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Abstract

The partial realization problem under consideration consists in finding, for a given se-
quences = (sk)

N−1
0 of blocks, matrices(A,E,B,C) of appropriate size such thatsi =

CEN−1−iAiB and the identity matrix is a linear combination ofA andE. We discuss the
question whether there is always a realization of this form for which the state space dimension
is equal to the maximal rank of the underlying Hankel matrices. We show that this question
has an affirmative answer if the block size is less than or equal to 2 and some other cases but
not in general. The paper strengthens results obtained by Manthey et al. [cf. W. Manthey, U.
Helmke, D. Hinrichsen, in: U. Helmke et al. (Eds.), Operators, Systems, and Linear Algebra,
Teubner, Stuttgart, 1997, pp. 138–156]. The main tools are the results of the authors obtained
in connection with Vandermonde factorization of block Hankel matrices. Finally, an interpre-
tation of the problem in periodic discrete-time systems is given. © 2000 Published by Elsevier
Science Inc. All rights reserved.
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1. Introduction

The minimal realization problem for linear, time-invariant, discrete-time systems
is to find, for a given sequence of blocks of complex numbers1 s = (sk)

∞
0 , a system

∗ Corresponding author.
E-mail address:georg@ncs.sci.kuniv.edu.kw (G. Heinig).

1 All considerations can be extended to matrices over an algebraically closed field.
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xk+1 = Axk + Buk
yk = Cxk

(k = 0,1 . . .) (1.1)

with minimal state space dimension, i.e., with minimal size ofA, such thatsk =
CAkB (k = 0,1, . . .). Note thats is the impulse response of the system. According
to Kalman’s theorem such a system exists if and only if the rank of the infinite block
Hankel matrixH = [si+j ] is finite and, moreover, the minimal state space dimension
is equal to the rank ofH.

The minimal partial realization problem is to find a system (1.1) with minimal
state space dimension from a finite sequences = (sk)

N−1
0 of blocks, i.e., a triple of

matrices(A,B,C)with minimal size such thatsk = CAkB for k = 0, . . . , N − 1. A
solution of the problem was presented by Kalman in [13,14] (see also [1,4,6,7,12]).
In the solution the block Hankel matrices

Hk(s) =


s0 · · · sk−1
...

...

sl−1 · · · sN−1


 (1.2)

(k + l = N + 1) play a significant role. They are the products of the observabili-
ty and controllability matrices col[CAi]l−1

i=0 and row[AjB]k−1
j=0. Therefore, the state

space dimensionn of a minimal partial realization satisfies the estimationn > ρ(s),
where

ρ(s) := max{rankHk(s): k = 1, . . . , N}. (1.3)

A natural question is whether equality can be achieved, as for the complete partial
realization problem. This is equivalent to the question whetherHk(s) has a rank
preserving extension to an infinite Hankel matrix. For some cases the answer is “yes”
but in general “no”. For example, fors = (0,0,1) the minimal state space dimension
equals 3 whereasρ(s) = 1.

It is natural to seek a possibility to fill the gap betweenρ(s) and the minimal state
space dimension. The first attempt in this direction was made, as far as we know,
by Manthey et al. [16]. In this paper it is proposed to consider the partial realization
problem for singular systems

Exk+1 = Axk + Buk
yk = Cxk

(k = 0,1, . . .), (1.4)

where (1.4) is assumed to be instandard form. The latter means that the identity ma-
trix is a linear combination ofA andE. In this case we have in particularAE = EA,
and det(sE − A) does not vanish identically. Systems of this form appear in con-
nection with two-point boundary-value descriptor systems and were studied in [17].
Another motivation to consider such systems arises from the matrix generalization
of the Waring problem for binary forms (see [10]).

However, let us point out that for singular systems (1.4) the blocksCEN−1−kAkB
cannot be simply interpreted as the impulse response of the system in the usual sense.
We show that, nevertheless, a system’s theoretic interpretation is possible as impulse
response of periodic systems.
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In [16], system (1.4) is calledgeneralized partial realizationof s = (sk)
N−1
0 if

sk = CEN−1−kAkB for k = 0, . . . , N − 1. The main result in [16] is thats has a
generalized partial realization with state space dimensionρ(s) if for certain k the
condition

rankHk(s) < min{k,N + 1 − k} (1.5)

is fulfilled. For the scalar casep = q = 1 this result gives an affirmative answer to
the question whether there exists a partial realization with dimensionρ(s). 2 How-
ever, in the block case condition (1.5) is very restrictive and the question is whether
it can be removed. The aim of the present paper is to discuss this problem.

