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Summary: This paper addresses the problem of automatic cry signal segmentation for the purposes of infant cry anal-
ysis. The main goal is to automatically detect expiratory and inspiratory phases from recorded cry signals. The approach
used in this paper is made up of three stages: signal decomposition, features extraction, and classification. In the first
stage, short-time Fourier transform, empirical mode decomposition (EMD), and wavelet packet transform have been
considered. In the second stage, various set of features have been extracted, and in the third stage, two supervised learn-
ing methods, Gaussian mixture models and hidden Markov models, with four and five states, have been discussed as
well. The main goal of this work is to investigate the EMD performance and to compare it with the other standard
decomposition techniques. A combination of two and three intrinsic mode functions (IMFs) that resulted from EMD
has been used to represent cry signal. The performance of nine different segmentation systems has been evaluated. The
experiments for each system have been repeated several times with different training and testing datasets, randomly
chosen using a 10-fold cross-validation procedure. The lowest global classification error rates of around 8.9% and 11.06%
have been achieved using a Gaussian mixture models classifier and a hidden Markov models classifier, respectively.
Among all IMF combinations, the winner combination is IMF3+IMF4+IMF5.
Key Words: automatic segmentation–empirical mode decomposition–wavelet packet transform–Gaussian mixture
models–hidden Markov models.

INTRODUCTION

Crying is the only possible way for newborns to express their
needs and their physical conditions because they are not able
to communicate with words. Cry signals have been studied for
many years, and it has become evident that cry signals can provide
valuable information concerning physiological and physical states
of infants. Most research on infant cry focused on extracting in-
formation from infant cry signals with known medical problems
such as prematurity asphyxia, hypoglycemia, Down syndrome,
and meningitis. For example, the cries of infants with neonatal
asphyxia and meningitis are high-pitched, and the cry duration
is very short or unusually long with melody type rising or falling-
rising in comparison with healthy infants. Preterm babies have
higher minimum fundamental frequency than normal babies. Cries
of infants with hyperbilirubinemia have significant changes in
fundamental frequency over a 100-ms period. For the reason of
cries, features such as pitch and loudness are able to distin-
guish hunger cry from pain cry.1–4

Given these pieces of evidence, many researchers have sug-
gested an automatic system to classify infant cries, which is more
like a pattern recognition problem, similar to automatic speech
recognition (ASR) systems. The aim of the automatic classifi-
cation system is to give clinicians an early diagnostic result if
a baby may have high probability to get specific types of medical
diseases. As in any ASR system, a cry classification system needs

a segmentation module that can detect useful parts of recorded
signal and reject other acoustic activities to be thereafter classified.

Infant cry signals consist of a sequence of audible expira-
tory and inspiratory phases separated by a period of silence or
by unvoiced phases of cry (inaudible expiratory and inspira-
tory phases during a cry). A cry signal recorded in a real
environment usually contains different acoustic activities other
than the cry, such as background noise, speech, sound of medical
equipment, and silence. This work aims to retrieve most rele-
vant and audible sections from cry signals recorded in a realistic
clinical environment, as well as distinction between expiratory
and inspiratory phases of the cries. One way to address this
problem is to manually segment recorded audio signals and pick
out important cry parts. However this manual task is tiresome
and prone to errors when the volume of data is large. It is there-
fore essential to design a segmentation system able to automate
this tedious task and be implemented in a real-time clinical de-
cision support tool. Typical waveforms of a cry signal, expiratory
phase, and inspiratory phase of cry signals are shown in Figures 1,
2, and 3, respectively.

Some attempts to segment cry signals have been reported in
the literature. Many studies used the spectrogram to segment cry
signals manually through visual and audio monitoring.5 On one
hand, automatic segmentation is often desired to manipulate all
automated diagnostic systems, and on the other hand, because
the manual segmentation is an extremely long, tedious task and
is prone to errors especially when the amount of data is large.
A number of recent works have been done on infant cry seg-
mentation based on the time domain characteristics of the signal.
The problem of cry segmentation was being considered as the
problem of voice activity detection. Refs. 6, 7 used high-pass
filter to reduce most of the background noise, and to distin-
guish between important and less important parts of the cry
signals, they applied short-term energy or/and zero crossing rate
by using a satisfactory threshold. However, these methods perform
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well when cries have been recorded within a laboratory envi-
ronment and fail under noisy or clinical environment.

