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Abstract

Solvers on �nite domains use local consistency notions to remove values from the

domains. This paper de�nes value withdrawal explanations. Domain reduction is

formalized with chaotic iterations of monotonic operators. With each operator is

associated its dual which will be described by a set of rules. For classical consistency

notions, there exists such a natural system of rules. The rules express value removals

as consequences of other value removals. The linking of these rules inductively

de�nes proof trees. Such a proof tree clearly explains the removal of a value (which

is the root of the tree). Explanations can be considered as the essence of domain

reduction.

1 Introduction

Constraint programming [18] is an important programming paradigm of the

last years. It combines declarativity of relational style and eÆciency of con-

straint solvers which are implemented for speci�c domains. We are interested

here in the constraints over �nite domains [22,23]. A constraint is a relation

between variables. In �nite domains, each variable can only have a �nite set

of possible values. The aim of constraint programming is to prove satis�a-

bility or to �nd one or all the solutions of a Constraint Satisfaction Problem

(a set of variables with their domains and a set of constraints). In theory,

solutions can be obtained by an enumeration of all the combination of values

for the variables of the problem (the labeling method). But in practice this

method could be very expensive, so one prefers to interlace the labeling with

domain reduction stages. Domain reduction consists in eliminating some val-

ues from variable domains which cannot belong to a solution according to the

constraints. In general, these values are characterized by a notion of local con-

sistency. This paper only deals with the domain reduction part. The labeling

can be seen as additional constraints.
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Several works [11,5,3] formalize domain reduction thanks to operators

(these operators reduce the variable domains). In practice, they are applied

according to di�erent strategies. Chaotic iterations [8] have been used in or-

der to describe domain reduction from a theoretical general point of view.

It ensures conuence, that is to obtain the same reduced domain whatever

the order of application of the operators is. Domain reduction can then be

described with notions of �x-points and closures.

From another point of view, constraint community is also interested in

explanations (or nogoods). The notions of explanations seem to be an in-

teresting answer to constraint retraction problems: they have been used for

dynamic constraint satisfaction problems, over-constrained problems, dynamic

backtracking, . . . . An explanation is roughly a set of constraints responsible

for a value withdrawal: domain reduction by this set of constraints, or any

super-set of it, will always remove this value. There exist other applications

of the explanations, among others debugging applications. See http://www.e-

constraints.net for more details.

This paper is an attempt to lay a theoretical foundation of value with-

drawal explanations in the above-mentioned framework of chaotic iteration.

It presents the �rst results obtained by the authors in the french project OAD-

ymPPaC 1 .

A �rst notion of explanation is de�ned as a set of operators (from which

one can �nd the set of constraints responsible for the value removal). A

monotonic operator can always be de�ned by a set of rules (in the sense of

the inductive de�nitions of Aczel [1]). Usual local consistencies are expressed

by such a natural system. Note that this system is not computed, it is just a

theoretical tool to de�ne explanations in our theoretical model. Rules express

value removals as consequences of other value removals. So, a more precise

notion of explanation can be obtained: the linking of these rules allows to

inductively de�ne proof trees. Such a proof tree clearly explains the removal

of a value (the root of the tree) by the solver and then it is called an explanation

for this value withdrawal. It is important to note that the single role of a solver

is to remove values and that our explanations are proofs of these removals,

that is explanations are the essence of domain reduction.

The paper will be illustrated by examples in GNU-Prolog [?]. More exam-

ples, more detailled proofs of lemmas and some basic notions about monotonic

operators, closures, rules and proof trees can be found in [12]. The paper is

organized as follows. Section 2 gives some notations and de�nitions about

Constraint Satisfaction Problems in terms of rules in a set theoretical style.

Section 3 recalls in our formalism a model for domain reduction based on

local consistency operators and chaotic iterations. Section 4 associates deduc-

tion rules with this model. Section 5 uses deduction rules in order to build

explanations.