The motivation in writing this paper was actually the observation that results on
canonical representation and affine Vandermonde factorization of block Hankel ma-
trices of the authors presented in [5] can be interpreted in the language of generalized
partial realization. The state space dimension of a minimal partial realization will be
characterized as the sum of all so-called “regular” degrees ofs. The regular degrees
can be obtained from the kernels of the matricesHk(s). From this general result we
conclude that a partial realization with state space dimensionρ(s) exists if

ρ(s) 6 N,

which is weaker than (1.5) but still a rather restrictive condition. But at least it comes
out that for 2× 2 blockssk there always exists a generalized partial realization with
state space dimensionρ(s). On the other hand, we show that for 2× 3 blocks this
fails to be true.

The paper is built as follows. In Section 2, we introduce some basic concepts on
singular systems. The material is taken mainly from [2,16]. The main observation is
that the general partial realization problem can be reduced to that one in the class
S(α) consisting of all systems withαE − A = ξIn for someξ ∈ C, ξ /= 0. In Sec-
tion 3, we discuss the Möbius transformations of systems (1.4), which are the main
tools to reduce the generalized partial realization problem for system (1.4) to the
classical one. It is shown that Möbius transformations of systems (1.4) are related to
Frobenius–Fischer transformations of the sequence of Markov parameterss. Some of
the results in these sections can be found similar to those in [15,16] (see also [9,15]).
In Section 4, we present shortly the approach of [8] for the solution of the classical
minimal partial realization problem in an appropriate form for us.

Using the results of Sections 3 and 4 we describe in Section 5 the general solution
of the minimal partial realization problem in the classS(α). The main results of
the paper are presented in Section 6. Section 7 is dedicated to the discussion on the
relation between partial realizations and Vandermonde factorization of block Hankel
matrices, and in Section 8 we give an interpretation of the quantitiesCEN−1−kAkB
in the framework of periodic systems.

2 Note that the scalar result follows also from some earlier results on canonical representations of
Hankel matrices. A discussion of this is provided in Section 7.
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2. Singular systems

Throughout this paper we consider quadruples of matricesR = (A,E,B,C),
whereA,E ∈ Cn×n, B ∈ Cn×q , C ∈ Cp×n, AE = EA and det(λE − A) does not
vanish identically. We will identify the quadrupleR with system (1.4). In case that
E = In the systemR will be calledregular.

We denote byσ(R) the set of allλ for whichλE − A is singular, and we include
λ = ∞ to σ(R) if E is singular.σ(R) is calledspectrumof R. The spectrum ofR
contains the set of the poles of the transfer function

FR(λ) = C(λE − A)−1B.

For a fixedN, the blocks

sk = CEN−1−kAkB (k = 0, . . . , N − 1)

will be calledN-Markov parametersof (1.4). If system (1.4) has theN-Markov pa-
rameterssk, then it is called (generalized)partial realizationof s = (sk)

N−1
0 andn

is said to be itsstate space dimension. If n is minimal, then the partial realization is
said to beminimal. The partial realizations by a regular system will be referred to as
regularor classical.

Let us point out that there is an essential difference between regular and general
singular systems (1.4). Two similar regular systems have the same Markov parame-
ters. This is not true for singular systems. Recall that two systems(A,E,B,C) and
(Ã, Ẽ, B̃, C̃) are said to beequivalentif there exist nonsingular matricesP andQ
such that

Ã = PAQ, Ẽ = PEQ, B̃ = PB, C̃ = CQ.

Two equivalent systems have the same transfer function and the same input–output
behavior.

For singular systems another type of equivalence, which was introduced in [16],
is important. Two systemsR = (A,E,B,C) andR = (Ã, Ẽ, B̃, C̃) are said to be
equivalent modulo N-scalingif there exist a nonsingular matrixS, numbersα andβ
such thatαE + βA is nonsingular and natural numbersk andl with k + l = N + 1
such that

Ã = S(αE + βA)−1AS−1, Ẽ = S(αE + βA)−1ES−1,

B̃ = S(αE + βA)k−1B, C̃ = C(αE + βA)l−1S−1.
(2.1)

Note that the two systems which are equivalent moduloN-scaling are not neces-
sarily equivalent. In fact, if (2.1) holds, then the transfer functions ofR̃ in terms of
(A,E,B,C) is given by

FR̃(λ) = C(αE + βA)N(λE − A)−1B,

which is different toFR(λ).
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The following can be easily checked (for details see [16]).

Proposition 1. If two systems are equivalent modulo N-scaling, then they have the
same N-Markov parameters.

For α ∈ C a system is said to be inα-standard formif αE − A = ξIn for some
ξ ∈ C, ξ /= 0. Systems withE = ξIn are said to be in∞-standard form. The class
of all systems (1.4),α-standard form, is denoted byS(α) (α ∈ C ∪ {∞}).

