞, �∞) be an incident point-plane pair of PG(3, q). If X, Y, Z, W are four distinct
points of PG(3, q)\�∞, then we say that {X, Y, Z, W } is a tetrad with respect to (∞, �∞) if
{∞, X, Y, Z, W } is a cap of PG(3, q) such that there exists a plane of PG(3, q) containing
∞ and exactly three of X, Y, Z, W . If ∞ and �∞ are understood, then we will refer to
{X, Y, Z, W } as a tetrad.

A tetradic set of ovoids with respect to (∞, �∞) is a set of ovoids of PG(3, q) each
element of which contains ∞, has tangent plane �∞ at ∞ and such that every tetrad with
respect to (∞, �∞) is contained in a unique ovoid of the set. If all the ovoids are elliptic
quadrics, then we call the set a tetradic set of elliptic quadrics.

In this paper we shall investigate tetradic sets of elliptic quadrics of PG(3, q) and their con-
nection to generalized quadrangles of order (q2, q) constructed from a flock of a quadratic
cone in PG(3, q). In particular, by considering work of Thas [17], we will show that a
tetradic set of elliptic quadrics of PG(3, q) gives rise to a generalized quadrangle of order
(q, q2).

2. Flocks of Laguerre planes

A Laguerre plane is an incidence structure of points, lines and circles with the properties
that every point lies on a unique line; a line and a circle meet in a unique point; any three
pairwise non-collinear points lie on a unique circle; and, given a circle C and non-collinear
points P and Q with P on C and Q not on C, there is a unique circle D on Q which meets C
in exactly P. Given a finite Laguerre plane, there is an integer n > 1 called the order of the
plane such that there are n2 +n points, n+1 lines and n3 circles, every line is incident with
n points, every circle is incident with n + 1 points, every point is incident with n2 circles,
and every pair of non-collinear points lies on n circles.

Given a Laguerre plane L and a point P of the plane, the derived affine plane LP is the
incidence structure with points the points of L not collinear with P, lines the circles of L
incident with P and the lines of L not on P and the natural incidence relation. The structure
LP is an affine plane. If L has order n, then LP has order n.

Let K be a quadratic cone in PG(3, q) with vertex V. The incidence structure with points
the points of K other than V, lines the generators of K, circles the plane sections of K
not containing V and the natural incidence relation, is a Laguerre plane of order q. These
Laguerre planes are characterised amongst all Laguerre planes by satisfying the configura-
tion of Miquel [18,3, pp. 245–246] and hence are called Miquelian. General references on
Laguerre planes are [1,4,3,14].
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A flock F of a Laguerre plane L is a set of circles of L partitioning the points of L. If L has
order n, then F contains n circles. Of particular interest will be the flocks of the Miqeulian
Laguerre plane arising from a quadratic cone K in PG(3, q). Such a flock will also be called
a flock of the quadratic cone K. For more details on flocks of Laguerre planes see [8].

3. Generalized quadrangles with property (G)

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P, B, I) in which
P and B are disjoint (non-empty) sets of objects called points and lines, respectively, and
for which I ⊆ (P × B) ∪ (B × P) is a symmetric point-line incidence relation satisfying
the following axioms:

(i) Each point is incident with 1 + t lines (t �1) and two distinct points are incident with
at most one line.

(ii) Each line is incident with 1 + s points (s�1) and two distinct lines are incident with
at most one point.

(iii) If X is a point and � is a line not incident with X, then there is a unique pair (Y, m) ∈
P × B for which X I m I Y I �.

For a comprehensive introduction to GQs see [13]. The integers s and t are the parameters
of the GQ and S is said to have order (s, t). If s = t , then S is said to have order s. If S
has order (s, t), then it follows that |P| = (s + 1)(st + 1) and |B| = (t + 1)(st + 1) [13,
1.2.1]. If S = (P, B, I) is a GQ of order (s, t), then the incidence structure S∗ = (B, P, I)
is a GQ of order (t, s) called the dual of S.

Given two (not necessarily distinct) points X, X′ of S, we write X ∼ X′ and say that
X and X′ are collinear, provided there is some line � for which X I � I X′. For X ∈ P put
X⊥ = {X′ ∈ P : X ∼ X′}. If A ⊂ P , then we define A⊥ = ∩{X⊥ : X ∈ A} and
A⊥⊥ = (A⊥)⊥.

If s2 = t > 1, then by a result of Bose and Shrikhande [2] we have |{X, Y, Z}⊥| = s+1 for
any triple {X, Y, Z} of pairwise non-collinear points (called a triad). We say that {X, Y, Z}
is 3-regular provided |{X, Y, Z}⊥⊥| = s + 1. The point X is 3-regular if and only if each
triad {X, Y, Z} is 3-regular.

Let S = (P, B, I) be a GQ of order (s, s2), s �= 1. Let X1, Y1 be distinct collinear points.
We say that the pair {X1, Y1} has Property (G), or that S has Property (G) at {X1, Y1}, if
every triad {X1, X2, X3} of points, with Y1 ∈ {X1, X2, X3}⊥, is 3-regular. The GQ S has
Property (G) at the line �, or the line � has Property (G), if each pair of points {X, Y },
X �= Y and X I � I Y , has Property (G). If (X, �) is a flag, then we say that S has Property
(G) at (X, �) or that (X, �) has Property (G), if every pair (X, Y ), X �= Y and Y I � has
Property (G).

Suppose that S = (P, B, I) is a GQ of order (q, q2) satisfying Property (G) at the pair
of points (X, Y ). We now review a construction of AG(3, q) from S, X and Y due to Payne
and Thas (see [16]).

We consider the following incidence structure SXY = (PXY , BXY , IXY ):

(i) PXY = X⊥ \ {X, Y }⊥⊥.
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(ii) Elements of BXY are of two types: (a) the sets {Y, Z, U}⊥⊥ \ {Y }, with {Y, Z, U} a
triad with X ∈ {Y, Z, U}⊥, and (b) the sets {X, W }⊥ \ {X}, with X ∼ W �∼ Y .

(iii) IXY is containment.

Then we have the following result:

Theorem 1 (Payne and Thas, see [16]). The incidence structure SXY is the design of points
and lines of the affine space AG(3, q). In particular, q is a prime power.

The planes of the affine space SXY = AG(3, q) are of two types:

(a) The sets {X, Z}⊥ \ {Y }, with X �∼ Z and Y ∈ {X, Z}⊥, and
(b) each set which is the union of all elements of type (b) of BXY containing a point of some

line m of type (a) of BXY .

This construction leads us to an equivalent formulation of Property (G) at a pair of
points.

Theorem 2. Let S = (P, B, I) be a GQ of order (s, s2) and X, Y ∈ P with X ∼ Y . Then
S satisfies Property (G) at {X, Y } if and only if the incidence structure

Points: X⊥ \ 〈X, Y 〉,
Planes: Y⊥ \ 〈X, Y 〉,
Incidence: Collinearity in S,

is the point-plane incidence structure of PG(3, s) with an incident point-plane pair
removed.