1 More details on this RNTL project at http://contraintes.inria.fr/OADymPPaC/
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2 Preliminaries

We recall the de�nition of a constraint satisfaction problem as in [22]. The

notations used are natural to express basic notions of constraints involving

only some subsets of the set of all variables.

Here we only consider the framework of domain reduction as in [5,7,23].

A Constraint Satisfaction Problem (CSP) is made of two parts, the syn-

tactic part:

� a �nite set of variable symbols (variables in short) V ;

� a �nite set of constraint symbols (constraints in short) C;

� a function var : C ! P(V ), which associates with each constraint symbol

the set of variables of the constraint;

and a semantic part for which preliminaries are needed.

We are going to consider various families f = (fi)i2I . Such a family can be

identi�ed with the function i 7! fi, itself identi�ed with the set f(i; fi) j i 2 Ig.

We consider a family (Dx)x2V where each Dx is a �nite non empty set.

In order to have simple and uniform de�nitions of monotonic operators

on a power-set, we use a set which is similar to an Herbrand base in logic

programming: we de�ne the global domain by D =
S
x2V (fxg � Dx). We

consider subsets d of D . We denote by djW the restriction of a set d � D to a

set of variables W � V , that is, djW = f(x; e) 2 d j x 2 Wg. We use the same

notations for the tuples (valuations). A global tuple t is a particular d such that

each variable appears only once: t � D and 8x 2 V; 9e 2 Dx; tjfxg = f(x; e)g.

A tuple t on W � V , is de�ned by t � D jW and 8x 2 W; 9e 2 Dx; tjfxg =

f(x; e)g. So a global tuple is a tuple on V .

Then the semantic part of the CSP is de�ned by:

� the family (Dx)x2V (Dx is the domain of the variable x);

� a family (Tc)c2C such that: for each c 2 C, Tc is a set of tuples on var(c)

(Tc is the set of solutions of c).

A global tuple t is a solution to the CSP if 8c 2 C; tjvar(c) 2 Tc.

Let d � D , for x 2 V we de�ne dx = fe 2 Dx j (x; e) 2 dg. To give any

d � D amounts to give a family (dx)x2V with dx � Dx. So we can note: 8x 2

V , djfxg = fxg�dx; d =
S
x2V djfxg; for d; d

0 � D , (d � d0 , 8x 2 V; dx � d0x);

Example 2.1 We introduce a CSP which will be used in several examples

throughout the paper. Let us consider the CSP de�ned by:

� V = fx; y; zg;

� C = fx < y; y < z; z < xg;

� var(x < y) = fx; yg, var(y < z) = fy; zg and var(z < x) = fx; zg;

� D = f(x; 0); (x; 1); (x; 2); (y; 0); (y; 1); (y; 2); (z; 0); (z; 1); (z; 2)g;

� Tx<y = ff(x; 0); (y; 1)g; f(x; 0); (y; 2)g; f(x; 1); (y; 2)gg,
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Ty<z = ff(y; 0); (z; 1)g; f(y; 0); (z; 2)g; f(y; 1); (z; 2)gg,
Tz<x = ff(x; 1); (z; 0)g; f(x; 2); (z; 0)g; f(x; 2); (z; 1)gg;

To reduce the domains of variable means to replace each Dx by a subset dx
of Dx without losing any solution. Such dx is called a domain of the variable x

and d =
S

x2V
(fxg�dx) is called a domain. Dx is merely the greatest domain

of x.

Here, we focus on the reduction stage. Intuitively, we want all the solu-

tions to remain in the reduced domain and we attempt to approximate the

smallest domain containing all these solutions. So this domain must be an

\approximation" of the solutions according to the subset ordering �. Next

section describes a model for the computation of such approximations.

3 Domain reduction

A way to compute an approximation of the solutions is to associate with the

constraints a notion of local consistency which is expressed here by some lo-

cal consistency operators. The type of such an operator is (Win;Wout) with

Win;Wout � V . A local consistency operator is applied to the whole domain.

But in fact, it eliminates from the domains of Wout some values which are

inconsistent with respect to the domains of Win and the local consistency no-

tion used. We introduce the use of local consistency operators by the following

example.