In other research efforts, the cry detection problem was con-
sidered as the problem of start and end points detection of a cry

unit. Based on the hypothesis that cry segments have four times
more energy than unvoiced segments, authors in Refs. 8, 9 defined
some guidelines to detect cry units based on a dynamic thresh-
old for each record. In these works, authors eliminate not only
useless sounds from the signals but also inspiratory sounds of
the cry. Another technique used in Ref. 10 considers the problem
of cry segmentation as the problem of Voiced/Unvoiced deci-
sion. In Ref. 10, authors modified a well-known fundamental
frequency estimation method, the Harmonic product spectrum,
to check the regularity of the segment analyzed to classify it as
an important or not important cry part. In Ref. 11, authors used
the simple inverse filter tracking algorithm to detect the voiced
frames of cry based on a threshold of the autocorrelation func-
tion. The use of threshold limits the attractiveness of the mentioned
approaches and decreases their performance in low signal-to-
noise ratio levels.

Inspiratory cry parts have been proven to be important in iden-
tification of newborns at risk for various health conditions.12

Despite this evidence, it is thus surprising that in most re-
search analyzing cry signals, the inspiratory parts of a cry were
ignored and not considered in the analysis and the main focus
was only on extraction of acoustical data of expiratory parts.

FIGURE 1. An example of a portion of cry signal with its corresponding components expiration (EXP), audible inspiration (INSV), and
pauses (P).

FIGURE 2. An example of a waveform and spectrogram of an expiration phase.

FIGURE 3. An example of a waveform and spectrogram of an in-
spiration phase.
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A cry sound segmentation system has been implemented in
this work. The proposed system has the capability of detecting
three different acoustic classes: audible expiration, audible in-
spiration, and others (including unimportant acoustics like speech,
medical machine sounds, noise, etc). Different signal decom-
position techniques such as wavelet packet transform (WPT) and
empirical mode decomposition (EMD) have been examined for
the features extraction phase.

The WPT has been widely and successfully used in various ap-
plications in the voice signal processing domain. It decomposes
cry signal into sub-bands to give better resolution. The EMD has
been successfully used in denoising and characterizing nonstationary
and multicomponent signals such as heart sound signal.13–17

Statistic generative models such as Gaussian mixture models
(GMM) and hidden Markov models (HMM) have been also
chosen as classifiers to distinguish between the three different
classes. Recently, GMM and HMM techniques were proven by
many researchers to be very successful especially in speaker rec-
ognition. These models provide a robust solution when a large
amount of training data is available.

The remainder of the paper is organized as follows: the following
section is the Recording Procedure and Cry Database section. Then,
it is followed by the Proposed Methodology section. Mathematical
backgrounds of signal decomposition methods, features extrac-
tion, modeling, and classification approaches used in this work are
addressed in the Mathematical Background section. An evalua-
tion of the proposed methods and results obtained is reported in
the System Evaluation section. Finally, the Conclusion section con-
cludes the paper, offering a list of suggestions for further research.

RECORDING PROCEDURE AND CRY DATABASE

Data used in this research have been obtained from the newborn
Cry-based Diagnostic System (NCDS) database.Adescription about
the data collection technique was presented in a previous work.18

A total of 507 cry signals were randomly picked up from the da-
tabase. Cry signals were recorded with a sampling rate of 44.1 kHz
and a sample resolution of 16 bits. The 507 cry signals with an
average duration of 90 seconds have been recorded from 203 babies,
including both normal and pathological cases.

The constructed dataset contains different kinds of cries, such
as pain, hunger, birth cry, etc. It also includes infants’ cries in dif-
ferent recording environments and conditions, from silent to very
noisy combined with different acoustic activities like speech,
machine sounds, noise, silence, etc. Cry signals have been man-
ually segmented and labeled using WaveSurfer application (Jonas
Beskow and Kare Sjolander in KTH Royal Institute of Technol-
ogy in Stockholm, Sweden).19 Ten-fold cross-validation was carried
out to divide the dataset between the training and the testing sets.
The dataset was partitioned into 10 folds: nine folds for the train-
ing set and the remaining fold for the testing set. Ten tests were
conducted with different choice of folds. Data base statistics and
details about average time of each class in the testing and train-
ing datasets are presented in Tables 1 and 2, respectively.