Let SXY be the projective completion of SXY with plane at infinity �∞. In [17] Thas gives
the following interpretation of the GQ S in SXY . The q2 lines of type (b) of SXY are parallel,
so they define a point ∞ of SXY . If we now consider any Z ∈ P with X �∼ Z �∼ Y and U the
point of � = 〈X, Y 〉 such that Z ∼ U , then V = {X, Z}⊥ \ {U} is a set of q2 points. Clearly
each line of SXY on ∞ meets V in exactly one point. Further, if U1, U2, U3 are points of V
collinear in SXY , then it must be that Y ∈ {U1, U2, U3}⊥⊥ and so Z ∼ Y , a contradiction
since X, Y, Z is a triangle. It follows from this that V ∪{∞} is an ovoid of SXY with tangent
plane �∞ at ∞. We will denote this ovoid by OZ .

Thas also determined the intersections of these ovoids. Consider two distinct points
Z1, Z2 ∈ P with Z1, Z2 collinear with points U1, U2 I �, respectively, with U1, U2 �= X, Y .
If Z1 ∼ Z2 and U1 = U2, then OZ1 ∩ OZ2 = {∞}, since any larger intersection yields a
triangle in S.

If Z1 ∼ Z2 and U1 �= U2, then OZ1 ∩ OZ2 = {∞, R} where R is the point of the line
〈Z1, Z2〉 in X⊥. Further the point of 〈Z1, Z2〉 in Y⊥ corresponds, in SXY to a plane which
is tangent at R to both OZ1 and OZ2 .

If Z1 �∼ Z2 and U1 = U2, then OZ1 ∩OZ2 = ({X, Z1, Z2}⊥\{U1})∪{∞}, an intersection
of size q + 1.

For the last case, if Z1 �∼ Z2 and U1 �= U2, then OZ1 ∩ OZ2 = {X, Z1, Z2}⊥ ∪ {∞}, an
intersection of size q + 2.
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If m is a line of S such that m I U I � and U �= X, Y , then let the set ovoids of PG(3, q) =
SXY corresponding to points of m \ {U} be denoted R. The set R is a set of q ovoids of
PG(3, q) meeting pairwise in a fixed point and with the same tangent plane at that point.
We will call such a set R a rosette of ovoids, the fixed point of intersection the base point
of the rosette and the common tangent plane at the base point the base plane of the rosette.
The elements of a rosette partition the points of PG(3, q) not on the base plane.

If m is a line of S such that m and � are non-concurrent, then let the set of ovoids of
PG(3, q) = SXY corresponding to points of m \ (X⊥ ∪ Y⊥) be denoted T . The set T is a
set of q −1 ovoids of PG(3, q) meeting pairwise in exactly two fixed points and sharing the
tangent planes at those two fixed points. We will call such a set T a transversal of ovoids.
These two common points are called the base points of the transversal and the two common
tangent planes are called the base planes of the transversal.

Let F be a flock of a quadratic cone in PG(3, q). In [15] Thas showed that to F there
corresponds a GQ of order (q2, q) (which is often called a flock GQ in the literature)
previously constructed via group coset geometry methods by Kantor [9] in the q odd case;
and Payne [11] in the q even case. In [12] Payne showed that the dual of this GQ satisfies
Property (G) at a line, for both q odd and even.

Suppose that S = (P, B, I) is a dual flock GQ of order (q, q2), arising from the flock F ,
satisfying Property (G) at the line [∞] and X, Y I [∞], X �= Y . In [17] Thas constructed a
set of elliptic quadric ovoids of PG(3, q) from F which was then verified to be the set of
ovoids {OZ : Z ∈ P \ (X⊥ ∪ Y⊥)} of SXY = PG(3, q). As a result Thas gave a geometric
description of the dual flock GQs valid for both q odd and even (previously Knarr [10] had
given a description valid for only q odd).

The main theorem of [17] is the following result:

Theorem 3 (Thas [17, Main Theorem]). Let S = (P, B, I) be a GQ of order (q, q2),
q > 1, and assume that S satisfies Property (G) at the flag (X, �). If q is odd then S
is the dual of a flock GQ. If q is even and all ovoids OZ are elliptic quadrics, then we have
the same conclusion.

In this paper we will show that a tetradic set of elliptic quadrics of PG(3, q) gives rise
to a GQ of order (q, q2) which must be the dual of a flock GQ. As a consequence we will
weaken the hypothesis of Theorem 3 to assume only Property (G) at a pair of collinear
points.

4. Tetradic sets of elliptic quadrics

In this section we prove a number of properties of a tetradic set of elliptic quadrics in
PG(3, q).

Let (∞, �∞) be an incident point-plane pair of PG(3, q) and let � be a tetradic set of
elliptic quadrics with respect to (∞, �∞).

Lemma 4. The size of � is q3(q − 1).
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Proof. The number of tetrads with respect to (∞, �∞) is q6(q −1)3(q −2)(q +1)/6, each
contained in a unique elliptic quadric of �. Each ovoid of � contains (q2 +q)

(
q
3

)
(q2 −q) =

q3(q + 1)(q − 1)2(q − 2)/6 tetrads from which it follows that |�| = q3(q − 1). �

Example 5. Let O be an elliptic quadric with tangent plane �∞ at ∞ and let � = {Og|g ∈
PGL(4, q) with centre ∞}. Then � is a tetradic set of elliptic quadrics.

Proof. We first note that |�| = q3(q − 1) and that the intersection of two elements of �
cannot contain a tetrad with respect to (∞, �∞). Hence the q3(q + 1)(q − 1)2(q − 2)/6
tetrads contained in O give rise, under the action of collineations with centre ∞, to q6

(q + 1)(q − 1)3(q − 2)/6 distinct tetrads. Since this is all such tetrads it follows that every
tetrad is contained in a unique element of �. �

Remark 6. We note that the above construction works in more generality if we replace the
elliptic quadric by an ovoid O of PG(3, q).

Lemma 7. Let G denote the group of q3 elations of PG(3, q) which have ∞ as centre. For
O1, O2 ∈ � define O1��O2 if there is an element g of G such that Og

1 = O2. Then �� is an
equivalence relation on � dividing the q3(q − 1) elliptic quadrics of � into q − 1 classes
of size q3.

Proof. Let {X, Y, Z, ∞} be a 4-cap of PG(3, q) with ∞ ∈ � = 〈X, Y, Z〉. Then there is
a unique conic C containing X, Y, Z, ∞ and with tangent line � ∩ �∞. Hence any elliptic
quadric of � containing X, Y, Z must also contain C. IfW is any point of PG(3, q)\(�∪�∞),
then {X, Y, Z, W } is a tetrad. Hence the elliptic quadrics of � containing C must partition
the points of PG(3, q) \ (� ∪ �∞) and so there are exactly q such elliptic quadrics.