Proposition 2. A system(1.4) is equivalent modulo N-scaling to a system inα-
standard form for allα /∈ σ(R). More precisely, if R is given by(1.4) and α /∈
σ(R) ∪ {∞}, then the system(E(αE − A)−1, (A(αE − A)−1, B,C(αE − A)N−1)

is equivalent modulo N-scaling toR and is inα-standard form. If∞ /∈ σ(R), then
(In,AE

−1, B,CEN−1) is equivalent modulo N-scaling toR and is in∞-standard
form.

In view of Proposition 2 we may state the partial realization problem under con-
sideration in the following form.

Problem MPR(α). For givens, find all systemsR ∈ S(α) which are minimal par-
tial realizations ofs.

We are particularly interested in the minimal state space dimension. Let us denote
this dimension byd(α). It follows from Proposition 2 thatd(α) is a constantd for
all α ∈ C ∪ {∞} except for a finite setK. Forα ∈ K we haved(α) > d.

3. Möbius transformations

Throughout this section, let

φ =
[
a c

b d

]

be a nonsingular 2× 2 matrix. Then we will use the fact that the group GL(C2) of
these matrices is generated by the matrices[

a 0
0 1

]
,

[
1 0
b 1

]
,

[
0 1
1 0

]
. (3.1)

We associateφ with linear fractional function (Möbius transformation) on the
Riemann sphere,

φ(λ) = aλ+ b

cλ+ d
.

We have(φψ)(λ) = ψ(φ(λ)), whereφψ is the product of the two matrices.
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The matrix φ corresponds to the transformation of linear systemsR =
(A,E,B,C) defined by

R(φ) = (aA+ bE, cA+ dE,B,C). (3.2)

We callR(φ) theφ-Möbius transformedof R. It is easily checked that for two non-
singular matricesφ andψ

R(φψ) = (R(φ))(ψ). (3.3)

Proposition 3. The transformationR → R(φ) maps the classS(α) onto the class
S(φ(α)).

Proof. It is easily checked that forα ∈ C the relation

(aα + b)(cA+ dE)− (cα + d)(aA+ bE) = δ(αE − A)

holds whereδ = ad − bc. Now if α, φ(α) /= ∞ andαE − A = ξIn, then we obtain

φ(α)(cA+ dE)− (aA+ bE) = δξ

cα + d
In.

Hence,R(φ) ∈ S(φ(α)). In case thatφ(α) = ∞, α /= ∞, we havecα + d = 0 and

cA+ dE = δξ

aα + b
In.

Thus,R(φ) ∈ S(∞). Now let α = ∞, φ(α) /= ∞. Thenfφ(α) = a/c, and from
the relation

a(cA+ dE)− c(aA+ bE) = δE = δξIn

we conclude thatφ(∞)(cA+ dE)− (aA+ bE) ∈ S(φ(∞)). That meansR(φ) ∈
S(φ(α). For α = φ(α) = ∞ the assertion is obvious. Clearly, all transformations
are “onto”. �

We now show the transfer functions transfer via Möbius transformations.

Proposition 4. The transfer function of theφ-Möbius transformedR(φ) of R is
given by

FR(φ)(λ) = 1

a − cλ
FR
(
φ−1(λ)

)
(3.4)

or

FR(λ) = δ

cλ+ d
FR(φ)(φ(λ)), (3.5)

whereFR(λ) is the transfer function ofR.

Proof. We have

FR(λ)=C(λ(cA+ dE)− (aA+ bE))−1B
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=C((dλ− b)E − A(a − cλ))−1B

= 1

a − cλ
C

(
dλ− b

−cλ+ a
E − A

)−1

B.

In view of φ−1(λ) = (dλ− b)/(−cλ+ a) we get (3.4). Replacingλ by φ(λ) we
obtain (3.5). �

For fixedφ, letMq,m(φ) denote them×m block matrices withq × q block en-
tries such that thejth column equals the coefficient vector ofφ(λ)j (cλ+ d)m−1Iq .
The matrixMq,m(φ) generates the linear transformation in the space ofq-vector
polynomials with degree6m− 1 defined by

(Mq,n(φ)x)(λ) = x(φ(λ))(cλ+ d)m−1,

which will be identified with the matrix. Sinceq is always fixed we omit the subscript
q. If m = N , then we omit the subscriptm also. The transformations corresponding
toM(φ) will be calledFrobenius–Fischer transformations.3 For Frobenius–Fischer
transformations the relation

M(φψ) = M(φ)M(ψ) (3.6)

holds, whereφψ is the product of the two matrices. This impliesM(φ)−1 = M(φ−1).
Thus, the Frobenius–Fischer transformations form a group isometric to GL(C2).

For a given systemR, let markN(R) denote theN-Markov parameters written as
a block row matrix. Then the following proposition is crucial for the sequel.

