
Electronic Notes in Theoretical Computer Science 82 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 16 pages

CoordMaude: Simplifying Formal Coordination
Specifications of Cooperation Environments �

Marisol Sánchez-Alonso
Pedro J. Clemente, Juan M. Murillo and Juan Hernández

QUERCUS Software Engineering Group, Computer Science Department,
University of Extremadura, Spain

{marisol, jclemente, juanmamu, juanher}@unex.es

Abstract

Developing concurrent applications in cooperative environments is an arduous task.
This is mainly due to the fact that it is very difficult to specify the synchronized
interaction between the entities composing the system. Using coordination models
makes this task easier. The latest trends in this area suggest that to manage the
successful implementation of complex systems, coordination models must support
some key features regarding the coordination constraints: their separated specifica-
tion, their unanticipated evolution and their dynamic change. However, supporting
these features is not only a technical challenge: it must be also guaranteed that
the application of a separately specified coordination pattern to a set of encapsu-
lated entities, or the change of the coordination constraints in an already running
software system will not produce semantic errors. This is just the problem focused
in this paper. In particular, a method for generating formal interpretable specifi-
cations reproducing coordinated environments is presented. The method is based
on the Coordinated Roles coordination model and makes use of Maude as a formal
language. The benefits obtained are: (i) easy specification using the coordination
model syntax, (ii) automatic generation of the corresponding formal specification
and (iii) simulation of system behaviour.

1 Introduction

The increasing number of requests for the development of complex software
systems that support multiple services, and adopt new technologies, in dis-
tributed environments, has augmented the need for cooperation and coordi-
nation between all the entities concerning the system. The main task in the
design of such applications is to specify the coordination constraints existing

� This work has been supported by the project CICYT under grant TIC02-04309-C02-01

c©2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82119327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

among the components. All this, joined to the last trends[1,2,3,4] promoting
the reuse of components to attain an agile development process, has given an
impulse to the appearance of coordination models and languages to facilitate
this task. These models comply with the following goals:

• Providing enough expressiveness to specify all kind of coordination prob-
lems.

• Promoting the reusability of software components and coordination patterns
independently.

• Giving support to Open Systems.

• Allowing the dynamic changes of coordination policies.

Coordination models can be classified depending on how the coordination
constraints are expressed [2]. According to this classification the models can
be:

• Endogenous. When the coordination is expressed inside the code of the
elements and the communication is realized by means of a common tuple
space. The tuple space avoids the need for the entities that are to be
coordinated to know one another explicitly, facilitating the appearance and
disappearance of elements in the system. However, these elements must
insert the appropriate coordination primitives in their code, before being
incorporated to the system. This makes it difficult to reuse the entities and
the coordination pattern.

• Exogenous. When the coordination tasks are performed by an entity that
is external to the entities to be coordinated, making a distinction between:
- No transparent. Allowing the reusability of the coordination pattern,

but making explicit the coordination from the entities to be coordinated,
affecting their reusability.
- Transparent. Promoting the coordinator entity performs the communi-

cation between the entities to be coordinated, without their explicit collab-
oration; resolving the problem of their reusability.

All the models that promote the separation between functional and coordi-
nation aspects provide the above goals with better or worse expressiveness.
However, less attention has been paid to guarantee that the final behaviour
obtained in the composed application is semantically coherent, that is:

(i) How can it be guaranteed that gluing together a coordination policy and
a set of components (that have been coded separately) in an application
will produce the expected behaviour?

(ii) Moreover, supposing that the expected behaviour is produced, how can it
be guaranteed that adding new coordination constraints, or that changing
the coordination constraints of an application will not produce conflicts
with the current behaviour?

2

With the aim of avoiding these deficiencies, a method of generating formal
interpretable specifications is presented in this paper. This method allows not
only the specification and detection of inconsistencies when composing appli-
cations or when changing their coordination policies, but also the simulation
of the global behaviour of such applications by means of executing the formal
specifications.

The method is based on the formal specification language Maude [5] and
a coordination model. The choice of Maude was motivated by the fact that
it is interpretable, concurrent and able to support object definitions. The
approach presented in this paper employs Coordinated Roles (CR from now
on)[3]. However, the method could be easily adapted to any other exogenous
coordination models [4,6].

The use of formal languages allows the checking of the syntactic and se-
mantic correctness of the system and the simulation of the system behaviour
executing the formal specifications. However, formal specifications can be
large and complex [7], hindering understanding of the system representation
and making it difficult to focus on the relevant features of the specification.