PROPOSED METHODOLOGY

The basic contribution of this paper is the proposition of a prac-
tical cry sounds segmentation system with the ability to detect

audible expiratory and inspiratory cry episodes. This section de-
scribes the modules required for the development of the proposed
system. A block diagram of the general system architecture is
presented in Figure 4. The framework is based on supervised
pattern classification and it consists of two stages: training stage
and testing stage. In either stage, signal decomposition module
receives the input cry signal. It converts the original signal from
time domain to another domain to better characterize it. Train-
ing and testing stages also share the same features extraction
module. This module receives the decomposed signal as input
and extracts important acoustic information within each frame
to form a set of feature vectors. Training involves learning the
system and creating an acoustic model for each class based on
the acoustic training dataset. Reestimation algorithms are used
after the initial training to adapt models’ parameters to various
conditions. Subsequently, the created models, stored in a data-
base as reference models, are used to classify testing dataset and
to measure the system performance during the testing stage. A
description of each module is described in the following
subsections.

MATHEMATICAL BACKGROUND

Signal decomposition

Signal decomposition, also referred to the front-end module in
any audio analysis system, is the first step in the proposed method.
Because most of the audio signals are nonlinear and nonstationary,
a time series and frequency analysis of the signals are needed.
Fourier transform, WPT, and EMD are the most common anal-
ysis techniques addressed in the literature. In this paper, two cry
segmentation systems based on WPT and EMD are designed and

TABLE 1.

Database Statistics

Number
of

Babies

Number
of

Signals

Female Full term Healthy 56 141
Pathological 34 94

Preterm Healthy 20 23
Pathological 17 49

Male Full term Healthy 4 11
Pathological 54 146

Preterm Healthy 5 11
Pathological 13 32

Total 203 507

TABLE 2.

Data Used for Training and Testing Corpuses

Classes
Time in

Seconds

Average Time
for Training

Corpus/s

Average Time
for Testing
Corpus/s

Expiration 21,414 19,348 2,066
Inspiration 2,154.8 1,930 224.8
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compared using the system already designed based on fast Fourier
transform (FFT) in our previous work.18

Wavelet packet transform
The main objective of the wavelet analysis is to apply varying
size of windowing techniques on the signal under study. In low
frequency band study, a large window size should be used,
whereas in high frequency band study, a small window size should
be employed.20 WPT represents a generalization of wavelet de-
composition that could offer a more precise signal analysis by
considering both low- and high-pass results. WPT decomposes
the original signal into different sub-bands to get better resolu-
tion. Each WPT is associated with a level j, which splits the
frequency band [0, fs/2] to 2j equal bands by decomposing both
low and high frequency components called approximation and
detail coefficients, respectively. The result of this decomposi-
tion is a balanced tree structure. WPT has been widely and
successfully used in various applications in voice signal pro-
cessing domain. Based on experiences achieved during this work,
WPT level 5 on different orders of Daubechies wavelet db1, db10,
and db20 is employed in this study. In Figure 5, examples of
some wavelet functions from the Daubechies family are shown.

Considering that h(n) is the low-pass filter of length 2N also
called scaling filter, and g(n) is the high-pass filter of length 2N
also called wavelet filter, wavelet packet functions are esti-
mated using the following equations:
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n n
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n n
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2 2

2 2
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∑

∑
where W x x0( )= ( )ϕ is the scaling function and W x x1( )= ( )Ψ
is the wavelet function. For more details about wavelet coefficients
calculation, readers are referred to the publication of Mallat.21

An example of a wavelet packet tree decomposition of level 5
and the corresponding frequency intervals at each level is given
in Figure 6. The sampling frequency used in the present work
is 44,100 Hz. Figures 7 and 8 are examples of details and

approximation coefficients at level 4 of inspiration and expira-
tion phases, respectively.

Empirical mode decomposition
The EMD algorithm was proposed by Huang and colleagues in
1998 as an efficient tool to analyze natural signals that are mostly
nonlinear and nonstationary. This method decomposes the given
signal into a set of functions in time domain and of the same
length of the original signal allowing for preservation of the fre-
quency variation in time. This is the key feature of the EMD
algorithm that helps to characterize natural signals being pro-
duced by various causes at certain time intervals.