Proposition 5. The Markov parameter of a systemR of form(1.4)and itsφ-Möbius
transformation are related according to

markN(R(φ)) = markN(R)M(φ).

Proof. In view of (3.6) and (3.3) it is sufficient to prove the proposition for genera-
tors (3.1). For these cases the assertion is immediately checked.�

4. Fundamental systems and classical partial realization

In this section, we describe shortly the solution of the classical realization prob-
lem in the form as it was presented in [8] and characterize thoses for which there
exists a regular realization with state space dimensionρ(s). Speaking about partial
realization in this section we always mean regular partial realizations. We consider

3 In [5,9], we called them alsoMöbius transformations. To distinguish them from the classical Möbius
transformations we prefer here the present notation, following [16] (see also [11]).
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the block Hankel matricesHk(s). LetHk denote the set of allq-vector polynomials
u(λ) of degree less thank for which the coefficient vector belongs to the kernel of
Hk(s). ThenHk ⊆ Hk+1 andλHk ⊆ Hk+1 for all k.

In [8] it is shown that there exists a system of nonnegative integersdi , i = 1, . . . , t ,
whereq 6 t 6 p + q, and a system of vector polynomialsui ∈ Hdi+1\Hdi (i =
1, . . . , t) such that the system

ui, λui, . . . , λ
k−di−1ui, (4.1)

wherei run over all indices withk > di , forms a basis ofHk (k = 1, . . . , N + 1).
The integersdi are uniquely determined bys. In case thatt < p + q we putdi =
N + 1 for i = t + 1, . . . , p + q. With this definition we have

p+q∑
i=1

di = (N + 1)p. (4.2)

The integersdi are called (right) characteristic degrees ofs. A system of vector
polynomialsui for which system (4.1) is a basis of the subspacesHk(s) is said to
be a (right) fundamental system ofs.

Fundamental systems can be constructed via recursionsN − 1 → N . This leads
to algorithms of Schur and Levinson type which are similar to the algorithms for
Hankel matrix inversion and have O(N2) complexity or less (see [1,7]).

The following proposition is not explicitly formulated in [8] but it follows imme-
diately from the results of this paper.

Proposition 6. Let {di} be the characteristic degrees ofs in nondecreasing order.
Then for all k satisfyingdq 6 k 6 dq+1

rankHk(s) = ρ(s) =
q∑
i=1

di.

Proof. Since a fundamental system generates bases for allHk according to (4.1)
we have

dim Hk =
∑
di6k

(k − di).

Fork satisfying our assumption we have, in particular,

dim Hk = qk −
q∑
i=1

di,

which implies rankHk(s) = ∑q

i=1 di .
It remains to show that the maximal rank is attained for thesek. Suppose that

αk = dim Hk andrk = rankHk(s). Since (4.1) is a basis ofHk we have

αk+1 − αk = #{j : dj 6 k},
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where #M means the number of elements inM. Hence,

rk+1 − rk = q − #{j : dj 6 k}.
From this relation we conclude that the maximal rank is achieved for allk satisfying
dq 6 k 6 dq+1. �

For the solution of the minimal partial realization problem two kinds of charac-
teristic degrees have to be distinguished. Letu ∈ Hk(s). Thenu is said to beproper
or regular at∞ if the leading coefficient ofu is nonzero, otherwiseimproper. In [8]
it is shown that there exists a fundamental system consisting of exactlyq proper and
6p improper vector polynomials. The characteristic degrees corresponding to the
proper polynomials are uniquely determined bys.

A fundamental system satisfying this condition will be calledcanonical(at ∞).
The characteristic degrees corresponding to the proper/improper elements are said to
be theproper/improper characteristic degrees.

In order to describe the relation between the concept of a fundamental system and
the partial realization problem we still need the concept of residual, which is defined
as follows. We denotes(λ) = ∑N−1

i=0 siλ
i . Suppose thatu(λ) = ∑d

i=0 uiλ
i ∈ Hd+1.

Then

s
(
λ−1)λ−1u(λ) = w(λ)+ λ−(N+1−d)β

(
λ−1),

wherew(λ) andβ(λ) are vector polynomials,w(λ) = ∑d−1
i=0 wiλ

i . The polynomial
w(λ) is calledresidualof u(λ) (at∞).

Let a canonical fundamental system ofs be given. From theq proper elements
we form aq × q matrix polynomialU0(λ). Let the characteristic degree of thejth
column bedj . Then we take all improper elements of this system the characteristic
degree of which does not exceed the largest proper degree (if there are any) and
form theq × r (0 6 r 6 p) matrix polynomialU1. Let the characteristic degree of
the ith column ofU1 be d ′

i . The p × q andp × r matrix polynomial formed by
the corresponding residuals will be denoted byW0 andW1, respectively. Then the
following is true (cf. [8]).4

Theorem 7. The general form of the transfer function of a minimal partial realiza-
tion ofsby a regular system is given by

F(λ) = (W0 +W ′Z)(U0 + U ′Z)−1,

whereZ = [zij ]r q
i=1 j=1 is an arbitrary r × q matrix polynomial the entrieszij of

which satisfy

degzij 6 dj − d ′
i

if dj > d ′
i , andzij = 0 otherwise. In particular, the dimension of the minimal partial

realization is equal to the sum of the proper characteristic degrees ofs.