In order to facilitate the description of coordination constraints in cooper-
ation systems, adopting the CR coordination model and taking advantage of
the executable Maude formal language, we have developed CoordMaude.

CoordMaude is a set of Maude primitives allowing the use of CR syntax
to describe the objects and the dependency relations of coordination envi-
ronments, and generating the equivalent formal specification in Maude. This
results in shorter and simpler specifications; it focuses on the coordination fea-
tures and the abstraction of formalization details, while allowing the execution
of the specifications generated to simulate the system behaviour.

The paper structure is as follows: In section 2 the motivations underlying
this work are presented by means of an example. The representation of CR
in Maude is described in section 3. Section 4 presents the set of primitives
constituting CoordMaude and its objectives. Related work is mentioned in
section 5. Section 6 explains future work and work in progress. Finally,
section 7 presents conclusions and next, the references.

2 Motivations

To illustrate the problem faced in this paper, an example is shown. The
example is inspired by the case study described in [3]. This example presents
a system to control the access to a car park. The car park has a barrier
and a ticket machine. The desirable car park behaviour is as follows: when a
sensor detects a car passing, it sends a message to the ticket machine, invoking
the Give action to supply an entry ticket. This action produces a ticket and
there is a sensor detecting if the ticket is collected. There is another sensor
before the barrier. When the sensor detects the presence of a car, it sends a
message to the barrier, invoking the Rise action. However, the barrier must

3

not execute the Rise action if the ticket machine has not finished the Give
action. It is necessary to impose this constraint, because if the ticket machine
cannot execute the Give action (e.g., there is no paper), or a ticket is produced
but not collected, a car could pass.

2.1 Coordinated Roles

In [3], CR is proposed as a coordination model inspired on IWIM model [6].
CR is an exogenous and transparent model based on the Event Notification
Protocols (ENP) mechanism, which allows a coordinator component to ask for
the occurrence of an event in another component. This process is transparent
to the components to be coordinated. The notification can be asked for in a
synchronous and in an asynchronous way. The events for which notification
can be requested are the reception of a message (RM event), the beginning
of the processing of a message (BoP event), the end of the processing of a
message (EoP event) and the fact that the notifier has reached a particular
abstract state (SR event).

Each coordination component imposes a coordination pattern. Each co-
ordination pattern is structured as a set of roles. A role represents each of
the characters that can be played in a coordination pattern. Behaviour com-
ponents will have to adopt these roles in order to be coordinated. For each
role, coordination components specify the set of events required to specify the
desired coordination constraints.

There can be a functional component adopting several roles and roles
adopted by other coordinators defining a hierarchy of coordinators in this
way. The coordination components never make direct reference to the moni-
tored components. The binding between coordinators and components to be
coordinated is done at run-time via composition syntax.

2.2 Behavioural problems

The above example can be solved with CR coding a coordinator component
that serializes the execution of any pair of operations. Then, when the in-
stances of the Ticket Machine object and the Barrier object and the coordi-
nator have been created, the binding is made between the Give method and
the first operation of the coordinator, and the Rise method and the second
operation of the coordinator.

As the three components have been coded separately, with no references
between them, it cannot be anticipated whether the constraints imposed by
the coordinator will be coherent or not with the internal behaviour of the
objects. So, the global behaviour of the application will be unpredictable. For
example, it is supposed that in the car park application there is a third object
that, when the application is launched, tests everyday if the ticket machine and
the barrier work properly. With this purpose it sends Give and Rise messages,
respectively, provided that this object has been coded in order to test first the

4

barrier and then the ticket machine. Under these conditions, although nothing
has changed in the Ticket Machine or the Barrier components, a deadlock
occurs when they are bound to the coordinator, because the coordinator will
not allow the execution of Rise if Give has not been executed previously.

Moreover, even supposing that it has been demonstrated that the con-
straints of the coordinator are coherent with the behaviour of the objects
and, thus, that the application works correctly, nothing can be anticipated
if new coordination constraints are introduced or if the current coordination
constraints are changed.

These problems are detected in all the exogenous coordination models and
have been outlined by other authors [4, 8]. In the next section, the repre-
sentation of CR in Maude is presented in order to validate the coordinated
behaviour by executing the system specifications.