Example 3.1 Arc consistency is a simple and particular case of hyper-arc

consistency. Let c 2 C with var(c) = fx; yg. The property of arc consistency

for d � D is: (1) 8e 2 dx; 9f 2 dy; f(x; e); (y; f)g 2 Tc; (2) 8f 2 dy; 9e 2
dx; f(x; e); (y; f)g 2 Tc.

We can associate with (1) the operator r de�ned by: r(d) = D jV nfxg [
f(x; e) 2 D j 9(y; f) 2 d; f(x; e); (y; f)g 2 Tcg. It is obvious that the property

(1) is equivalent to d � r(d). Here, Wout = fxg and we can take Win = fyg.
There exist di�erent possibilities to choose r, but for reasons which will appear

later this one is the most convenient. An operator associated with (2) can be

de�ned in the same way.

This example motivates the following de�nition.

De�nition 3.2 A local consistency operator of type (Win;Wout), Win;Wout �
V , is a monotonic function r : P(D ) ! P(D ) such that: 8d � D ,

� r(d)jV nWout
= D jV nWout

,

� r(d) = r(djWin
).

We can note that r(d)jV nWout
does not depend neither on d, nor on r and

that r(d)jWout
only depends on djWin

.

De�nition 3.3 We say a domain d is r-consistent if d � r(d), that is, djWout
�

r(d)jWout
.
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The solver is described by a set of such operators associated with the

constraints of the CSP. We can choose more or less accurate local consistency

operators for each constraint (in general, the more accurate they are, the more

expensive is the computation). Any notion of local consistency in the frame-

work of domain reduction may be expressed by such operators. Reduction

operators are associated with these operators in order to reduce the domains.

De�nition 3.4 The reduction operator associated with the local consistency

operator r is the monotonic and contracting function d 7! d \ r(d).

All the solvers proceeding by domain reduction may be formalized by op-

erators with this form. GNU-Prolog associates with each constraint as many

operators as variables in the constraint (Wout is always a singleton).

Example 3.5 In GNU-Prolog, these operators are written x in r [7], where

r is a range dependent on the domains of a set of variables. GNU-Prolog has

two kinds of local consistency: hyper-arc consistency and partial hyper-arc

consistency. The constraint x #= y (partial arc consistency) is implemented

by two GNU-Prolog rules x in min(y)..max(y) and y in min(x)..max(x).

The rule x in min(y)..max(y) uses the local consistency operator of type

(fyg; fxg) de�ned by r(d)jfxg = f(x; e) j min(dy) � e � max(dy)g where

min(dy), max(dy) are respectively the smallest and the greatest value in the

domain of y. The reduction operator associated with this local consistency

operator computes the intersection with the domain of x and is applied by

activation of the rule.

The local consistency operators we use must not remove solutions from the

CSP. This is formalized in [12] by notions of correct operators that are not

essential here.

The solver applies the reduction operators one by one replacing the domain

with the one it computes. The computation stops when a domain of a variable

becomes empty (in this case, there is no solution), or when the reduction

operators cannot reduce the domain anymore (a common �x-point is reached).

From now on, we denote by R a set of local consistency operators (the set

of local consistency operators associated with the constraints of the CSP). A

common �x-point of the reduction operators associated with R starting from

a domain d is a domain d
0
� d such that 8r 2 R, d0 = d

0
\ r(d0), that is

8r 2 R, d0 � r(d0). The greatest common �x-point is the greatest d0 � d such

that 8r 2 R, d0 is r-consistent. To be more precise:

De�nition 3.6 The downward closure of d by R, denoted by CL # (d; R), is

the greatest d0 � D such that d0 � d and 8r 2 R; d
0
� r(d0).

Note that CL # (d; ;) = d and CL # (d; R) � CL # (d; R0) if R0
� R.