4 Actually in [8] the theorem is formulated in a slightly different form.
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Corollary 8. There exists a regular partial realization ofs with state space dimen-
sionρ(s) if and only if the largest proper degree is less than or equal to the smallest
improper one.

The condition in Corollary 8 can also be formulated as a rank condition, as it was
done in [6]. For this we sets′ = (sk)

N−1
0 , i.e., s′ is obtained froms by cancelling

the last component. Then the largest proper degree is not larger than the smallest
improper degree if and only if

rankHk−1(s′) = rankHk(s)

for somek with rankHk(s) = ρ(s) (see [8]).
It can be checked that different choices ofZ in Theorem 7 will provide different

transfer functions. This follows from the fact that the matrix[
W0 W ′
U0 U ′

]
can be extended to a(p + q)× (p + q) unimodular matrix polynomial. Therefore,
the following is true.

Corollary 9. The transfer function of a minimal partial realization by ofs is unique
(which means the the partial realization is unique up to similarity) if and only if the
largest proper characteristic degree is smaller than the smallest improper one.

If s is such that the Hankel matrixHn(s) is nonsingular, then all characteristic
degrees ofsare equal ton. That means there exist infinitely many nonsimilar partial
realizations ofs by regular systems with state space dimensionρ(s), which is equal
to nq.

5. Minimal partial realization in S(α)

We now combine the results of Sections 3 and 4 to describe the solution of the
partial realization problem in the classS(α).

First we remember that it is well known that the two classical minimal realizations
(A1, B1, C1) and (A2, B2, C2) with the same transfer function are similar, which
means that there exists a nonsingular matrixssuch that

A2 = S−1A1S, B2 = S−1B, C2 = C1S.

We show that this is also true for realizations in the classS(α).

Proposition 10. Let Ri = (Ai, Ei, Bi, Ci) (i = 1,2) be two minimal partial real-
izations ofs in the classS(α) with the same transfer functions. Then there exists a
nonsingular matrix S andξ ∈ C, ξ /= 0, such that

A2 = ξS−1A1S, E2 = ξS−1E1S, B2 = ξS−1B, C2 = C1S.
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Proof. For the caseα = ∞ the assertion follows immediately from classical re-
alization theory. Forα /= ∞ we employ the Möbius transformation corresponding
to

φ =
[
0 1
1 −α

]
. (5.1)

Then we haveφ(α) = ∞ and, according to Proposition 3,R1(φ), R2(φ) ∈ S(∞).
Due to Proposition 4 the transfer functions ofR1(φ) andR2(φ) coincide. Suppose
thatRi (φ) = (Ãi, Ẽi, Bi, Ci). Since the assertion is true forα = ∞ there is a non-
singular matrixsandξ ∈ C such that

Ã2 = ξS−1Ã1S, Ẽ2 = ξS−1Ẽ1S, B2 = ξS−1B, C2 = C1S.

Transforming back we obtain the assertion.�

In view of Proposition 10 it remains to describe all transfer functions of solutions
of Problem MPR(α). For this we need the following proposition which can be found
in [5, Theorem 30].

Proposition 11. Let {u1, . . . , ut } be a fundamental system ofs = (sk)
N−1
0 and let

di (i = 1, . . . , t) be the corresponding characteristic degrees. Furthermore, letφ be
a nonsingular2 × 2 matrix. Then the vector polynomials

ũi = Mdi+1
(
φ−1)ui (i = 1, . . . , t)

form a fundamental system ofs(φ) = (s̃k)
N−1
0 , where

row(s̃k)
N−1
0 = row(sk)

N−1
0 M(φ). (5.2)

Furthermore, the characteristic degrees ofsands(φ) coincide.

A fundamental system is said to becanonical atα ∈ C if it contains exactlyq
elementsui for whichui(α) /= 0. The elements with this property will be calledα-
regular partand the corresponding characteristic degreesα-regular (characteristic)
degrees. As it is explained in [8] for the caseα = ∞, any canonical system can be
transformed into another canonical system which is canonical atα. Furthermore, the
α-regular part is linearly independent atα. This follows from the fact that the matrix
formed by the elements of a fundamental system has full rank for allλ.

In all what follows in this section we chooseφ according to (5.1),α ∈ C. Then

µ = φ(λ) = 1

λ− α
and φ−1(µ) = αµ+ 1

µ
.