The EMD algorithm applies a sifting process to break down
the given signal into a set of intrinsic mode functions (IMFs),
which represents simple oscillatory mode of the original signal.
Sifting process is an iterative process during which smooth en-
velopes are formed by local minima and maxima of the signal,
and their mean is subsequently subtracted from the initial signal
to finally produce an IMF satisfying two criteria: (1) the number
of extremes and the number of zero crossings in the whole se-
quence of data are equal to or differ by one; (2) the mean value
of the envelopes of local extremes is zero at all points. Ex-
amples of extracted IMFs from expiratory and inspiratory parts
of cry signal using EMD are depicted in Figures 9 and 10,
respectively.

The following sifting approach has been adopted in this work
to extract IMFs from a cry signal x t( ):

(1) Identify the local minima and local maxima of the given
signal

(2) Interpolate the local maxima using cubic splines inter-
polation method to form the upper envelope Env tU ( )

(3) Interpolate the local minima using cubic splines inter-
polation method to form the lower envelope Env tL( )

(4) Obtain the mean envelope of the upper and lower en-

velopes: Env
Env t Env t

m
U L=
( )+ ( )

2
(5) Subtract the mean envelope from the signal:

h t x t Env tm( )= ( )− ( )

FIGURE 4. Block diagram of the system architecture.
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FIGURE 5. Waveforms of some versions of Daubechies wavelet.
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(6) Iterate with x(t) = h(t) until h(t) satisfies the IMF criteria
(7) Calculate the residue by subtracting the obtained IMF

from the signal: r t x t h t( )= ( )− ( )
(8) Repeat the process by considering the residue as the new

signal x t r t( )= ( ) until the termination condition is
satisfied.

The original signal can be reconstructed by summing up the
obtained IMFs and the residue:

x t C t r ti
i

n

n( )= ( )+ ( )
=
∑

1

FIGURE 6. Example of wavelet packet decomposition level 5 of a cry signal at a sampling frequency of 44,100 Hz.

FIGURE 7. Level 4 of wavelet packet decomposition of an inspiration.
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where C ti( ) and r tn( ) represent the i-th IMF and the residue func-
tion, respectively. The number of IMFs extracted from the original
signal is also represented by n.

The adopted termination condition in this work is the minimum
number of extrema in the residue signal. However, usually a
certain number of IMFs that contain more important informa-
tion are used in the next steps. It has been proven through several
experiments in this work that the first five IMFs of cry signals
have the most important information.

Features extraction

Features extraction can be defined as the most prominent step
in an automatic recognition system. It consists of decreasing the
amount of information present in the signal under study by trans-
forming the raw acoustic signal into a compact representation.
Among several features extraction techniques that have been used
in previous works, Mel-frequency cepstral coefficients (MFCC),
which is still one of the best methods, has been chosen. It dem-
onstrates good performance in various applications as it
approximates the response of the human auditory system. Wavelet
packet–based features have been also chosen owing to their ef-
ficiency for segmentation proven in a previous work.22

FFT-based MFCC
MFCCs are used to encode the signal by calculating the short-
term power spectrum of the acoustic signal based on the linear cosine
transform of the log power spectrum on a nonlinear Mel scale of
frequency (Figure 11). Mel scale frequencies are distributed in a
linear space in the low frequencies (below 1000 Hz) and in a loga-
rithmic space in the high frequencies (above 1000 Hz).23

The steps from original input signal to MFCC coefficients are
as follows:

(1) Slice signal into small segments of N samples with an
overlapping between segments

(2) Reduce discontinuity between adjacent frames by de-
ploying Hamming window, which has the following form:

w n
n

N
n N( )= −

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ≤ ≤ −0 54 0 46

2

1
0 1. . cos ,

π

(3) Use FFT to convert the signal into spectrum form
(4) Consider the log amplitude of the spectrum and apply

it to the Mel scale filter banks. The famous formula to
convert f Hz into m Mel is given in the equation below:

Mel f
f

( )= × +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟2595 1

700
10log

(5) Apply discrete cosine transform (DCT) on the Mel log
amplitudes

(6) Perform inverse of fast Fourier transform (IFFT) and the
resulting amplitudes of the spectrum are MFCCs and are
calculated according to the equation below:

c S n k
k

n Kn k
k

n

= ( ) −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= …
=

−

∑ log cos , , , ,
1

2
1 2

0

1 π

where Sk is the output power spectrum of filters and K is chosen
to be 12.