The downward closure is the most accurate set which can be computed

using a set of (correct) local consistency operators in the framework of domain

reduction. CL # (d; R) can be computed by chaotic iterations introduced for
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this aim in [11]. The following de�nition is taken from Apt [2].

De�nition 3.7 A run is an in�nite sequence of operators of R, that is, a run

associates with each i 2 N (i � 1) an element of R denoted by ri. A run is

fair if each r 2 R appears in it in�nitely often, that is, 8r 2 R; fi j r = rig is

in�nite.

The downward iteration of the set of local consistency operators R from

the domain d � D with respect to the run r1; r2; : : : is the in�nite sequence

d0; d1; d2; : : : inductively de�ned by: d0 = d; for each i 2 N , di+1 = di\ri+1(di).

Its limit is \i2Nd
i.

A chaotic iteration is an iteration with respect to a fair run.

Note that an iteration starts from a domain d which can be di�erent from

D . This is more general and convenient for a lot of applications (dynamic

aspects of constraint programming for example).

The next well-known result of conuence [8,11] ensures that any chaotic

iteration reaches the closure. Note that, since � is a well-founded ordering

(i.e. D is a �nite set), every iteration from d � D is stationary, that is,

9i 2 N ; 8j � i; dj = di.

Lemma 3.8 The limit of every chaotic iteration of the set of local consistency

operators R from d � D is the downward closure of d by R.

Proof. Let d0; d1; d2; : : : be a chaotic iteration of R from d with respect to

r1; r2; : : :. Let d! be the limit of the chaotic iteration.

[CL # (d; R) � d!] For each i, CL # (d; R) � di, by induction: CL #

(d; R) � d0 = d. Assume CL # (d; R) � di, CL # (d; R) � ri+1(CL #

(d; R)) � ri+1(di) by monotonicity. Thus, CL # (d; R) � di \ ri+1(di) = di+1.

[d! � CL # (d; R)] There exists k 2 N such that d! = dk because � is

a well-founded ordering. The run is fair, hence dk is a common �x-point of

the set of reduction operators associated with R, thus dk � CL # (d; R) (the

greatest common �x-point). 2

In�nite runs and fairness are convenient theoretical notions to state the pre-

vious lemma. Every chaotic iteration is stationary, so in practice the compu-

tation ends when a common �x-point is reached. Moreover, implementations

of solvers use various strategies in order to determine the order of invocation

of the operators. These strategies are used to optimize the computation, but

this is out of the scope of this paper.

In practice, when a domain of variable becomes empty, we know that there

is no solution, so an optimization consists in stopping the computation before

the closure is reached. In this case, we say that we have a failure iteration.

We have recalled here a model of the operational semantics for the solvers

on �nite domains using domain reduction. This model is language independent

and general enough to be applied to di�erent solvers. Furthermore it allows

us to de�ne a notion of explanation.
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Sometimes, when the domain of a variable becomes empty or when a value

is simply removed from a domain of a variable, the user wants an explanation

of this phenomenon [16]. The case of failure is the particular case where

all the values are removed. It is the reason why the basic event here is a

value withdrawal. Let us consider a chaotic iteration, and let us assume that

at a step a value is removed from the domain of a variable. In general, all

the operators used from the beginning of the iteration are not necessary to

explain the value withdrawal. It is possible to explain the value withdrawal by

a subset of these operators such that every chaotic iteration using this subset

of operators removes the considered value.

We can de�ne an explanation set [16], which is a set of operators responsible

for a value withdrawal during a computation starting from a �xed domain d.

De�nition 3.9 Let h 2 D and d � D . We call explanation set for h wrt d a

set of local consistency operators E � R such that h 62 CL # (d; E).

Since E � R;CL # (d; R) � CL # (d; E). So an explanation set E is

responsible for a value withdrawal and is independent of any chaotic iteration

with respect to R in the sense of: whatever the chaotic iteration used is, the

value will always be removed. Note that when h 62 d, then the empty set is

an explanation set for h.

For some applications (as debugging for example), we need a notion of

explanation which is �ner than explanation set. We are interested in the

dependency between the values and the operators. This will be the purpose of

section 5, but before we need to associate systems of rules with the operators.