In particular,φ(α) = ∞.
Let sbe given. We are going to construct all transfer functions for minimal partial

realizations ofs in the classS(α). For this we defines(φ) = (s̃0, . . . , s̃N−1) by (5.2)
ands̃(λ) by
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s̃(λ) =
N−1∑
k=0

s̃kλ
k.

It follows from Propositions 3 and 5 thatR is a partial realization ofs in the class
S(α) if and only if R(φ) is a realization ofs(φ) in the classS(∞). That means we
have to find the transfer functions for the classical realization ofsand transform back
with the help of Proposition 3.2.

Let {u1, . . . , ut } be a fundamental system fors which is canonical atα. Then
according to Proposition 11 a fundamental system fors(φ) is given by

ũi(µ) = (
Mdi+1

(
φ−1)ui)(µ) = ui

(
α + µ−1)µdi . (5.3)

The corresponding residual system̃wi(µ) is given by

s̃
(
µ−1)µ−1ũi(µ) = w̃i(µ)+ µ−di−N−1βi

(
µ−1),

whereβi(µ) are polynomials. In terms of the variableλ and and original fundamental
system this means

s̃(λ− α)ui(λ) = wi(λ)+ (λ− α)Nβi(λ− α). (5.4)

In order to apply Theorem 7 we form matricesŨ0, Ũ ′, W̃0, W̃ ′ as it is described
before in Theorem 7. Now the general form of a transfer function of all minimal
partial realizations ofs(φ) in the classS(∞) is given by

F̃ (µ) = (
W̃0 + W̃ ′Z̃

)(
Ũ0 + Ũ ′Z̃

)−1
,

where the entries of̃Z satisfy the conditions in Theorem 7.
Now according to Proposition 3.2 the general form of a transfer function of all

minimal partial realizations ofs in the classS(α) is given by

F(λ) = − 1

λ− α
F̃

(
1

λ− α

)
. (5.5)

The ith column ofŨ0 + Ũ ′Z̃ is given by

ũi(µ)+
r∑
k=1

z̃ik(µ)ũ
′
k(µ) = (λ− α)−di

(
ui(λ)+

r∑
k=1

zik(λ)u
′
k(λ)

)
,

wherezik(λ) = z̃ik((λ− α)−1)(λ− α)di−dk . Similarly, theith column ofW̃0 + W̃ ′Z̃
is equal to

(λ− α)−di+1

(
wi(λ)+

r∑
k=1

zik(λ)w
′
k(λ)

)
.

From this we see that the polynomialszik satisfy the same degree conditions as
z̃ik. Furthermore, the factors(λ− α)−di in the denominator,(λ− α)−di+1 in the
numerator, and the denominator in (5.5) cancel.

Now we are in a position to formulate the main result of this section. In order
to shorten its formulation we recall our construction and collect some notations. Let,
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for α ∈ C, a fundamental system which is canonical atα be given. From itsα-regular
part we form theq × q matrix polynomialU0(λ). Let the characteristic degree of the
jth column bedj . Then we take all elements not belonging to the regular part the
degree of which do not exceed the maximalα-regular degree and form from them a
q × r matrix polynomialU ′(λ) (0 6 r 6 t − q). Let the characteristic degree of the
ith column ofU1(λ) bed ′

i . The residual system is defined by (5.4). Thep × q and
p × r matrix polynomials formed by the corresponding residuals will be denoted by
W0(λ) andW ′(λ), respectively.

Theorem 12. The general form of the transfer function for a minimal partial real-
ization ofs in the classS(α) is given by

F(λ) = −(W0 +W ′Z)(U0 + U ′Z)−1,

whereZ = [zij ]r q

i=1 j=1 is an arbitrary matrix polynomial the entries of which satisfy
the conditions

degzij (λ) 6 dj − d ′
i

andzij (λ) = 0 if dj < d ′
i .

6. Main results

In this section, we discuss the original problem of the present paper: Does there
exist for any givens a system of form (1.4) with the dimensionρ(s)? We show that
the general answer is “no”. Furthermore, we show that under certain conditions the
answer is “yes”. These conditions are in particular fulfilled ifp, q 6 2.

For this we introduce first the concept of regular characteristic degrees of the
sequences. Let {u1, . . . , ut } be a fundamental system ofs anddi (i = 1, . . . , p +
q) be the corresponding characteristic degrees in nondecreasing order. Theregular
characteristic degreesd reg

i are defined recursively by:

1. d reg
1 = d1.

2. Suppose thatd reg
1 , . . . , d

reg
k are given andd reg

i = dli . Let i0 > lk be the smallest
integer for which the vectorui0(λ) is linearly independent onul1(λ), . . . , ulk (λ)
for at least one (which is the same as for almost all)λ ∈ C. Thend reg

k+1 = di0.