Wavelet packet–based features
The shortcoming regarding traditional MFCCs is related to the use
of FFT whose calculation is based on fixed window size. Another
drawback concerning MFCCs is the assumption that the segment
is stationary during the frame duration; it is, however, possible that
this assumption could be incorrect. To solve this issue, wavelets
have been given particular consideration owing to their
multiresolution property. The extraction of features based on wave-
lets similar to MFCC with higher performance has been shown in
several works and in different ways.24–29 In Ref. 26, authors pro-
posed two sets of features called wavelet packet parameters and
sub-band–based cepstral parameters based on WPT analysis and
proved that these features outperform traditional MFCCs (Figure 12).
Authors of Ref. 29 proposed Mel-frequency discrete wavelet co-
efficients by applying discrete wavelet transform (DWT) instead

FIGURE 8. Level 5 of a wavelet packet decomposition of an expiration.
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FIGURE 9. Example of IMF functions of an expiration.
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FIGURE 10. Example of IMF functions of an inspiration.
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of DCT to the Mel scale filter banks of the signal. Mel-frequency
discrete wavelet coefficient was used in many recent works and
proved its performance in speech and speaker recognition.30–32

In Ref. 23, authors used admissible wavelet packet. The di-
vision of frequency axis is performed such that it matches closely
the Mel scale bands. In Refs. 32 and 33, another feature extrac-
tion technique is presented for deployment with speaker
identification: same MFCCs extraction technique presented in
FFT-based MFCC section but applied at the input wavelet chan-
nels instead of the original signal. In this work, features based
on WPT have been considered, and the following steps have been
taken for calculation purposes:

The WPT is used to decompose the raw data signal into dif-
ferent resolution levels at a maximum level of j = 5. The
normalized energy in each frequency band is calculated accord-
ing to the formula below:

E
N

W m j Bj
j

j
n

m

N j

= ( )[ ] = …
=
∑1

1 2
2

1

, , ,

where W j
n (m) is the mth coefficient of WPT at the specific node

Wj
n, p is the sub-band frequency index, and B is the total number

of frequency bands obtained after WPT.
The Mel scale filter banks are then applied to the magnitude

spectrum.

The logarithms of the Mel energies obtained in each frequen-
cy band are then de-correlated by applying the discrete cosine
transform according to the above formula:

WE DCT n S n p
B

n

p
p

B

_ ( )= ( ) +
⎛
⎝
⎜⎜⎜

⎞
⎠
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⎢

⎤

⎦
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∑ log cos ,10 1
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2

π

== … −0 1 1, , , B

WE_DCT stands for wavelet energy–based DCT, which is es-
timated from wavelet channels and not from the original signal.

EMD-based MFCC
These coefficients are estimated by applying MFCC extraction
process on each IMF or on the sum of IMFs instead of apply-
ing it on the original signal. This technique has been successfully
used in many recent works in speech and heart signals
classification.13–17

The EMD algorithm with resolution of 50 dB and residual
energy of 40 dB has been applied to the subjected cry signals
to decompose them into five IMFs (Figure 13). Next, four dif-
ferent combinations of two or three IMFs have been created to
be used in feature extraction phase. These sets are as follows:

Set 1: IMF34=IMF3+IMF4
Set 2: IMF45=IMF4+IMF5
Set 3: IMF234=IMF2+IMF3+IMF4
Set 4: IMF345=IMF3+IMF4+IMF5

Twelve Mel-frequency cepstral components as well as their
corresponding energy have been further derived from different
sets of IMFs.

Modeling and classification

Once the important parameters are retrieved from an input signal
(train or test), these parameters are used as input to a nonlinear
classifier whose role is to correctly attribute a class to an input
frame under numerous conditions. For the classification stage
of this research, two efficient statistical classifiers widely used
in machine learning and pattern recognition over the last decades
especially in speech and speaker recognition have been chosen:

FIGURE 11. Extraction Mel-frequency cepstral coefficients (MFCC) from the audio recording signals.

FIGURE 12. Features extraction step after WPT.
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HMMs and GMMs. GMM and HMM are well suited for audio
recognition. GMMs are often used owing to their reduced com-
putational costs, whereas HMMs allow a more refined analysis
while taking into consideration the variation of the signal over
time. In the following subsections, some theoretical back-
grounds of these two techniques will be discussed.