4 Deduction rules

We are interested by the value withdrawal, that is, when a value is not in a

domain but in its complementary. So we consider this complementary and the

\duals" of the local consistency operators. In this way, at the same time we

reduce the domain, we build its complementary. We associate rules systems

(inductive de�nition [1]) with these dual operators. These rules will be the

constructors of the explanations.

First we need some notations. Let d = D n d. In order to help the un-

derstanding, we always use the notation d for a subset of D if intuitively it

denotes the complementary of a domain.

De�nition 4.1 Let r be an operator, we denote by er the dual of r de�ned

by: 8d � D ; er(d) = r(d).

We need to consider sets of such operators as for local consistency oper-

ators. Let eR = fer j r 2 Rg. The upward closure of d by eR, denoted by

CL " (d; eR) exists and is the least d0 such that d � d0 and 8r 2 R, er(d0) � d0

(see [12]).
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Next lemma establishes the correspondence between downward closure of

local consistency operators and upward closure of their duals.

Lemma 4.2 CL " (d; eR) = CL # (d; R).

Proof.

CL " (d; eR) = minfd0 j d � d0; 8er 2 eR; er(d0) � d0g

= minfd0 j d � d0; 8r 2 R; d0 � r(d0)g

= maxfd0 j d0 � d; 8r 2 R; d0 � r(d0)g
2

In the same way we de�ned a downward iteration of a set of operators from

a domain, we de�ne an upward iteration of a set of dual operators.

The upward iteration of eR from d � D with respect to er1; er2; : : : is the

in�nite sequence Æ0; Æ1; Æ2; : : : inductively de�ned by: Æ0 = d and Æi+1 = Æi [
gri+1(Æi).

We can rewrite the second item: Æi+1 = Æi [ ri+1(Æi), that is, we add to Æi

the elements of Æi removed by ri+1.

If we consider the downward iteration from d with respect to r1; r2; : : :,

then the link between the downward and the upward iteration clearly appears

by noting that: Æi[gri+1(Æi) = di \ ri+1(di), that is, Æi+1 = di+1, and [j2NÆ
j =

CL " (d; eR) = CL # (d; R) = \j2Ndi.

We have shown two points of view for the reduction of a domain d with

respect to a run r1; r2; : : :. In the previous section, we considered the reduced

domain, but in this section, we consider the complementary of this reduced

domain, that is, the set of elements removed of the domain.

Now, we associate rules in the sense of [1] with these dual operators. These

rules are natural to build the complementary of a domain and well suited to

provide proof trees.

De�nition 4.3 A deduction rule of type (Win;Wout) is a rule h  B such

that h 2 D jWout
and B � D jWin

.

A deduction rule h B can be understood as follow: if all the elements of

B are removed from the domain, then h does not participate in any solution

of the CSP and can be removed.

For each operator r 2 R of type (Win;Wout), we denote by Rr a set of

deduction rules of type (Win;Wout) which de�nes er, that is, Rr is such that:

er(d) = fh 2 D j 9B � d; h  B 2 Rrg. For each operator, this set of

deduction rules exists [12]. There exist possibly many such sets, but in general

one is natural in our context.

We provide an illustration of this model for arc consistency. Examples for

partial-arc consistency and hyper-arc consistency are provided in [12].
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Example 4.4 Let us consider the local consistency operator r de�ned in ex-

ample 3.1.

er(d) = r(d) = f(x; e) 2 D j 8(y; f) 2 d; f(x; e); (y; f)g 62 Tcg.

Let B(x;e) = f(y; f) j f(x; e); (y; f)g 2 Tcg. Then it is easy to show that

B(x;e) � d , 8(y; f) 2 d; f(x; e); (y; f)g 62 Tc. So er(d) = f(x; e) 2 D j

B(x;e) � dg. Finally, er is de�ned by Rr = f(x; e) B(x;e) j (x; e) 2 dg.