We now investigate the possibilities for such a set.
Without loss of generality, choose ∞ = (0, 1, 0, 0), �∞ : X0 = 0 and O ∈ � to be

O = {(1, f (s, t), s, t) : s, t ∈ GF(q)}∪{∞}, where f is an irreducible quadratic form over
GF(q). If q is odd we will take f (s, t) = s2 − �t2 where � is a fixed non-square of GF(q),
and if q is even take f (s, t) = s2 + st + �t2 where � is a fixed element of GF(q) with
Tr(�) = 1. Let C ⊂ O be the conic {(1, s2, s, 0) : s ∈ GF(q)} ∪ {∞}. Now we search for
other elliptic quadrics containing C and meeting O in exactly C. If O′ is a such an elliptic
quadric, then there exists a homography � of PG(3, q) mapping O to O′. Further, since the
group of O in PGL(4, q) is 3-transitive on the points of O, we may assume that � fixes
∞ = (0, 1, 0, 0), (1, 0, 0, 0) and (1, 1, 1, 0). Hence � also fixes �∞ : X0 = 0, the plane
with equation X3 = 0 and the conic C.

Firstly, fixing (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0) and the planes �∞ and X3 = 0, it
follows that � must have the form

⎛
⎜⎜⎝

1 0 0 0
0 a 1 − a b

0 0 1 c

0 0 0 d

⎞
⎟⎟⎠ with a, b, c, d ∈ GF(q) and a, d �= 0.
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Now � also fixes C and so (1, s2, s, 0)� = (1, as2 + s(1 − a), s, 0) ∈ C for all s ∈ GF(q).
Hence a = 1 and � has the form

⎛
⎜⎜⎝

1 0 0 0
0 1 0 b

0 0 1 c

0 0 0 d

⎞
⎟⎟⎠ , b, c, d ∈ GF(q) and d �= 0.

Now if q is odd, then O′ = {(1, s2 − �t2 + bt, s + ct, dt) : s, t ∈ GF(q)} ∪ {∞} and
since O ∩ O′ = C it follows that the equation s2 − �t2 + bt = (s + ct)2 − �(dt)2 has no
solutions for t �= 0. That is �(d2 − 1)t − c2t − 2cs + b = 0 has no solution for t �= 0. If
c �= 0, then there is a solution for every t �= 0, so c = 0 and our condition now becomes
that the equation �(d2 − 1)t + b = 0 has no solution for t �= 0. Hence, either d = ±1
and b �= 0, or d �= ±1 and b = 0. For c = 0 and fixed b the choice of d equal to 1 or
−1 gives the same ovoid O′, so the cases reduce to d = 1 and b �= 0 or d �= ±1 and
b = 0.

In the first case we obtain the q − 1 images of O under non-trivial elations of PG(3, q)

with centre ∞ and axis X3 = 0.
In the second case we obtain (q − 3)/2 distinct images under homologies with centre

(0, 0, 0, 1) and axis X3 = 0.
Recall that there are exactly q ovoids of � containing C and that they meet pairwise in

C. Hence all q − 1 ovoids (distinct from O) must come from the first case, or we have an
example of an ovoid from the first case meeting an ovoid from the second case in exactly C.
Specifically, in this latter case we would have an ovoid of the form {(1, s2 −�t2 +bt, s, t) :
s, t ∈ GF(q)} ∪ {∞} intersecting an ovoid of the form {(1, u2 − �v2, u, dv) : u, v ∈
GF(q)} ∪ {∞}, d �= ±1, in exactly C. That is, the equation u2 − �d2v2 + bdv = u2 − �t2

has no solution with v �= 0, which is the case if and only if v[�(1 − d2)v + bd] = 0 has no
solution with v �= 0. This is a contradiction since 1 − d2 and bd are non zero. Hence any
elliptic quadric of � containing C must be the image of O under an elation with centre ∞
and axis X3 = 0.

If q is even O′ = {(1, s2 + st + �t2 + bt, s + ct, dt) : s, t ∈ GF(q)} ∪ {∞} and we
require that the equation s2 +st +�t2 +bt = (s +ct)2 +(s +ct)dt +�d2t2 has no solution
with t �= 0. That is, (� + c2 + cd + �d2)t + (d + 1)s + b = 0 has no solution with t �= 0.
Hence d = 1, and either c2 + c = 0 and b �= 0 or c2 + c �= 0 and b = 0. Since for the
choice d = 1, c = 1, b �= 0 the homography � fixes O, the first case above is equivalent to
c = 0, b �= 0, the non-trivial elations with centre ∞ and axis X3 = 0.

In the second case choosing c = � �= 0, 1 or c = � + 1, gives the same O′ and we
have (q − 2)/2 images of O under homologies with centre (0, 0, 1, 0) and axis X3 = 0.
As in the q odd case we check if an elliptic quadric of the form {(1, s2 + st + �t2 +
bt, s, t) : s, t ∈ GF(q)} ∪ {∞} with b �= 0 can intersect an elliptic quadric of the form
{(1, u2 + uv + �v2, u + cv, v) : u, v ∈ GF(q)} ∪ {∞}, c �= 0, 1, in exactly C. That is,
there are no solutions to (c2 + c)v + b = 0 for v �= 0. This is impossible since c2 + c �= 0
and b �= 0.

Now since the homography group of O is transitive on secant planes of O, it follows that
every image of O under an elation with centre ∞ and axis a secant plane of O is contained
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in �. This is also true for any element of � and hence all elations with centre ∞ fix �,
defining equivalence classes on �. �

Let O be an elliptic quadric of � and [O] its equivalence class. Then we note that there
is a unique rosette of elliptic quadrics contained in [O] with base point ∞, base plane �∞
and containing O generated by the action of the elations with centre ∞ and axis �∞ on O.
The remaining q3 − q elliptic quadrics in [O] share a common conic with O. Hence two
elliptic quadrics in [O] either intersect in the point ∞ or in a conic containing ∞. We also
note that the q3 elliptic quadrics in [O] divide into q2 disjoint rosettes with base point ∞.

Lemma 8. Let X, Y, Z be three distinct, non-collinear points of PG(3, q)\�∞ not
coplanar with ∞. Then there are exactly q − 1 elliptic quadrics of � containing {X, Y, Z},
one from each equivalence class.

Proof. Let � = 〈X, Y, ∞〉 and let � be a line of � incident with ∞, but not with X nor Y. Let
W = � ∩ 〈X, Y 〉. If A ∈ � \ {W, ∞}, then there is a unique elliptic quadric of � containing
the tetrad {X, Y, Z, A}. There are q −1 such points A and hence q −1 such elliptic quadrics,
since any elliptic quadric of � must contain a point of � \ {∞}. As two equivalent elliptic
quadrics must intersect in either the single point ∞ or in a conic containing ∞, it follows
that the q − 1 elliptic quadrics on {X, Y, Z, ∞} are in distinct equivalence classes. �

Lemma 9. Let O1 and O2 be two inequivalent elliptic quadrics of �, then |O1∩O2|�q+2.