3 Maude specification of Coordinated Roles

In this section, the way in which the functional and coordination components
of CR are formally specified in Maude is presented. The coordination mech-
anisms defined by the coordination model must also be specified in Maude.
The Maude interpreter can execute the formal specification generated. In
this way, the execution of the formal representation allows the simulation of
the coordinated system, in order to be validated, detecting mismatches and
inconsistencies. Maude also provides trace and debugger mechanismes.

First, in this section, the Maude formal language and the motivations of
its use in this context are briefly outlined. Next, the correspondence between
CR and Maude is shown by means of the example previously presented.

3.1 Maude specifications

Maude is an executable algebraic language based on rewriting logic. The lan-
guage allows both functional and object-oriented specifications in a concurrent
and non-deterministic way. Maude specifications can be executed by means
of its rewrite engine, which facilitates its use for prototyping and for checking
the specification behaviour[9].

Maude is divided into two levels: Core Maude and Full Maude. Core
Maude contains the basic syntax of the language allowing the definition of
functional and system modules. Operations and equations can be defined in
both kinds of modules. In system modules, rewrite rules can also be defined.
The execution of specifications is performed by means of reducing terms by
equations and rewrite rules. Full Maude is developed on Core Maude, and
extends Maude with the necessary syntax to define object-oriented modules.
In these modules the rewrite rules are interpreted as state transition rules
of the object classes defined in them. Full Maude also provides the use of
parameterised modules. The parameterised modules take other modules as

5

arguments. The structure of the parameters is described by theories, repre-
senting the schema which the modules as arguments must adapt to. To bind
theories with specific modules to be passed as arguments, views are defined.
This mechanism is used to represent the correspondence of CR in Maude.

An important capability provided by the language is reflection[10]. Reflec-
tion allows the handling of terms and language constructions as arguments
in operations, and the increase in the syntax of the languages defining new
operations over language terms. In fact, Full Maude is defined in relation to
Core Maude making use of this capability. The definition of CoordMaude,
that is presented in the next section, has also been accomplished making use
of this capability. The clarity of the language, its wide range of application, its
executability and its reflection capability have been decisive to select Maude
as the formal language in our method.

3.2 Representing Coordinated Roles in Maude

In the introduction, it is mentioned that the approach can be adapted to the
use of any other exogenous coordination model. In order to achieve this, some
general rules must be observed:

• Both functional and coordination components are represented by specifica-
tion modules. In particular, specification modules representing coordination
components are parameterized, in which the parameters represent the co-
ordinated components.

• The use of theories will allows the coordinators to access the features of
coordinated components without making explicit reference to them. In this
way, the reusability of the coordinator modules is guaranteed.

• Views will be used to make the binding between the coordinator parameters
and the components to be coordinated.

• In order to implement the coordination constraints, rewriting rules are used
in the specification modules representing coordinator components. These
rewriting rules specify the dependencies between the operations performed
by the system.

In particular, the parallelism between the coordination mechanisms of CR and
the mechanisms of Maude used to specify them are shown in figure 1.

The objects to be coordinated are represented in Maude as object mod-
ules, and the coordinators are represented by means of parameterised modules,
where the parameters are defined by means of theories. The theories, in the
Maude representation, take the function of the roles in CR, that is, the syntac-
tical schema to be satisfied by the object modules representing the objects to
coordinate. The compositional syntax of CR allows the binding of each object
to coordinate with the roles declared in the coordinator. That is represented
in Maude, making use of views. Views associate specific object modules with
the abstract schema represented by the theories.

6

... ...

 RolObj
i

RolObjn

Coordinated Roles Maude

Coordinator

O
A

 OZ

...

Parameterized Module

TheoryObji TheoryObjn...

O
A OZ

 ...
Composition

Syntax
Composition

Syntax View Objn~OZView Obji~OA

Fig. 1. Correspondence between CR and Maude

To show how the different coordination mechanisms of CR can be specified
in Maude, the car park example is represented. Figure 2 shows the specifica-
tion of the Ticket-machine and Barrier objects, represented as object modules,
when

• The classes and messages of the respective objects are declared.

• The total-requestE, ACK-receivedE, total-requestB and ACK-receivedB at-
tributes are included in the class definition to represent the synchronization
mechanisms of the event notification.

• The conditional rules represent the behavior of both objects when receive
the Give and Rise messages respectively.

If the condition is satisfied and the object state matches the left side of the
rule, the transition will occur. Then the new object state will be represented
by the right side of the rule.

In figure 3, the theories OBJECT1 and OBJECT2 expressing the abstract
schema that the Ticket-machine and the Barrier must satisfy respectively are
defined. These theories correspond with the roles defined in the coordinator.