Example 4.5 Let us consider the CSP of example 2.1. Two local consistency

operators are associated with the constraint x < y: r1 of type (fyg; fxg)
and r2 of type (fxg; fyg). The set of deduction rules Rr1

associated with r1

contains the three deduction rules: (x; 0) f(y; 1); (y; 2)g; (x; 1) f(y; 2)g;
(x; 2) ;.

5 Value withdrawal explanations

We use the deduction rules in order to build proof trees [1]. We consider the

set of all the deduction rules for all the local consistency operators of R: let

R = [r2RRr.

We denote by cons(h; T ) the tree de�ned by: h is the label of its root and

T the set of its sub-trees. The label of the root of a tree t is denoted by root(t).

Let us recall the de�nition of a proof tree for a set of rules.

De�nition 5.1 A proof tree cons(h; T ) with respect to R is inductively de-

�ned by: h froot(t) j t 2 Tg 2 R and T is a set of proof trees with respect

to R.

Our set of deduction rules is not complete: we must take the initial domain

into account. If we compute a downward closure from the global domain D ,

then its complementary is the empty set (in this case, R is complete). But if

we compute a downward closure from a domain d � D , then its dual upward

closure starts with d. We need to add facts (rules with an empty body) in

order to directly deduce the elements of d: let Rd = fh  ; j h 2 dg. The

next theorem ensures that, with this new set of deduction rules, we can build

proof trees for each element of CL " (d; eR).

Theorem 5.2 CL # (d; R) is the set of the roots of proof trees with respect to

R[Rd
.

Proof. Let E the set of the roots of proof trees wrt to R[Rd.

E � minfd0 j d � d0; 8er 2 eR; er(d0) � d0g by induction on proof trees.

It is easy to check that d � E and er(E) � E. Hence, minfd0 j d � d0; 8er 2
eR; er(d0) � d0g � E. 2

Example 5.3 Let us consider the CSP de�ned in example 2.1. Six local

consistency operators are associated with the constraints of the CSP:
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(x; 0)

(y; 1)

(z; 2)

(y; 2)

(x; 0)

(y; 1)

(x; 0)

(y; 2)

(x; 0)

Fig. 1. Proof trees for (x; 0)

r1 of type (fyg; fxg) and r2 of type (fxg; fyg) for x < y

r3 of type (fzg; fyg) and r4 of type (fyg; fzg) for y < z

r5 of type (fzg; fxg) and r6 of type (fxg; fzg) for z < x

Figure 1 shows three di�erent proof trees rooted by (x; 0). For example,
the �rst one says: (x; 0) may be removed from the domain if (y; 1) and (y; 2)
may be removed from the domain (thanks to a deduction rule of Rr2

). (y; 1)
may be removed from the domain if (z; 2) may be removed from the domain
(thanks to Rr4

). (y; 2) and (z; 2) may be removed from the domain without
any condition (thanks to Rr4

and Rr6
).

Each deduction rule used in a proof tree comes from a packet of deduction
rules, either a packet Rr de�ning a local consistency operator r, or the packet
Rd. We can associate sets of local consistency operators with a proof tree.

De�nition 5.4 Let t be a proof tree. A set of local consistency operators

associated with t is a set X such that, for each node of t labeled by h 2 d, if
B is the set of labels of its children then there exists r 2 X; h B 2 Rr.

Note that there exist several sets associated with a proof tree because, for
example, a deduction rule may appear in several packets or each super-set is
also convenient. It is important to recall that the root of a proof tree does not
belong to the closure of d by the set of local consistency operators. So there
exists an explanation set (de�nition 3.9) for this value. The biggest one is the
whole set R of local consistency operators, but we prove in the next theorem
that the sets de�ned above are also explanation sets for this value. In fact,
such a set of operators is responsible for the withdrawal of the root of the tree:

Theorem 5.5 If t is a proof tree, then a set of local consistency operators

associated with t is an explanation set for root(t).