Proof. The elliptic quadrics O1 and O2 may not intersect in a conic on ∞ and hence no
plane on ∞ contains more than two points of (O1 ∩ O2) \ {∞}. Thus the lines of PG(3, q)

spanned by ∞ and points of (O1 ∩O2)\{∞} form an arc in the quotient space PG(3, q)/∞.
If q is odd then such an arc has size at most q + 1 and hence |O1 ∩O2|�q + 2. If q is even,
then the arc has size at most q + 2 and so |O1 ∩ O2|�q + 3.

So now suppose that q is even and |O1 ∩ O2| = q + 3. In this case every plane distinct
from �∞ and containing ∞ contains exactly three points of O1 ∩ O2. Since q is even we
have that O1 and O2 both define symplectic polarities. Further, since these polarities share
the polar point-plane pair (∞, �∞) there exists a plane � containing ∞ and distinct from
�∞ such that � has the same pole N under both polarities. Now the conics �∩O1 and �∩O2
share exactly three points and also have the same nucleus N. However, two conics sharing
three points and with the same nucleus must be identical and so we have a contradiction.
Hence when q is even |O1 ∩ O2| �= q + 3 and so |O1 ∩ O2|�q + 2. �

Lemma 10. Let O1 and O2 be inequivalent elliptic quadrics of � with |O1 ∩O2|�3. Then
|O1 ∩ O2| = q + 2.

Proof. Consider fixed X, Y ∈ (O1 ∩ O2) \ {∞}, X �= Y and let [O2] be the equivalence
class of O2. There are q2 −q triples {X, Y, Z} such that X, Y, Z ⊂ O1 and ∞ �∈ 〈X, Y, Z〉.
By Lemma 8 each such triple is contained in a unique element of [O2].

We know that X, Y ∈ O2 and that any other elliptic quadric O′
2 ∈ [O2] with X, Y ∈ O′

2
meets O2 in points contained in a plane on ∞, which must be 〈X, Y, ∞〉. Further, it must
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be that O2 ∩O′
2 = O2 ∩〈X, Y, ∞〉. There are exactly q elliptic quadrics of [O2] containing

O2 ∩ 〈X, Y, ∞〉.
Now we count pairs (O′

2, {X, Y, Z}) where O′
2 ∈ [O2] and X, Y, Z are distinct points

of O′
2. From above we know that the count is in fact q2 − q. However, we also have that

|O1 ∩ O′
2|�q + 2 and so there are at most q − 1 such triples {X, Y, Z} and q such O′

2.
Hence the count is bounded above by q(q −1) = q2 −q. It follows that |O1 ∩O′

2| = q +2
and certainly |O1 ∩ O2| = q + 2. �

Corollary 11. If O1 and O2 are inequivalent elliptic quadrics of �, then |O1 ∩ O2| = 2
or q + 2.

Proof. We show that |O1 ∩ O2| = 1 is impossible. Consider the rosette R of elliptic
quadrics in [O2] containing O2. The elliptic quadric O1 intersects each of the q elliptic
quadrics of the rosette in 1, 2 or q + 2 points. The elements of R also partition the points
of PG(3, q) \ �∞ and so the q2 points of O1 \ {∞} are partitioned into q sets of size 0, 1
or q + 1. This can only be the done with one set of size 1 and q − 1 of size q + 1. �

Lemma 12. Let O be an elliptic quadric of � and E an equivalence class of � such that
O �∈ E. If X ∈ O \ {∞}, then there is a unique O′ ∈ E such that O ∩ O′ = {X, ∞}.

Proof. For fixed X ∈ O \ {∞} the number of pairs (Y, Z) with Y, Z ∈ O and Y �= Z such
that ∞ �∈ 〈X, Y, Z〉 is (q2 − 1)(q2 − q).

By Lemma 8, each triple {X, Y, Z} is contained in a unique element of E. Further, each
of the q2 rosettes of E contains a unique elliptic quadric on the point X. If such an elliptic
quadric O′ intersects O in q+2 points, then we have q(q−1) pairs (Y, Z) with Y, Z ∈ O∩O′
and Y �= Z such that ∞ �∈ 〈X, Y, Z〉. If, on the other hand, |O ∩ O′| = 2, then there are no
such pairs (Y, Z).

Hence it follows that there are q2 − 1 elliptic quadrics of E containing X and meeting
O in q + 2 points and a unique elliptic quadric of E containing X and meeting O in
2 points. �

Lemma 13. Let O be an elliptic quadric of � and X ∈ O\{∞}. The q−2 elliptic quadrics
meeting O in exactly {X, ∞} also meet pairwise in exactly {X, ∞} and have a common
tangent plane at X, thus together with O form a transversal.

Proof. Let �X be the tangent plane to O at X. For Y ∈ PG(3, q)\ (�∞ ∪�X ∪〈∞, X〉∪O)

count pairs (Z, O′) with Z ∈ O \ {X, ∞}, O′ ∈ � and {X, Y, Z, ∞} ⊂ O′. Suppose that
Z ∈ O \ 〈X, Y, ∞〉, then there are q2 − q choices for Z and {X, Y, Z} is contained in q − 1
elliptic quadrics, giving (q2 − q)(q − 1) pairs.

Now suppose that Z ∈ O ∩ 〈X, Y, ∞〉 and let C = O ∩ 〈X, Y, ∞〉. Note that Y �∈ C and
since Y �∈ �X it follows that 〈X, Y 〉 is not tangent to C and so meets C in a point of C \ {X}.
Similarly 〈Y, ∞〉 meets C in a second point, leaving q − 3 possible choices for Z. For each
such choice of Z the points X, Y, Z define a unique conic C′ in 〈X, Y, ∞〉 containing ∞
and with tangent �∞ ∩ 〈X, Y, ∞〉. There are q elliptic quadrics of � containing C′ giving
q(q − 3) pairs (Z, O′) with Z ∈ O ∩ 〈X, Y, ∞〉.
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So in total we have (q2 − q)(q − 1) + q(q − 3) = q(q − 2)(q + 1) pairs (Z, O′).
Counting these pairs in a second way we consider the number of elliptic quadrics of �

containing {X, Y }. In 〈∞, X, Y 〉 there are q−1 conics on X, Y, ∞ with tangent 〈∞, X, Y 〉∩
�∞ which means there areq(q−1) elliptic quadrics containing {X, Y }, q in each class. If such
an elliptic quadric is in the same class as O, then we know that the possible intersections
sizes with O are 1 and q + 1, and so they must all be q + 1, since the intersection is
at least {∞, X}. This gives q(q − 1) pairs (Z, O′). There are q(q − 2) elliptic quadric
containing {X, ∞} which are inequivalent to O, and by the earlier counts there are exactly
q(q −2)(q +1)−q(q −1) = q(q2 −2q −1) pairs (Z, O′) where O′ is of this type. Now in
this case |O∩O′| = 2 or q+2 and so each O′ gives rise to 0 or q pairs (Z, O′), respectively.
From this it follows that there must be q2 − 2q − 1 elliptic quadrics intersecting O in q + 2
points and (q2 − 2q) − (q2 − 2q − 1) = 1 intersecting O in the two points X, ∞.