The coordinators in CR must specify the event notifications required re-
garding the objects adopting their roles. By means of rewrite rules, the dif-
ferent event notification protocols are specified in Maude. These rules ask
about and modify the attributes declared in the objects to represent such a
mechanism.

In particular, Receipt of a Message event (RM) needs three attributes to
have been declared for the object to be coordinated: message received, to-
tal request and ACK received. The Message received attribute informs the
coordinators that the object has received a message. The Total request at-
tribute indicates the number of coordinators requesting the event notification,

7

(omod TICKET-MACHINE is...

class ticket-machine | action : Qid, total-requestE : MachineInt,

ACK-receivedE : MachineInt, total-requestB : MachineInt,

ACK-receivedB : MachineInt .

msg give : Oid -> Msg .

...

crl[Give] : (give(M))

 < M : ticket-machine | action : ‘nil, total-requestE : N, ACK-receivedE : T >

=> < M : ticket-machine | action : ‘give, ACK-receivedE : 0 > if N = = T .

endom)

(omod BARRIER is ...

class barrier | action : Qid, total-requestB : MachineInt, ACK-receivedB : MachineInt .

msg Rise : Oid -> Msg .

...

crl[Rise] : (rise(B))

< B : barrier | action : ‘nil, total-requestB : N, ACK-receivedB : T >

=> < B : barrier | action : ‘rise, ACK-receivedB : 0 > if N = = T .

endom)

Fig. 2. Object module specifications of Car Park example

(oth OBJECT1 is...

 class Object1 | element : Qid, total-requestE : MachineInt,

 ACK-receivedE : MachineInt, total-requestB : MachineInt,

ACK-receivedB : MachineInt .

 msg MObj : Oid -> Msg .

endoth)

(oth OBJECT2 is...

 class Object2 | element : Qid, total-requestB : MachineInt,

ACK-receivedB : MachineInt .

 msg MObj2 : Oid -> Msg .

endoth)

Fig. 3. Theory specifications of Car Park example

and the ACK received attribute counts the number of coordinators that have
processed the event notification.

To specify Beginning of processing event (BoP), total request andACK received
attributes are required with the same purpose described above.

Three attributes: total request, ACK received and action are required to
specify End of processing event (EoP): Action attribute is used to register the
last message processed by the object. The rest of the attributes have the same
function explained in the two previous events.

Last, the State Reached event (SR) requires that the coordinated object
declare an attribute informing when the desirable state is obtained.

The coordinator in the example is represented as a parameterised mod-
ule in figure 4. The coordinator named SERIALIZER has two parameters (X
and Y), whose types are the OBJECT1 and OBJECT2 theories, respectively.
The purpose of this coordinator is to serialize the execution of the operation
of object X and the execution of an operation in object Y. With this purpose,

8

(omod SERIALIZER [X :: OBJECT1, Y :: OBJECT2] is ...

class serial [X, Y] | notificated : Bool, oper-executed? : Bool, list : QidList .

vars ...

crl [EoP1] : < S : serial[X, Y] | notificated : false, oper-executed? : false >

< M : Object1.X | element : Q , ACK-receivedE : N >

=> < S : serial[X, Y] | notificated : true >

< M : Object1.X | ACK-receivedE : N + 1 > if Q =/= ‘nil .

crl [EoP2] : < S : serial[X, Y] | notificated: true, oper-executed? : false >

< M : Object1.X | total-requestE : N, ACK-receivedE : T >

=> < S : serial[X, Y] | oper-executed? : true >

< M : Object1.X | ACK-receivedE : 0 > if N == T .

crl [Trace1] : < S : serial[X, Y] | oper-executed? : true , list : QL >

< M : Object1.X | element : Q >

=> < S : serial[X, Y] | notificated : false , list : QL Q >

< M : Object1.X | element : ‘nil > if Q =/= ‘nil .

rl [BoP] : < B : Object2.Y | element : ‘nil , ACK-receivedB : N >

< S : serial[X, Y] | oper-executed? : true , notificated : false >

=> < S : serial[X, Y] | oper-executed? : false >

< B : Object2.Y | ACK-receivedB : N + 1 > .

crl [Trace2] : < B : Object2.Y | element : Q >

< S : serial[X, Y] | list : QL >

=> < B : Object2.Y | element : ‘nil >

< S : serial[X, Y] | list : QL Q > if Q =/= ‘nil .