Proof. by theorem 5.2 and de�nition 3.9. 2

We proved that we can �nd explanation sets in proof trees. So it remains to
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�nd proof trees. We are going to show that some proof trees are \computed"

by chaotic iterations, but it is important to note that some proof trees do not

correspond to any chaotic iteration. We are interested in the proof trees which

can be deduced from a computation.

Example 5.6 The �rst and third proof trees of �gure 1 correspond to some

chaotic iterations. But the second one does not correspond to any (because

(x; 0) could not disappear twice).

From now on, we consider a �xed chaotic iteration d = d
0
; d

1
; : : : ; d

i
; : : :

of R with respect to the run r
1
; r

2
; : : :. In this context we can associate with

each h 62 CL # (d; R), one and only one integer i � 0. This integer is the step

in the chaotic iteration where h is removed from the domain.

De�nition 5.7 Let h 62 CL # (d; R). We denote by step(h), either the integer

i � 1 such that h 2 d
i�1 n di, or the integer 0 if h 62 d = d

0.

A chaotic iteration can be seen as the incrementaly construction of proof

trees. We de�ne the set of proof trees Si which can be built at a step i 2 N .

More formally, the family (Si)i2N is de�ned by: S
0 = fcons(h; ;) j h 62 dg;

S
i+1 = S

i [ fcons(h; T ) j h 2 d
i
; T � S

i
; h froot(t) j t 2 Tg 2 Rri+1g.

We prove that the roots of the trees of Si are exactly the elements removed

from the domain at the steps j � i of the chaotic iteration.

Lemma 5.8 froot(t) j t 2 S
ig = di

. So, froot(t) j t 2 [i2NS
ig = CL # (d; R).

Proof. froot(t) j t 2 S
ig = di by induction on i.

froot(t) j t 2 [i2NS
ig = [i2Nfroot(t) j t 2 S

ig

= [i2Nd
i

= \i2Nd
i

= CL # (d; R)
2

This lemma is important because it ensures that, whatever the chaotic

iteration used is, we can incrementaly compute the proof trees for each element

which is not in the closure. All proof trees do not correspond to a chaotic

iteration, but for each one, there exists a proof tree with the same root which

corresponds to the chaotic iteration. Consequently, we will call explanation a

proof tree and computed explanation a proof tree of [i2NS
i.

Let t 2 [i2NS
i, according to de�nition 5.4 and theorem 5.5, the set of

local consistency operators frstep((x;e)) j (x; e) has an occurrence in t and

step((x; e)) > 0g is an explanation set for root(t). From a theoretical point of

view, the fundamental object is the explanation t.
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6 Conclusion

This paper has laid theoretical foundations of value withdrawal explanations

in the framework of chaotic iteration. We were interested in domain reduction

for �nite domains. But this work could be extended to interval constraints

[6] because our approach is general enough for any notion of local consistency

and the domain is a (�nite) set of oating point values. Furthermore, labeling

could be included in this framework if we consider it as constraint addition.

But dynamic aspects are not in the scope of this paper, the focus is on pure

domain reduction by chaotic iterations.

Domain reduction can be considered as a particular case of constraint

reduction [2] because domains can be seen as unary constraints. This work

could also be extended to constraint reduction. To extend D , it would be

enough to consider the set of all possible tuples for the constraints of the CSP.

The operators should then reduce this set, that is remove tuples from the

constraints.

First, we have shown how each solver based on some notions of local consis-

tency can be described in our formalism in term of local consistency operators.

In systems like GNU-Prolog, these operators correspond to the implementa-

tion of the solver (the X in r scheme [7,10]). The associated reduction oper-

ators reduce the domains of variables according to a constraint and a notion

of local consistency.

In other works, CSP resolution is described by considering the reduced

domains instead of the removed values. Indeed, users are interested in the

solutions (which belong to the reduced domains) and the removed values are

forgotten. So a natural view of domain reduction is to consider the values

which remains in the domains. But this does not reect the solver mechanism.