Hence there is a unique elliptic quadric of � meeting O in exactly {X, ∞} and containing
the point Y ∈ PG(3, q) \ (�∞ ∪ �X ∪ 〈∞, X〉 ∪ O).

In Lemma 12 we saw that there are q − 2 elliptic quadrics of � meeting O in exactly
{X, ∞}. By the above, these q − 2 elliptic quadrics plus O cover the q3 − q2 − q + 1 =
(q2 − 1)(q − 1) points of PG(3, q) \ (�∞ ∪ �X ∪ 〈∞, X〉). It follows that these elliptic
quadrics partition the pointset into q −2 sets of size q2 −1. Hence the elliptic quadrics meet
pairwise in exactly {X, ∞} and have �X as tangent plane at X; thus forming a transversal
of elliptic quadrics. �

Lemma 14. Let (X, �) be an incident point-plane pair of PG(3, q) such that X �∈�∞
and ∞ �∈ �. Then there are exactly q − 1 elliptic quadrics of � containing X and with
tangent plane � at X. Further, these q − 1 elliptic quadrics form a transversal with one
elliptic quadric from each equivalence class of �.

Proof. Since each rosette of elliptic quadrics contained in � is generated by the action on
one elliptic quadric of the elations of PG(3, q) with centre ∞ and axis �∞, it follows that
each plane not on ∞ is tangent to exactly one elliptic quadric of a given rosette.

There are (q − 1)q2 rosettes of elliptic quadrics in � and so (q − 1)q2 elliptic quadrics
of � with � as a tangent plane at one of the points � \ �∞. By Lemma 13 if � is tangent
to one elliptic quadric of � at a point, then it is tangent to the q − 1 elliptic quadrics of
a transversal of � at that point. Since two elliptic quadrics in the same equivalence class
have intersection size 1 or q + 1, it follows that the elliptic quadrics of the transversal are
one from each equivalence class of �.

Suppose that for X ∈ �\�∞ there are two transversals O1, . . . ,Oq−1 and O′
1, . . . ,O′

q−1
containing X and with tangent plane �. We investigate how O′

1 intersects O1, . . . ,Oq−1. In
fact O1, . . . ,Oq−1 partition the q2 − 1 points of O′

1 \ {X, ∞} into q − 1 sets of size q or
q − 1, which is a contradiction.

Hence there can be only one transversal of elliptic quadrics of � with X as a base point and
� as the corresponding base plane. Since there are q2(q − 1) elliptic quadrics with tangent
plane �, there are q2 transversals of � with base plane � and a unique such transversal with
base point X for each X ∈ � \ �∞. �

Lemma 15. Let T = {O1, . . . ,Oq−1} be a transversal of elliptic quadrics of � with
base point X and base plane �, X �∈ �∞ and ∞ �∈ �. Then every plane �′ such that
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X, ∞, �∞ ∩ � �⊂ �′ is tangent to a unique element of T . Further, any two elements of T
have only � and �∞ as common tangent planes.

Proof. Let �′ be a plane such that X, ∞, �∞ ∩ � �⊂ �′. The elements of T partition the
q2 − q − 1 points of �′ \ (�∞ ∪ � ∪ 〈∞, X〉), which can only be into q − 2 conics and one
single point. That is, �′ is tangent to a unique element of T .

There are (q2 −1)(q −1) such planes, which is the same as the number of pairs (Oi , �′′)
where �′′ is tangent to Oi ∈ T at a point not ∞ nor X. Hence no two elements of T have a
common tangent not at ∞ nor X.

Since a plane of PG(3, q) (distinct from �∞ and �) on �∞ ∩ � or on ∞ cannot be a
tangent plane to an elliptic quadric of T , the lemma is proved. �

We now work towards proving that the dual of a tetradic set of elliptic quadrics is also a
tetradic set. Let PG(3, q)∗ denote the dual space of PG(3, q) and let �∗ = {O∗ : O ∈ �},
a set of q3(q − 1) ovoids of PG(3, q)∗ each containing the point �∗∞ and with common
tangent plane ∞∗.

Lemma 16. The group G of collineations of PG(3, q) of order q5 generated by elations
with centre ∞ and elations with axis �∞ fixes �.

Proof. It is straightforward to check that an elation with axis �∞ fixes � and hence
so does G. �

Lemma 17. Let � be a plane of PG(3, q)∗ distinct from ∞∗ and C a conic in � containing
�∗∞ and with tangent line �∩∞∗. If C is contained in one element of �∗, then C is contained
in exactly q elements of �∗.

Proof. Suppose C ⊂ O ∈ �∗ then by Lemma 16 the q images O1 = O, O2, . . . ,Oq of
O under elations with centre �∗∞ are elements of �∗ containing C. Suppose that there is an
elliptic quadric O′ ∈ �∗, not one of the Oi , such that C ⊂ O′. Let X ∈ C \ {�∗∞} and �X the
tangent to C at X. Each of O1, . . . ,Oq has a distinct tangent plane at X which must contain
�X. Since there are q planes on �X not containing �∗∞ we can say without loss of generality
that O and O′ have the same tangent plane �X at X. Dualising this, we have two elements
of � with common point �∗

X and common tangent plane X∗ at �∗
X. Hence by Lemma 14 the

two elliptic quadrics are in a common transversal, a contradiction since by Lemma 15 the
can only have two common tangent planes, but we know that each element of C∗ is tangent
to both elliptic quadrics. �

Theorem 18. The set �∗ of elliptic quadrics of PG(3, q)∗ is a tetradic set with respect to
(�∗∞, ∞∗).

Proof. Each element of �∗ contains q2 conics containing �∗∞, and each such conic
is contained in exactly q elements of �∗ by Lemma 17. Hence there are q4(q − 1)

such conics. Since this is the same as the number of pairs (�, C) where C is a conic
in the plane � containing �∗∞ and with tangent � ∩ ∞∗, it follows that all such conics C
are in q elements of �∗. Further, these q elliptic quadrics partition the points of
PG(3, q)∗ \ (� ∪ ∞∗).
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So let {X, Y, Z, W } be a tetrad with X, Y, Z, �∗∞ coplanar in �. By the above there
is a unique element of �∗ containing W and the unique conic containing X, Y, Z, �∗∞
and with tangent � ∩ ∞∗. Hence �∗ is a tetradic set of elliptic quadrics with respect to
(�∗∞, ∞∗). �

5. Flocks of the quadratic cone and tetradic sets of elliptic quadrics of PG(3, q)

In this section we will show that a flock of a quadratic cone in PG(3, q) gives rise to a
tetradic set of elliptic quadrics and conversely.