endom)

Fig. 4. Parameterised module representing coordinator in Car Park example

SERIALIZER asks about the asynchronous EoP event notification of the op-
eration in X and the synchronous BoP event notification of the operation in
Y. The execution of the operation in Y is only allowed if the notification of
the operation execution in X has been received. The rewrite rules labeled as
EoP1 and EoP2 specify the required protocol to the asynchronous notifica-
tion of EoP event. When this event is notified, in SERIALIZER module, the
operation-executed? attribute is modified. The protocol for the synchronous
notification of a BoP event is specified in the rewrite rule labeled BoP. Trace1
and Trace2 rules are used to keep in the list attribute the sequence of opera-
tions performed by the system.

The use of theories and views is the mechanism that establishes the binding
between the modules representing the coordinated objects, and the parame-
terised module representing the coordinator. In this way, the coordinator
module does not refer to the coordinated objects explicitly, getting trans-
parency in the coordination and making the reusability of the coordinated
objects and the coordination pattern easier.

Figure 5 shows Ticket-dispatch and Barrier views of the example. The
first one establishes the binding between the elements specified in TICKET-
MACHINE module and the elements specified in OBJECT1 theory. The
second one makes the same with the elements in BARRIER module and OB-
JECT2 theory.

9

(omod PROOF1 is

protecting SERIALIZER[Ticket-dispatch , Barrier] .

op init : -> Configuration .

var T : Oid .

eq init = < 'S : serial[Ticket-dispatch , Barrier] | notificated : false ,

oper-executed? : false , list : nil >

< 'B : barrier | action : 'nil , total-requestB : 1 , ACK-receivedB : 0 >

< 'M : tick-machine | action : 'nil , total-requestE : 1 , ACK-receivedE : 0,

total-requestB : 0 , ACK-receivedB : 0 >

 (give ('M) give ('M) rise('B) rise('B) give ('M) rise ('B) give ('M) rise ('B)) .

endom)

(rewrite init .)

Introduced module: PROOF1

rewrites: 239 in 120ms cpu (122ms real) (1991 rewrites/second)

rewrite in PROOF1 : init .

result Configuration :

 < 'B : barrier | accion : 'nil , total-requestB : 1 , ACK-receivedB : 0 >

 < 'M : tick-machine | action : 'nil , total-requestE : 1 , ACK-receivedE : 0,

total-requestB : 0 , ACK-receivedB : 0 >

 < 'S : serial[Ticket-dispatch , Barrier] | notificated : false , oper-executed? : false , list ::

('give 'rise 'give 'rise 'give 'rise 'give 'rise) >

Fig. 5. Views of Car Park example

An instantiation example is presented in PROOF1 module. In this mod-
ule, shown in figure 6, a coordinator object of serial class and specific objects
of ticket-machine class and barrier class are created. Init operation sets all
the objects to initial configuration and defines a set of messages to test the
coordinated behaviour of the system. The simulation of the system behaviour
is performed by rewriting the Init operation. The result shows the system
configuration after the execution of the messages and the list of messages pro-
cessed. Different test cases can be simulated modifying the set and sequence
of the messages to be performed by the system, in this way the system be-
haviour can be checked to detect inconsistencies and mismatches. If there are
messages that cannot be processed, they will show in the result, before the
system configuration.

3.3 Modifying coordination constraints

New components and coordination constraints can be added to the system
maintaining the above behaviour for the rest of system components. In order
to illustrate this feature, a new object and a new coordination constraint are
added to the Car Park example. The new constraint dictates that no cars
can access if the Car Park is full. To force this new constraint a traffic light
is added to the entry. The traffic light will not allow new cars to pass if the
car park is full. Moreover, if the traffic light is red new tickets will not be
produced.

In order to control that tickets are not given if the traffic light is red, the
new constraint must be added without interfering with the original behaviour

10

(view Ticket-dispatch from OBJECT1 to TICKET-MACHINE is

 class Object1 to tick-machine .

attr element . Object to action .

attr ACK-receivedB . Object to ACK-receivedB .

attr total-requestB . Object to total-requestB .

attr ACK-receivedE . Object to ACK-receivedE .

attr total-requestE . Object to total-requestE .

msg MObj to give .

endv)

(view Barrier from OBJECT2 to BARRIER is

class Object2 to barrier .

attr element . Object to action .

attr ACK-receivedB . Object to ACK-receivedB .