Since the matrix formed by a fundamental system has full rankq for all λ, there
are exactlyq regular degrees. Taking the general form of a fundamental system (see
[8, Theorem 2.2]) into account it can be easily verified that they are uniquely de-
termined bys, i.e., different fundamental systems give one and the same regular
degrees.
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It follows immediately from the definition that the regular degrees are theα-
regular degrees for allα except for a finite number ofα. Therefore, the following is
true.

Theorem 13. The minimal dimension of a partial realization(1.4)of a sequences
is equal to the sum of all regular degrees ofs.

Corollary 14. There exists a partial realization ofs of dimensionρ(s) if and only
if the largest regular degrees is smaller than or equal to the smallest nonregular
degree.

Corollary 15. The minimal partial realization ofs is unique up to equivalence mod-
ulo N-scaling if and only if the largest regular degree is smaller than the smallest
nonregular degree.

One may conjecture that the regular degrees are always the smallest ones. For
q = 1 this is true by definition. Forp = 1 this follows from duality of left and right
degrees (see [8]). This is also the case in some special situations, as it is shown in the
following, but it fails to be true for largerp andq. We recall an example from [5].

Example. Let s = (si)
4
0 be given bys0 = s4 = 0,

s1 =

1 0

0 1
0 0


 , s2 =


1 0

0 0
0 1


 , s3 =


0 0

0 1
0 0


 .

Then the block Hankel matrixH3(s) has only a trivial kernel whereasH4(s) has a
kernel spanned by the two vectors

[0,0,0,0,0,0,1,0]T and [1,0,−1,0,1,0,0,0]T.
Hence, the smallest characteristic degrees ared1 = d2 = 3 andd3 > 3. The corre-
sponding vector polynomials of the fundamental system are given by

u1(λ) =
[
λ3

0

]
and u2(λ) =

[
1 − λ+ λ2

0

]
.

The vectorsu1(λ) andu2(λ) are linearly dependent for allλ. Thus, the second regular
degree is larger than 3. In view of Theorem 13 this means thats does not possess a
partial realization of dimensionρ(s).

An example forp = q = 3 was given in [3]. Our main positive result is the
following.

Theorem 16. If ρ(s) 6 N, then there exists a partial realization ofs of dimension
ρ(s).
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The proof follows immediately from the following proposition proved in [5,
Lemma 39].

Proposition 17. Let the q smallest characteristic degreesdi (i = 1, . . . , q) of the
sequences = (sk)

N−1
0 satisfy the estimation

d1 + d2 + · · · + dq 6 N. (6.1)

Then theq × q matrix polynomial formed by the corresponding elements of the ca-
nonical system has a determinant not identically equal to0.

We now consider the special casep = q = 2.

Proposition 18. For p = q = 2 inequality(6.1)is always fulfilled unless alldi (i =
1,2,3,4) are equal.

Proof. In view of (4.2) we haved1 + d2 + d3 + d4 = 2(N + 1). If d1 + d2 > N ,
thend3 + d4 > N , and therefore,

∑4
i=1 di > 2(N + 1). Since actually equality holds

we conclude that in this cased1 = d2 = d3 = d4. �

If d1 = d2 = d3 = d4 = m, thens has a classical partial realization, according to
Corollary 8. In the other case we can apply Theorem 16. In this way we obtain the
following result.

Theorem 19. Let s be a sequence ofp × q blocks withp = q 6 2 or p = 1 or
q = 1. Then there exists a partial realization of dimensionρ(s).

7. Partial realization and canonical representations

We show in this section that the results presented above are closely related to
those in [5] concerning Vandermonde factorization of block Hankel matrices.

To explain this we introduce another “normal” form for systems (1.4). We will
say that (1.4) is inJordan formif E andA have the form

E =
[
J0 0
0 Iν

]
, A =

[
Iν0 0
0 J

]
, (7.1)

whereJ0 is nilpotent andJ is a Jordan matrix, i.e., a direct sum of Jordan blocks.

Proposition 20. For any system(1.4) there exists a system in Jordan form with the
same N-Markov parameters for any N.