Let K be a quadratic cone in PG(3, q) with vertex V. Let P ∈ K \ {V }, � = 〈P, V 〉 and
let �� be the plane meeting K in �. Suppose that � is any plane containing neither V nor P. If
we project the points of K \ {V } from P onto �, then we have a one-to-one correspondence
between the points of K\� and the points of �\ (�� ∩�), while the points �\ {P, V } project
onto P ′ = � ∩ �. The q3 − q2 plane sections of K containing neither P nor V project onto
the q3 − q2 conics of � containing P ′ and with tangent � ∩ ��. If C1 and C2 are two planar
sections of K both containing the point Q ∈ � \ {P, V }, then their respective projections
C′

1, C′
2 in � have the property that C′

2 is one of the q2 images of C′
1 under an elation of �

with centre P ′. The q2 planar sections of K containing P project onto the q2 lines of � not
incident with P ′. Hence a flock {C1, . . . , Cq} of K projects to a set {C′

1, . . . , C′
q−1, m} where

C′
1, . . . , C′

q−1 are conics of � with common point P ′, common tangent � ∩ ��, m is a line
of � not incident with P ′ and C′

1, . . . , C′
q−1, m partition the points of � \ (� ∩ ��). Further,

no C′
i is the image of a C′

j , i, j ∈ {1, . . . , q − 1}, i �= j , under an elation of � with centre
P ′. Conversely, any such set {C′

1, . . . , C′
q−1, m} with these properties corresponds to a flock

of K.
The following result is straightforward to verify and allows us to provide a correspondence

between flocks of quadratic cones and transversals of elliptic quadrics.

Lemma 19. Let ∞ and R be points of PG(3, q) and �, �∞, �R be planes of PG(3, q) such
that ∞ ∈ �∞ ∩ �, R ∈ �R \ (� ∪ �∞) and the three planes �, �∞, �R meet in a point. If C
is any conic of � such that ∞ ∈ C, � ∩ �∞ is the tangent to C at ∞ and � ∩ �R is external
to C, then there exists a unique elliptic quadric O such that C ∪ {R} ∈ O, �∞ is the tangent
plane to O at ∞ and �R is the tangent plane to O at R.

Further, suppose that C′ is a second conic of � containing ∞, with tangent line � ∩ �∞
at ∞, external line � ∩ �R and that O′ is the unique elliptic quadric containing C′ ∪ {R}
and such that �∞ is the tangent plane to O′ at ∞ and �R is the tangent plane to O′ at R.
Then O ∩ O′ = {∞, R} if and only if C ∩ C′ = {∞} and C′ is not the image of C under an
elation of � with centre ∞.

Theorem 20. Let F be a flock of a quadratic cone in PG(3, q). Then F gives rise to a
tetradic set of elliptic quadrics of PG(3, q).

Proof. Let F be a flock of the quadratic cone K of PG(3, q). Let V be the vertex of K, P a
point of K \ {V } and � a plane of PG(3, q) such that P, V �∈ �. If we project the elements
of F from P onto � we obtain a set {C1, . . . , Cq−1, m} where C1, . . . , Cq−1 are q − 1 conics
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and m is a line of �. The conics C1, . . . , Cq−1 meet pairwise in ∞ = 〈V, P 〉 ∩ � and with
common tangent � where 〈�, V 〉 is the plane meeting K in the line 〈V, P 〉. The line m is the
intersection of � with the plane containing the element of F containing P. Hence the points
of m are disjoint from the Ci .

Now let �∞ be a plane of PG(3, q) containing � and distinct from �. Let R be any point
of PG(3, q) \ (� ∪ �∞) and �R the plane 〈m, R〉. Then by Lemma 19 there is a unique
set of elliptic quadrics T = {O1, . . . ,Oq−1} such that Oi ∩ � = Ci , i = 1, . . . , q − 1, R
is contained in all of the Oi and �∞ and �R are tangent planes to all of the Oi . Further,
O1, . . . ,Oq−1 is a transversal of elliptic quadrics.

Let G be the group of elations of PG(3, q) with centre ∞ and define � = {Og : O ∈
T , g ∈ G}. We show that � is a tetradic set of elliptic quadrics. Since no elliptic quadric of
T may be fixed by an element of G, it follows that |�| = q3(q − 1) and it suffices to show
that each tetrad of PG(3, q) with respect to (∞, �∞) is contained in at least one elliptic
quadric of �.

Now let �′ be a plane containing ∞ distinct from �∞. Let Oi ∩�′ = C′
i , i = 1, . . . , q −1

and m′ = �R ∩�′. Any element of G fixes the plane �′ and induces an elation with centre ∞
in �′. No such elation in �′ fixes a C′

i and also cannot map C′
i to C′

j for i, j ∈ {1, . . . , q − 1},
i �= j . Hence {(C′

i )
g : i = 1, . . . , q − 1, g ∈ G} is a set of q2(q − 1) conics in �′

containing ∞ and with �∞ ∩ �′ as tangent. Hence every conic in �′ containing ∞ and
with �∞ ∩ �′ as tangent is contained in an element of �. In fact, taking images under the
group of elations with centre ∞ and axis �′ we get a set of q elliptic quadrics partitioning
the points of PG(3, q) \ (�∞ ∪ �′). It follows from this that every tetrad of PG(3, q) with
respect to (∞, �∞) is contained in an element of � and so � is a tetradic set with respect
to (∞, �∞). �

Theorem 21. Every tetradic set of elliptic quadrics of PG(3, q) arises from a flock of a
quadratic cone of PG(3, q).

Proof. Suppose that � is a tetradic set of elliptic quadrics of PG(3, q) with respect to
(∞, �∞). Let T = {O1, . . . ,Oq−1} be a transversal of elliptic quadrics of � with base
point R and base plane �R . Let � be any plane containing ∞, but not R and distinct from �∞.
Consider the set {C1, . . . , Cq−1, m} where Ci = Oi ∩�, i = 1, . . . , q − 1, and m = �∩�R .
By Lemma 19 there is no pair (Ci , Cj ), i, j ∈ {1, . . . , q − 1}, i �= j , such that Ci is the
image of Cj under an elation of � with centre ∞. Hence {C1, . . . , Cq−1, m} is a flock in the
planar model of the quadratic cone of PG(3, q). �

6. Tetradic sets of elliptic quadrics and Property (G)

In this section we use the properties of a tetradic set of elliptic quadrics of PG(3, q), as
established in Section 4, to prove the existence of a GQ of order (q, q2) which we identify
as a dual flock GQ. We characterise a GQ of order (s, s2), s odd, satisfying Property (G)
at a pair of points as a dual flock GQ. We also characterise a GQ of order (s, s2), s even,
satisfying Property (G) at a pair of points and with all associated ovoids elliptic quadrics,
as a dual flock GQ.
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The construction of the GQ follows Thas [17, Section 5], although there the structure is
not proved directly to be a GQ, rather it is shown to be that arising from a dual flock GQ.