attr total-requestB . Object to total-requestB .

msg MObj2 to rise .

endv)

Fig. 6. Instantiation test in Car Park example

(omod SERIALIZER2[X :: OBJECT1, Y :: OBJECT2, Z :: IN-CONTROLER] is

protecting SERIALIZER[X, Y] .

class serial2[X, Y, Z] | lock : Bool .

subclass serial2[X, Y, Z] < serial[X, Y]

rl [SR1] : < S : serial2[X, Y, Z] | lock : true >

… (rules are not shown)

endom)

Fig. 7. Coordinator specification in Car Park with traffic light example

of the system. For this purpose, a new coordinator is specified. This co-
ordinator must inherit the behaviour of the previous coordinator and must
impose the new coordination constraint. The new coordinator represented as
SERIALIZER2 parameterised module is shown in figure 7 (the object module
corresponding to the traffic light and the theory and the view associated to it
are not shown, for brevity’s sake).

The new coordinator has a parameter representing the Z object of IN-
CONTROLER type. IN-CONTROLER is the theory representing the syntac-
tical schema that the traffic light specification (in this case) must adopt.

In SERIALIZER2, serial2 class is defined as a serial subclass from SERI-
ALIZER module. This new class declares an attribute named lock, to indicate
whether the Car Park cannot accept any car (where traffic light sets red and
the last car has crossed the barrier). Now, the coordinator allows the oper-
ation associated to X object, depending on the value of stop attribute of Z
object. New rules detect when the stop attribute modifies its value allowing
the execution of the operation associated to X.

In figure 8, PROOF2 module is shown. This module specifies a possible
initial configuration of the system and a set of operations. The test represented

11

(omod PROOF2 is ...

 protecting SERIALIZER2[Ticket-dispatch, Barrier, C-park-TL] .

op init2 : -> Configuration .

var T : Oid .

eq init2 = < 'S : serial2[Ticket-dispatch, Barrier, C-park-TL] | lock : false,

notificated : false , oper-executed? : false , list : nil >

< 'B : barrier | action : 'nil , total-requestB : 1 , ACK-receivedB : 0 >

< 'M : tick-machine | action : 'nil , total-requestE : 1 , ACK-receivedE : 0,

total-requestB : 1 , ACK-receivedB : 0 >

< 'P : traffic-light | action : 'nil , stop : false , capacity : 0 , max : 4 >

(in('P) give('M) rise('B)) in('P) give('M) rise('B) out ('P) in('P) in('P) ...

endom)

Fig. 8. Test specification to Car Park with Traffic Light example

here creates a new coordinator instance, of serial2 class, and the instances of
traffic-light, ticket-machine and barrier classes. The interaction between the
ticket machine and the barrier maintains the behaviour specified in SERIAL-
IZER, and the interaction between the traffic light and the ticket machine is
controlled, by the new rules specified in SERIALIZER2. Now, the operations
accepted by the system are: in and out from the traffic light, give from the
ticket machine and rise from the barrier.

4 CoordMaude

In the above section, the CR representation inMaude has been described. The
example used is very simple but expressive enough to show how complex and
obscure the system specification can become. The objects to be coordinated
and the coordinators must be specified. Moreover, each one of the events to be
notified must be expressed by means of rewrite rules, and theories and views
have to be created for each coordinated object. The specification obtained
is long and complex, and developers can be lost among all these mechanisms
used to establish the correspondence between CR andMaude. With the aim to
simplify this process and make the system specification easier to understand,
we have defined CoordMaude.

CoordMaude is a set of primitives developed in Maude, allowing the spec-
ification of the system by means of CR syntax. The primitives have been
defined making use of the reflection capability of Maude [10]. The mecha-
nisme has two step: the specification step and the instantiation step. In the
first, the objects to be coordinated, the coordinators and their roles are spec-
ified using the CR syntax. The result of applying the primitives provided by
CoordMaude is the representation of the system specification containing: the
object modules corresponding to the coordinated objects, the parameterised
modules corresponding to the coordinators with the events to be notified rep-
resented as rewrite rules, the theories corresponding to the roles defined in
the coordinators, and the views representing the compositional syntax of CR.

12

Class 'Ticket-Machine methods ['Give]

Oper 'Give = return 'Give ; .

Class 'Barrier methods ['Rise]

Oper 'Rise = return 'Rise ; .