Gaussian mixture models
The GMM is a probabilistic model for the computation of the
probability density function p of a set of observed variables o
using a multivariate Gaussian mixture density. A GMM is rep-
resented as a weighted sum of Gaussian distributions and is
expressed by the equation below:

p o w G oj j j
j

J

λ μ( )= ( )
=
∑ : , Σ

1

where:

p o λ( ) is the likelihood of an input observation o of dimen-
sion D

J is the number of mixtures
wj represents positive weighting factors satisfying the con-

straint wj
j

J

=
∑ =

1

1

G oj j j, ,μ Σ( ) denotes the jth Gaussian with a mean vector
μ j and covariance matrix Σ j. It is given by the equation
below:

G o o M o Mj j

D

i i
T

ii
; , expμ πΣ Σ( )=( ) − −( ) −( ){ }− − −∑2

1

2
2

1

2
1

Given a set of observation inputs O O On1 2, , ,…{ }, GMM has
been shown to accurately compute the continuous probability
density functions P pij={ }. The parameters of each distribution

w andj j j, μ Σ are estimated by using the expectation-
maximization algorithm. Readers seeking more details about
GMM should consult the paper of Reynolds and Rose.35

During the training stage, and for each audio class defined,
the parameters of each Gaussian model are computed from some
sequence of training input observations by maximizing the
likelihood.

During the classification or testing stage, an observation input
is attributed to a specific class for which the likelihood is
maximum.

Hidden Markov models
HMMs are used in most modern ASR systems. They provide
an efficient framework for modeling time-varying spectral feature
vectors.36 Different applications of HMM in statistical signal pro-
cessing and acoustic modeling can be found in literature especially
in speech and audio domains.36,37 An HMM is defined by dif-
ferent sets of parameters: number of hidden states, state transition
probability distribution A, observation probability distribution
B, and initial state distribution π.

HMM model is denoted as λ = {A, B, π}.
Considering a spectral sequence of observations O = O1,

O2, . . .,OT, one can model the sequence of spectra by using a
Markov chain.
q q q qt= …( )0 1, , qt as the state of the system at time t, and

N as the number of states of HMM.

A a

a q j q i i j N

ij

ij t

=[ ]
= = =( ) ≤ ≤Pr ,1

The probability of q being generated by the Markov chain is
given by the following equation:

Pr ,q A a a aq q q q q q qt tπ π( )= … −11 0 1 1 12 1

For more details about HMM parameters estimation, readers
are referred to Refs. 22, 36.

As main training function and to initialize HMM param-
eters, the Viterbi algorithm is used to find the most likely state
sequence for each training input. The log likelihood of the train-
ing data is calculated, and the process is repeated until no further
increase in likelihood can be found. By applying the so-called
Baum-Welch algorithm, the reestimation of the HMM param-
eters is carried out. The probability of the observation generated
by each class is computed to test an unknown observation, and
a decision is then taken based on the maximum probability
obtained.

SYSTEM EVALUATION

The aim of this work is to develop an automatic segmentation
system with a low error rate. Figure 14 depicts an overview of
the adopted methodology. It is based on three essential stages:
signal decomposition, features extraction, and classification. In
this study, we evaluated the efficiency of nine differently imple-
mented systems listed below by varying approaches in each stage:

(1) FFT+FFT-MFCC+GMM
(2) FFT+FFT-MFCC+4-states HMM
(3) FFT+FFT-MFCC+5-states HMM

FIGURE 13. Features extraction step after EMD.
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(4) WPT+WE-DCT+GMM
(5) WPT+WE-DCT+4-states HMM
(6) WPT+WE-DCT+5-states HMM
(7) EMD+EMD-MFCC+GMM
(8) EMD+EMD-MFCC+4-states HMM
(9) EMD+EMD-MFCC+5-states HMM

GMM-based system is compared with four and five states, left
to right HMM-based systems using multiple Gaussian mix-
tures with diagonal covariance matrices for each class. A varying
number of mixtures per state from 16 to 64 Gaussians have been
also considered. The efficiencies of the proposed systems are
evaluated by comparing their performances with the FFT-
based system designed in the previous work.18 Each frame was
represented by a 13-dimensional feature vector. Two different
window frame sizes, 30 ms and 50 ms, with an overlap of 30%
are employed.