The solver keeps in the domains values for which it cannot prove that they

do not belong to a solution (incompleteness of solvers). In other words, it

computes proof only for value removals. So, we claim that domain reduction

is based on negative information and we have described it from the natural

view point of removed values.

Note that by considering d in place of d we reverse an ordering: d � d
0 ,

d0 � d. This inversion must not be mistaken for another inversion: the inverse

ordering � de�ned by d
0 � d, d � d

0 i.e. d gives more information than d
0,

the least �x-point of an operator becomes the greatest �x-point of the same

operator (and vice versa). To choose � or � is just a matter of taste. But in

this paper we do not use the same idea: we cannot freely choose the ordering

because it is only for the � ordering that the least �x-point of an operator

is a set of proof tree roots. Here, the complementary of a greatest �x-point

becomes a least �x-point by the use of dual operators.

A monotonic operator can always be de�ned by a set of rules in the sense of

inductive de�nitions of [1]. We have shown in [12] that there always exists such

a system which has a natural formulation for classical notions of consistency
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(partial and hyper-arc consistency of GNU-Prolog for example). These rules
express a value removal as a consequence of other value removals. A notion of
explanation, more precise than explanation sets, has been de�ned: the linking
of these rules allows to inductively de�ne proof trees. These proof trees explain
the removal of a value (the root of the tree), so we called them value withdrawal
explanations. Finally we have shown how to build incrementaly a proof tree
from a chaotic iteration, in other words, how to obtain an explanation from a
computation.

There already exists another explanation tree notion de�ned in [13] but
it explains solutions obtained by inference in a particular case. In [13] the
problem is assumed to have only one solution and the resolution of the problem
must not require any search. The inference rules used to build explanations
are de�ned thanks to cliques of disequalities.

There exists another formalization of solvers by domain reduction in terms
of rules in [4]. The body of such a rule contains positive information (that
is the membership of a domain) and the head contains negative information
(that is non membership of a domain). So they have not the appropriate
form to inductively de�ne proof trees. Furthermore, the scope of these rules
is to describe a new form of consistency called rule consistency. This consis-
tency coincides with arc consistency in some cases and has been implemented
thanks to Constraint Handling Rules [14]. Note that these Constraints Han-
dling Rules could be transformed to obtain the appropriate form by allowing
disequality constraints in the body.

Explanation sets have been proved useful in many applications: dynamic
constraint satisfaction problems, over-constrained problems, dynamic back-
tracking, . . . The formalism proposed in this paper has permitted to prove the
correctness of a large family of constraint retraction algorithms [9]. Explana-
tions may be an interesting notion for the debugging of constraints programs
(already used for failure analysis in [17]). Constraints programs are not easy
to debug because they are not algorithmic programs [19]. Negative semantics
provided by explanations can be a useful tool for debugging. An approach
of constraint program debugging consists in comparing expected semantics
(what the user want to obtain) with the actual semantics (what the solver has
computed). The symptoms, which express the di�erences between the two
semantics, can be either a wrong answer, or a missing answer. The role of di-
agnosis is then to locate the error (for example an erroneous constraint) from
a symptom. In logic programming, it is easier to understand a wrong answer
than a missing answer because a wrong answer is a logical consequence of the
program then there exists a proof of it (which should not exist). Here, it is
easier to understand missing answer because explanations are proof of value
removals. Explanations provide us with a declarative view of the computation
and we plan to use their tree structure to adapt declarative diagnosis [20] to
constraint programming.

In [21] a framework for declarative debugging was described for the CLP
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scheme [15]. Symptom and error are connected via some kind of proof tree

using clauses of the program. The diagnosis amounts to search for a kind of

minimal symptom in the tree. In [21], the solver was only seen as a (possibly

incomplete) test of unsatis�ability (well-behaved solver of [15]) so constraint

solving was not fully taken into account. But, for CLP in �nite domains,

constraint solving involves domain reduction for which we have de�ned in this

paper another kind of proof tree: explanation trees. In a future work we plan

to integrate these two kinds of proof trees in order to have �ner connections

between symptom and error.
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