Coord 'Serializer

Def Rol 'Obj1 methods 'MObj1 ; 'Obj2 methods 'MObj2 ;

Def Event Asyn EoP Event 'MObj1_Terminated for 'MObj1

Exec 'Termination_MObj1 ;

Syn BoP Event 'Request_MObj2 for 'MObj2

Constr 'MObj1_Processed? ;

Oper 'Termination_MObj1 = 'MObj1_Processed = 1 ;

Oper 'MObj1_Processed? =('Aux = 'MOjb1_Processed ;

('MObj1_Processed = 0 ; return 'Aux ;)) .

Fig. 9. CoordMaude specification of car park example

‘TM1 = ActiveObject ('Ticket-Machine) ,

‘B1 = ActiveObject ('Barrier)

('CarPark . AddObject ('TM1 to 'Obj1 with ('Give as 'MObj1))

 'CarPark. AddObject ('B1 to 'Obj2 with (('Rise as 'MObj2)))) .

Fig. 10. Instantiation of car park example in CoordMaude

All these modules are automatically generated. The system behaviour can
be simulated then, providing a configuration of object instances and a set of
operations to be executed, which will be reinterpreted.

In figure 9, the initial Car Park example is taken again, to show the Coord-
Maude specification of the objects to be coordinated, representing the ticket
machine and the barrier and the Serializer coordinator.

The interpretation of the Car Park CoordMaude specification generates:

• The object modules corresponding to the ticket machine and the barrier,
where the attributes needed for the coordination (explained in section ??)
are added to each object class automatically.

• The parameterised module representing the serializer, coordinating the above
objects.

• The theories corresponding to the parameters in the parameterised module,
representing the two roles imposed by the coordinator.

The second step of the mechanisme used by CoordMaude specifies the in-
stances of active objects and coordinators constituting the system configura-
tion. The views to bind the theories to the corresponding object modules are
generated in the instantiation step. An example of the system configuration
is shown in figure 10.

The CoordMaude example greatly simplifies the system specifications, adopt-
ing CR syntax. This facilitates the understanding of the specification, avoiding

13

handling the mechanisms provided to represent the system features formally
and reducing the system specification significantly..

Another advantage of this representation is that allows the changing of
coordination policies easily. Moreover, the specification can be executed, by
means of the Maude interpreter, simulating the system behaviour as the pre-
vious representation.

5 Related work

Although the approach explained in this work has chosen Maude as a formal
language, there are other similar algebraic specification languages. OBJ3[11]
has very similar features. In fact, Maude contains OBJ3 as a sublanguage
and can interpret OBJ3 modules. CafeOBJ[12] also has a lot of similarities to
Maude. Both of them support object oriented specification and rewriting logic.
However, Maude provides a good framework to use the reflection capability
that is the basis on which our approach is developed.

Some research work[4,8] has also detected the problem that this paper deals
with. The problem was observed in [4], although no adequate solution has been
suggested. In [8], the critical challenge faced by software developers when
trying to ascertain whether system components are correctly integrated is
highlighted, providing a method mainly focused on early detection of deadlock
situations.

The work presented in [13] must also be mentioned. In this work, active
systems are specified using LOTOS and SDL. The goal is to generate pro-
totypes of Java programs from specification modules. As is explained in the
next section our research group has automatic code generation as a common
goal.

Other approaches [14,15,16] also propose the animation or specification
execution to validate system behaviour, but need the translation of the spec-
ification to a programming language to be executed. That can provoke a lack
of precision and fidelity between both representations, due to the different ab-
straction levels of the languages [17]. The use of a formal language like Maude
allowing the execution of formal specification avoids that problem.

6 Future work

The method presented is part of an environment that we are developing to
specify cooperation systems with important coordination constraints, from
early stages in the software development process. Another part of this environ-
ment is a technique to describe, in a graphical way, the elements composing the
system and their dependency relations, which we have called IRDs (Interele-
ment Requirements Diagrams) [18]. These diagrams have a representation in
Maude. To guarantee that the detailed system specification is coherent with
the requirements expressed in the IRD of the system, an accordance checker

14

tool is developed in Maude, making use again of its reflection capability. To
facilitate the interaction between all parts in the environment being developed
and the developer’s task , our next objective is to generate automatically Co-
ordMaude specifications of the system from IRDs. In this way, the changes in
the composition and /or coordination policies of the system will be able to be
expressed dynamically in the different abstraction levels of the system spec-
ification. The whole environment is completed with the generation of Java
code.