For both training and evaluation purposes, 507 cry signals used
in this paper are manually labeled. The experiments were per-
formed using the 10-fold cross-validation. The whole database
is divided several times into two parts: the first part has been
used for training and the second part for testing. The average
duration of the corpuses used was shown in Table 2. The process
of training and testing was repeated for each set of corpuses.
To ensure reliable results, the average of the total classification
error rate of the same experiments repeated with different sets
of training and test corpuses was considered.

To evaluate the efficiency of the systems, the manual tran-
script files and the files generated at the front end of the system
are compared. The performance of the designed systems is then
calculated as shown below:

CER
Nb of Correctly Classified Segments

Total number of Observ
= −100

aation in the test Corpus

×100%

where CER stands for classification error rate.

Systems 2 and 3 based on FFT decomposition were consid-
ered in the previous work.18 Training and testing phases using
the corpuses described in the Proposed Methodology section are
re-executed. Table 3 summarizes the comparison between systems
1, 2, and 3 based on FFT decomposition.

It can be concluded that based on an FFT decomposition:

(1) a GMM classifier outperforms the four- and five-states
HMM classifiers.

(2) a lower window size with GMM classifier gives better
results than higher window size.

(3) an HMM classifier produces best results by increasing
its number of states.

(4) a higher window size with HMM classifier presents best
overall results than lower window size.

The obtained results are summarized in Figure 15. A GMM
with 40 mixtures outperforms all experiments and gives a low
classification error rate of 8.98%.

Results obtained using systems 4 to 6 are indexed in Table 4
where WPT was employed as decomposition method:

Different levels of decomposition such as 4, 5, and 6 are tried.
The best results were obtained using five levels of decomposi-
tion. In this paper, therefore, only results obtained by level 5 are
addressed.

From Table 4 and Figure 16, it can be concluded that using
a wavelet packet decomposition:

FIGURE 14. Overview of the different methodologies used in this work.

TABLE 3.

Classification Error Rates for an FFT-based Extraction

Features

FFT_MFCC 30 ms–21 ms 50 ms–35 ms

GMM 8.98 15.99
4-states HMM 26.3 21.23
5-states HMM 23.4 17.29
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(1) an HMM classifier outperforms a GMM classifier.
(2) a lower window size with either a GMM or an HMM

classifier gives better results than higher window size.
(3) an HMM classifier with four states outperforms an HMM

classifier with five states.

The results obtained from systems 4, 5, and 6 are shown in
the chart in Figure 16. It is proven that lower classification error
rate of 17.02% is achieved using a four-states HMM and a
window size of 30 ms.

Using the EMD decomposition technique, four sets of dif-
ferent IMF combinations are examined. These four sets are chosen

based on results obtained from the experiments of a previous
work.38

In Figure 17, it can be concluded that while using different
combinations of IMFs:

(1) the parameters based on the combination of IMF3, IMF4,
and IMF5 yielded the best results.

(2) GMM classifier outperforms an HMM classifier in the
set IMF45, IMF234, and IMF345.

(3) four-states HMM outperforms GMM classifier and five-
states HMM classifier while using the set IMF34.

(4) best results in most classifiers are obtained using a lower
window size.

It can also be seen from Figure 17 that the features repre-
sented by the so-called IMF345, which is the combination of
IMF3, IMF4, and IMF5, yielded the lowest error rate of 11.03%
using again a GMM classifier and a window size of 30 ms. Table 5
and Figure 18 compare the proposed systems in terms of fea-
tures and classifiers.

It can be seen in Table 5 that best results are yielded using the
features obtained based on FFT decomposition and using a GMM

FIGURE 15. Comparison of CER between different classifiers for an FFT-based MFCC.

TABLE 4.

Classification Error Rates for a WPT-based Extraction

Features

WE_DCT 30 ms–21 ms 50 ms–35 ms

GMM 22.2 29.75
4-states HMM 17.02 27.09
5-states HMM 21.17 27.42

FIGURE 16. Comparison of CER between different classifiers for a WPT-based features.
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classifier while using a window size of 30 ms. The minimum ob-
tained classification error rates while employing a 50 ms window
size are marked by using EMD decomposition combining IMF3,
4, and 5 and GMM classifier to reach a classification error rate
of 11.43%. The results are demonstrated in Table 6 and Figure 19.