Theorem 22. Let � be a tetradic set of elliptic quadrics of PG(3, q) with respect to the
incident point-plane pair (∞, �∞). Consider the following incidence structure GQ(�):

Points: (i) ∞.
(ii) �∞.
(iii) Equivalence classes of � under the action of elations with centre ∞.
(iv) Points of PG(3, q) \ �∞.
(v) Planes of PG(3, q) not incident with ∞.
(vi) Elements of �.

Lines: (a) [∞].
(b) Lines of PG(3, q), not in �∞, incident with ∞.
(c) Lines of �∞ not incident with ∞.
(d) Rosettes of elliptic quadrics in �.
(e) Triples (T , �, X) where T is a transversal of elliptic quadrics with

distinct base point-base plane pairs (∞, �∞) and (X, �).

Incidence (i) : The point ∞ is incident with [∞] and all lines of type (b).
(ii): The point �∞ is incident with [∞] and all lines of type (c).
(iii): An equivalence class E is incident with [∞] and all rosettes contained

in E.
(iv): The point X ∈ PG(3, q) \ �∞ is incident with the line 〈X, ∞〉 of

PG(3, q), and triples (T , �, X) where T is a transversal of ovoids in
� with some base plane � �= �∞ and corresponding base point X.

(v): The plane �, not incident with ∞, is incident with � ∩ �∞ and triples
(T , �, X) where T is a transversal of elliptic quadrics in �, and
(X, �) �= (∞, �∞) is a base point-base plane pair of T .

(vi): The elliptic quadric O ∈ � is incident with the rosette in � containing
it and each triple (T , �, X) with O ∈ T .

Then GQ(�) is a GQ of order (q, q2).

Proof. First we check the order of the incidence structure of GQ(�). It is straightforward
to check that each line of GQ(�) is incident with q + 1 points of GQ(�). The lines are
as follows. The line [∞] contains the points ∞, �∞ and the q − 1 equivalence classes. A
line � of PG(3, q), not in �∞, incident with ∞ contains the point ∞ and the q affine points
incident with �. A line m of �∞ not incident with ∞ contains the points �∞ and the q planes
through m. A line R, a rosette of elliptic quadrics, has points the q ovoids in R, and the
equivalence class E containing R. A line (T , �, X) has points X, � and the q − 1 ovoids in
the transversal T .

The points ∞ and �∞ are both clearly incident with q2 + 1 lines. Each equivalence class
E of � contains q3 elliptic quadrics partitioned into q2 rosettes. Together with [∞] this
gives q2 + 1 lines incident with E. If X ∈ PG(3, q) \�∞, then by Lemma 14 for each plane
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�, ∞ �∈ � and X ∈ �, there is a unique triple (T , �, X), where T is a transversal of elliptic
quadrics in �. Together with the line 〈∞, X〉 this gives q2 + 1 incident lines. Similarly to
the previous case, we see that a plane �, ∞ �∈ � is incident with q2 + 1 lines. If O ∈ �,
then by Lemma 13 for each X ∈ O \ {∞} there is a transversal of elliptic quadrics in �
containing O and with base point X. Together with the unique rosette of elliptic quadrics in
� containing O this gives q2 + 1 incident lines.

We now check those cases of axiom (iii) of a GQ which are not straightforward. Suppose
that E is an equivalence class of � and T a transversal of �. Then by Lemma 14 there is a
unique elliptic quadric of T in E.

Suppose that X is a point of PG(3, q) \ �∞. If R is a rosette of � not incident with X in
GQ(�), then since the ovoids of R partition the points of PG(3, q) \ �∞ there is an ovoid
O ∈ R such that X ∈ O. By Lemma 13 there is a unique transversal T containing O and
with base point X, and if �X is the tangent plane of O at X, then (T , �X, X) is the unique
line of GQ(�) incident with X and meeting R. Next suppose that (T , �′, X′) is not incident
with X in GQ(�). If X ∈ �′, then there is unique transversal with base point X and base
plane �′. If X ∈ 〈X′, ∞〉, then this is the unique line of GQ(�) incident with X and meeting
(T , �′, X′). Finally, if X �∈ �′, 〈X′, ∞〉 we know that the elements of T partition the set of
such points, so X is contained in a unique element of T and so is the base point of a unique
transversal containing an element of T .

Suppose that � is a plane of PG(3, q) not incident with ∞. Let R be a rosette of ovoids of
�. Then R is generated by the action of elations with centre ∞ and axis �∞ on any of the
elliptic quadrics of R. It follows that � is tangent to a unique element of R and so is the base
plane of a unique transversal with an elliptic quadric in R. Next suppose that (T , �′, X) is
not incident in GQ(�) with �. If X ∈ �, then there is a unique transversal with base plane
� and base point X. If � ∩ �′ ⊂ �∞, then this is the unique line of GQ(�) incident with �
and meeting (T , �′, X). Finally, if X �∈ � and �∩�′ �⊂ �∞, then by Lemma 15 � is tangent
to a unique elliptic quadric of T and hence there is a unique transversal with base plane �
and containing an elliptic quadric of T .

Now suppose that O ∈ �. Let R be a rosette of � not containing O. If O is in the same
equivalence class as the elliptic quadrics of R, then the unique rosette containing O is the
unique line of GQ(�) incident with O and meeting R. If O is inequivalent to the elements
of R, then by the proof of Corollary 11 there is unique elliptic quadric of R meeting O in
exactly two points and hence by Lemma 13 contained in a transversal with O. Next suppose
(T , �, X) is not incident with O in GQ(�). If X ∈ O, then O is contained in a unique
transversal with base point X and base plane distinct from �. Similarly, if � is a tangent
plane to O, then O is contained in a unique transversal with base plane � and base point
distinct from X. Finally, suppose that X �∈ O and that � is not a tangent plane to O. Now
�∩O is a conic C not containing X and the line 〈X, ∞〉 of PG(3, q) contains a unique point
Y of O \ {∞} with Y �= X. By Corollary 11 the q − 1 elliptic quadrics of T partition the
q2 − q − 2 points of O \ (C ∪ {Y, ∞}) into sets of size 0, 1, q or q + 1. There are only two
ways in which this may be done. First with one set of size 0 and q − 2 sets of size q + 1,
in other words O is in a rosette with a unique element of T and in a transversal with none.
Secondly, with one set of size 1, one set of size q and q −3 sets of size q +1, in other words
O is in a transversal with a unique element of T and in a rosette with none. In either case
there is a unique line of GQ(�) incident with O and meeting (T , �, X). �
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Corollary 23. Let � be a tetradic set of elliptic quadrics of PG(3, q) and GQ(�) the
associated GQ of order (q, q2). Then GQ(�) is a dual flock GQ.