7 Conclusions

This work explains a method to formally represent applications in cooperation
domains. Coordinated Roles is the coordination model adopted, because it
is an exogenous, transparent model, promoting the separation of functional
and coordination aspects. This allows the functional components and the
coordinated pattern to be reused, without a loss in expressiveness.

Maude is the formal language used to represent the coordination model
that may allow the execution of specifications and provide in this way a tech-
nique to validate the system specifications.

The system behaviour can be simulated then, defining different objects
configuring the system and different sequences of operations. This is especially
important in systems when the configuration of objects is variable along time,
and the dynamic change of coordination policies is required.

However, the handling of formal specifications is not a single task and
these specifications become long and complex. To avoid this disadvantage
and still maintain the specification execution advantage of using Maude lan-
guage, CoordMaude has been defined. This set of primitives, developed in the
same language that profits from the reflection capability of Maude, allows the
use of the simpler notation of CR, generating the whole Maude specification
automatically. This resulted in better understanding of the specifications and
greater easiness to make changes, together with the capability to execute the
specifications.

References

[1] Frolund. Coordinating Distributed Objects. An Actor-Based Approach to
Synchronization. The MIT Press. 1996.

[2] F. Arbab. What Do You Mean Coordination? Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI). March’98.

[3] J.M. Murillo, J. Hernández, F. Sánchez, L.A. Álvarez. Coordinated Roles:
Promoting Re-usability of Coordinated Active Objects using Event Notification
Protocols. 3rd Int. Conf. Coordination’99. LNCS 1594. Springer-Verlag. 1999.

15

[4] J.C. Cruz, S. Ducasse. A Group Based Approach for Coordinating Active
Objects. 3rd Int. Conf. Coordination’99. LNCS 1594. Springer-Verlag. 1999.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and J.
Quesada. Maude: Specification and Programming in Rewriting Logic. Computer
Science Laboratory. SRI International. March 1999.

[6] F. Arbab. The IWIM Model for Coordination of Concurrent Activities. 1st Int.
Conf. Coordination’96. LNCS 1061. Springer-Verlag. 1996.

[7] A. Gravell and P. Henderson. Executing Formal Specifications Need Not Be
Harmful. Software Engineering Journal vol. 11 no 2, 1996.

[8] P. Inverardi, A. Wolf and D. Yankelevich. Checking Assumptions in Component
Dynamics at the Architectural Level. 2nd Int. Conf. Coordination’97. LNCS
1282. Springer-Verlag. 1997.

[9] M. Sánchez-Alonso, J. L. Herrero, J. M. Murillo, J. Hernández. Guaranteeing
Coherent Software System when Composing Coordinating Systems. 4th Int.
Conf. COORDINATION’2000. LNCS 1906. 2000.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer.
Metalevel Computation in Maude. In Proc. 2nd Int. Workshop on Rewriting
Logic and its Applications, ENCS Elsevier Sciences, 1998.

[11] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi and J. P. Jouannaud.
Introducing OBJ. In Software Engineering with algebraic specification in action,
edited with Grant Malcolm, Kluwer, 2000.

[12] R. Diaconescu and K. Futatsugi CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, by,
Volume 6 of AMAST series in Computing, World Scientific, 1998.

[13] P. Poizat, C. Choppy and J. C. Royer. From Informal Requirements to COOP:
a Concurrent Automata Aproach. FM’99 World Congress on Formal Methods
in the Development of Computing Systems. LNCS 1709. Springer-Verlag. 1999.

[14] A.Grau. Computer-Aided Validation of Formal Conceptual Models PhD.
Thesis. Technischen Universität Braunschweig. March 2001.

[15] J.Kusch, P.Hartel, T.Hartmann and G.Saake. Gaining a Uniform View of
Different Integration Aspects in a Prototyping Environment. 6th Int. Conf. on
Database and Expert Systems Applications. LNCS 978 Springer-Verlag 1995.

[16] P. Letelier. Animación Automática de Especificaciones OASIS utilizando
Programación Lógica Concurrente. PhD. Thesis, UPV Valencia, 1999.

[17] I.J. Hayes and C.B. Jones. Specifications are not (necessarily) executableΓ. In
Software Engineering Journal Vol. 4 no6 pags: 320-338, 1989.

[18] M. Sánchez-Alonso and J. M. Murillo. Specifying Cooperation Environment
Requirements using Formal and Graphical Techniques. 5th. Workshop on
Requirements Engineering WER’2002, Valencia (Spain), November, 2002.

16