To compare the performance of all examined systems in this
paper, Table 7 summarizes the best error rate obtained by varying
different parameters.

Analyzing these results, we outline the following
conclusions:

FIGURE 17. CER of different classifiers used and different window sizes for EMD-based features.

TABLE 5.

CER of Different Features Extracted and Different Clas-

sifiers for a Window Size of 30 ms

Features/Classifier—30 ms GMM
4-states
HMM

5-states
HMM

FFT_MFCC 8.98 26.3 23.4
WE_DCT 22.2 17.02 21.17
IMF34 17.12 13.44 17.73
IMF45 12.74 13.43 18.38
IMF234 11.32 11.53 15.09
IMF345 11.03 11.06 11.56

FIGURE 18. Comparison between CER of different features extracted and different classifiers for a window size of 30 ms.

TABLE 6.

CER of Different Features Extracted and Different Clas-

sifiers for a Window Size of 50 ms

Features/4-states
HMM—50 ms GMM

4-states
HMM

5-states
HMM

FFT_MFCC 15.99 21.23 17.29
WE_DCT 29.75 27.09 27.42
IMF34 20.06 17.73 21.91
IMF45 13.95 18.38 22.15
IMF234 12.16 15.09 20.96
IMF345 11.43 11.56 16.45
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(1) System number 1 (FFT+FFT-MFCC+GMM) performed
the best among the nine proposed systems by giving an
average class error rate of 8.98% for various training and
testing datasets.

(2) Next is system number 7 (EMD+EMD-MFCC+GMM)
that achieved an error rate of 11.03% by using a com-
bination of IMF345.

(3) It can also be observed that results are the best for the
GMM-based classification method in the case of FFT and
EMD decompositions and for the four-states HMM in
the case of WPT decomposition.

(4) For the FFT decomposition with HMM, best results are
reached by increasing the number of states and the
window size.

CONCLUSION

Newborn cry signals provide valuable diagnostic information con-
cerning their physiological and psychological states. In this paper,
EMD-based and wavelet-based architectures have been examined

for the purpose of automatic expiratory and inspiratory epi-
sodes detection under the scope of designing a complete automatic
newborn cry-based diagnostic system. The methodology em-
ployed in this research is based on three phases: signal
decomposition, features extraction as well as modeling, and clas-
sification. Different approaches at each phase have been addressed
to implement in total nine different segmentation systems. Three
signal decomposition approaches were compared: FFT, wavelet
packet decomposition, and EMD. WPT is applied to capture the
more prominent features in high and intermediate frequency bands
for the segmentation purpose and is compared with IMFs that
resulted from EMD decomposition. GMM classifier is also com-
pared with four and five states, left to right HMMs baseline system
using multiple Gaussian mixtures with diagonal covariance ma-
trices for each class. Cry signals recorded in various environments
are used for training and evaluation of the proposed systems;
this dataset includes 507 cry signals with average duration of
90 seconds from 207 babies. To ensure the liability of results,
the 10-fold technique is carried out; 90% of the data corpus was

FIGURE 19. Comparison between CER of different features extracted and different classifiers for a window size of 50 ms.

TABLE 7.

The Best CER Obtained for the Different Systems Implemented

System Decomposition Technique Features Extraction Classification Method Best Error Rate %

1 FFT FFT-MFCC GMM 8.98
2 FFT FFT-MFCC 4-states HMM 21.23
3 FFT FFT-MFCC 5-states HMM 17.29
4 WPT WE-DCT GMM 22.2
5 WPT WE-DCT 4-states HMM 17.02
6 WPT WE-DCT 5-states HMM 21.17
7 EMD EMD-MFCC GMM 11.03
8 EMD EMD-MFCC 4-states HMM 11.06
9 EMD EMD-MFCC 5-states HMM 11.56
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randomly chosen for the training stage and the rest 10% for the
testing stage while repeating experiments for several times. The
effects of different window sizes and different extracted fea-
tures have been examined. The main goal of this research was
to measure the ability of the system to classify audible cries:
expiration and inspiration. Results presented in this study show
that best results were obtained by using GMM classifier with
the low error rate of 8.9%. Future direction of research may
include a postprocessing step in the systems designed based on
some spectral and temporal approaches to reduce the error rates
and increase the performance of the system.
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