Proof. In [17, Section 7.2] Thas gives the construction of a transversal of elliptic quadrics
{O1, . . . ,Oq−1} from a flock F that we have employed in the proof of Theorem 20. The
elliptic quadrics in the same equivalence class as Oi are those elliptic quadrics of PG(3, q)

that meet �∞ in the same two lines as Oi over GF(q2). This is the same as considering
the images of Oi under elations with centre ∞ and hence the set constructed is a tetradic
set � of elliptic quadrics. Also in [17, Section 7.2] Thas shows that the incidence structure
GQ(�) given in Theorem 22 is the dual flock GQ arising from F . �

Corollary 24. Let � be a tetradic set of ovoids of PG(3, q) with respect to (∞, �∞) and
GQ(�)∗ the corresponding flock GQ. Then GQ(�) is an EGQ with base point [∞]∗ and
the elation group about [∞]∗ is induced by the group of PG(3, q) of order q5 generated by
all elations with centre ∞ and all elations with axis �∞.

Proof. Any collineation of PG(3, q) fixing the set � induces a collineation of GQ(�) and
by Lemma 16 the group G of collineations of PG(3, q) of order q5 generated by all elations
with centre ∞ and all elations with axis �∞ fixes �. Calculation shows that this group fixes
the equivalence classes of � and that for O ∈ � the group GO acts regularly on the points
O \{∞}. Hence the induced collineation of GQ(�) fixes [∞]∗ pointwise and fixes no point
not collinear with [∞]∗, and is thus an elation group about [∞]∗. �

Theorem 25. Let S = (P, B, I) be a GQ of order (s, s2) satisfying Property (G) at a pair
of collinear points (X, Y ). If s is odd, then S is the dual of a flock GQ. If s is even and all
ovoids OZ of SXY for Z ∈ P \ (X⊥ ∪ Y⊥) are elliptic quadrics, then we have the same
conclusion.

Proof. Let SXY be the projective three-space constructed from the pair (X, Y ). Hence s is a
prime power q. Let � be the set of ovoids in SXY �PG(3, q) associated with S. If q is odd,
then � is a set of elliptic quadrics, while if q is even, then this is also the case by hypothesis.
We will show that � is a tetradic set of elliptic quadrics in PG(3, q).

The points of XY \{X, Y } divide the elliptic quadrics of � into q−1 equivalence classes.
Two elliptic quadrics in the same equivalence class intersect in either 1 or q + 1 points,
while two elliptic quadrics of � in distinct equivalence classes intersect in either 2 or q + 2
points. We will show that two elliptic quadrics in different equivalence classes cannot have
an intersection containing a conic.

Without loss of generality suppose that the elliptic quadrics of � have common point
∞ = (0, 1, 0, 0) and common tangent plane X0 = 0. If q is odd let O ∈ � with O =
{(1, s2 − �t2, s, t) : s, t ∈ GF(q)} ∪ {(0, 1, 0, 0)}, where � is a fixed non-square in GF(q).
Let C ⊂ O be the conic C = {(1, s2, s, 0) : s ∈ GF(q)} ∪ {(0, 1, 0, 0)}. Let O′ be
a second elliptic quadric containing C. By the proof of Lemma 7 we may assume that
O′ = {(1, s2 − �t2 + bt, s + ct, dt) : s, t ∈ GF(q)} ∪ {∞} for b, c, d ∈ GF(q), d �= 0. It
follows that |O ∩ O′| = k + 1 where k is the number of solution pairs (s, t) to

2cst = �d2t2 − c2t2 − �t2 + bt. (1)
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Any (s, 0) is a solution pair corresponding to the points C \ {(0, 1, 0, 0)}. If O′ ∈ � and is
inequivalent to O, then it must be that |O ∩ O′| = q + 2 and there is a unique solution to
(1) with t �= 0. Under the assumption that t �= 0, (1) becomes 2cs = �d2t − c2t − �t + b.
If c = 0 we have �d2t − �t + b = 0, to which there are either no solutions, or a unique
solution for t and q solution pairs (s, t), or all (s, t) are solutions. In each of these cases we
do not have a unique solution pair (s, t), so we may suppose that c �= 0. Hence we may
write

s = �d2t − c2t − �t + b

2c
,

which yields a solution in s for each choice of t, that is q solution pairs in total.
If q is even let O = {(1, s2 +st +�t2, s, t) : s, t ∈ GF(q)}∪{∞} with � a fixed element

of GF(q) such that Tr(�) = 1. Let C ⊂ O be the conic {(1, s2, s, 0) : s ∈ GF(q)}∪{∞}. Let
O′ be a second elliptic quadric containing C which, by the proof of Lemma 7, we may assume
is O′ = {(1, s2+st+�t2+bt, s+ct, dt) : s, t ∈ GF(q)}∪{∞} for b, c, d ∈ GF(q), d �= 0.
For |O∩O′| = q +2 we need a unique solution to (�+c2 +cd +�d2)t + (d +1)s +b = 0
with t �= 0. However, the existence of one such solution implies the existence of at least q
such solutions.

Now the group of an elliptic quadric is transitive on pairs (P, C) where C is conic section
of the elliptic quadric and P ∈ C. Hence we may conclude that if two elliptic quadrics of
� contain a common conic, then they are in the same equivalence class.

Let C be a conic in the plane � containing ∞ such that � �= �∞ and � ∩ �∞ is a tangent
to C. Then C is contained in at most q elements of � since in S the set of points C \ {X}
contains a triad and so has at most q +1 centres, one of which is X. Counting the number of
such conics and noting that |�| = q3(q − 1) we conclude that each such conic is contained
in exactly q elliptic quadrics of �.

Now let {A, B, C, ∞} be a 4-arc in a plane � of PG(3, q) such that � �= �∞ and
A, B, C �∈ �∞. The set {A, B, C, ∞} uniquely determines a conic C in � with tangent
� ∩ �∞. The conic C is contained in q elliptic quadrics O1, . . . ,Oq of � all of which must
be in the same equivalence class. Hence O1, . . . ,Oq intersect in exactly C and partition
the points of PG(3, q) \ (�∞ ∪ �). Thus for any 5-cap {A, B, C, Z, ∞} of PG(3, q) with
A, B, C, Z �∈ �∞, ∞ ∈ 〈A, B, C〉 and Z �∈ 〈A, B, C〉, there is a unique elliptic quadric
on {A, B, C, Z}. Hence � is a tetradic set of elliptic quadrics of PG(3, q) with respect to
(∞, �∞) and by Corollary 23 S is the corresponding dual flock GQ. �
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