Proof. According to Proposition 2 system (1.4) is equivalent moduloN-scaling to
a system inα-standard form for almost allα. We fix such anα. ThenA = αE − In.
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Let J̃ be the Jordan normal form ofE. Then (1.4) is equivalent moduloN-scaling
to a systemR = (J̃ , αJ̃ − In, ∗, ∗). Now J̃ can be represented as direct sumJ̃ =
E0 ⊕E1, whereE0 is nilpotent andE1 is nonsingular. Hence,R is the direct sum of
systemsR0 = (E0, A0, ∗, ∗) andR1 = (E1, A1, ∗, ∗), whereAk = αEk − Iνk (k =
0,1). SinceA0 andE1 are nonsingular,R0 andR1 are equivalent moduloN-scaling
to (E0A

−1
0 , Iν0, ∗, ∗) and(Iν, E

−1
1 A1, ∗, ∗), respectively. It remains now to take the

Jordan form of the matricesE0A
−1
0 andE−1

1 A1 and to use the fact thatE0A
−1
0

is nilpotent to get equivalent moduloN-scaling systems of the form(J0, Iν , ∗, ∗)
and(In0, J, ∗, ∗), respectively. By Proposition 1 these systems are alsoN-Markov
equivalent. Hence, their direct sum isN-Markov equivalent to the original system
(1.4) and the proposition is proved.�

Let (A,E,B,C) be a partial realization in Jordan form (7.1) whereJ = diag(Ji)r1
andJi are Jordan blocks,C = row(Ci)r0, B = col(Bi)r0. Then

sk = CEN−1−kAkB = C0J
N−1−k
0 B0 +

r∑
i=1

CiJ
k
i Bi .

If given blocks sk (k = 0, . . . , N − 1) can be represented in this form, then it
is calledcanonical representationof the sequences = (sk)

N−1
0 . The state space

dimension of the system is just equal to what is called the rank of the canonical
representation.

A canonical representation ofs is equivalent to a representation of the block
Hankel matrix as a product of a (affine) Vandermonde, a transpose Vandermonde
matrix, and a block diagonal matrix in between.

Vice versa, if a canonical representation is given, this gives immediately a partial
realization of a possibly singular system in Jordan form. So the problems discussed
in [5] and here are actually equivalent. Furthermore, the existence of a canonical
representation with rankρ(s) for the scalar case is well known (see [9, Part I, Chapter
8]). In this sense the scalar case for the partial realization problem considered here
was known before.

8. Realization of discrete-time periodic systems

In this section, we assume that the blockssk are square and show that in this case
theN-Markov parameters can be interpreted in the framework ofN-periodic systems.
We consider systems given by (1.4) withAE = EA in which the time variablek
belongs to the cyclic groupZN . Introducing the vectorsu = (uk)

N−1
0 , x = (xk)

N−1
0 ,

y = (yk)
N−1
0 , (1.4) can be written in the form

M(A,E)x = diag(B, . . . , B)u,

y = diag(C, . . . , C)x,
(8.1)
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where

M(A,E) =




−A E 0
−A E

. . .
. . .

−A E

E −A


 .

Note thatM(A,E) is a block circulant matrix. The input defines the output
uniquely if and only if the matrixM(A,E) is nonsingular. This is equivalent to the
nonsingularity ofEN − AN or, what is the same, to det(ωE − A) /= 0 on the group
TN of all Nth unit roots. We assume that this is the case.

The inverse ofM(A,E) must be again a block circulant matrix. It is easily
checked that actually

M(A,E)−1 = D



AN−1 AN−2E · · · EN−1

EN−1 AN−1 · · · AEN−2

...
. . .

. . .
AN−2E AN−3E2 · · · AN−1


 ,

where

D = diag

((
EN − AN

)−1
, . . . ,

(
EN − AN

)−1
)
.

Thus, the input–output relation can be described by

y = Su,

whereS is the block circulant matrix

S =



sN−1 sN−2 · · · s0
s0 sN−1 · · · s1
...

. . .
. . .

sN−2 sN−3 · · · sN−1




with

sk = C̃AkEN−1−kB, C̃ = C
(
EN − AN

)−1
.

In particular, the output for the input(0, . . . ,0, Iq ) is just a sequence(C̃ENB, C̃
EN−1AB, . . . , C̃ANB), that means the sequence ofN-Markov parameters.

The following problem is now natural.

Minimal realization problem for periodic systems. Let a sequence ofq × q

blocks (s0, . . . , sN−1) be given such that the matrixS is nonsingular. Find anN-
periodic system (1.4) withAE = EA and minimal state space dimension such that

sk = C
(
EN − AN

)−1
AkEN−k−1B (k = 0, . . . , N − 1).
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Note that the nonsingularity ofS is equivalent to the nonsingularity ofs0 +
s1ω + · · · + sN−1ω

N−1 for ω ∈ TN and also to the nonsingularity ofEN − AN .
Let us also recall that we may assume that the system is in standard form. In fact,

let any realization be given. We define

A0 = (αE + βA)−1A, E0 = (αE + βA)−1E,

whereα andβ are such thatαE + βA is nonsingular. Then

sk = C(αE + βA)−1(EN0 − AN0 )A
k
0E

N−1−k
0 B.

Thus, replacingC byC(αE + βA)−1 we obtain a realization in standard form. That
means the results of the previous sections can be applied.
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