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Certain sign equivalence classes of n-dimensional nonlinear dynamical systems
cofrespond to n-vertex hypergraphs. The global stability of some such dynamical
systems can be guaranteed if the associated hypergraphs have a simplicity of
structure and meet certain quantitative path product conditions. A purely algebraic
version of the same problem can be described as follows. Suppose we are given
a rectangular matrix pattern of signs; each entry in the matrix is +, —, or 0.
For every real matrix x of the same sign pattern, is there a real vector A, each
component of which is positive, such that x-4=07? This paper presents graph
theoretic sufficient conditions on a hypergraph generated from the sign pattern
of k which guarantee the existence of 4. For x with more highly connected hyper-
graphs, this paper also presents sufficient qualitative conditions on the sign pattern
of x and certain quantitative conditions on sums of hypergraph path products
which together guarantee the existence of 4. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

Relations between two mathematical objects are studied in this paper,
the first of which is an n-dimensional (n>2) real dynamical system. Let
{¢,} be a nonempty collection of M of the multiproducts x,x,, x,x;, ...,
Xy 1 X X1 X2X5, e X X,0-X, {s0 1<m<2"—n—1). The dynamical
system we have in mind is

M 3
( 1
dejdt=—x,+ Y h‘,,';@, (1)
Uy
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where [k} is an M x n matrix of real constants, positive, negative, or zero.
Clearly any two such #-dimensional systems with the same {¢,} and with
coefficients {x,} and {k,} which are pairwise of the same sign can be
defined to be members of an equivalence class of dynamical systems; we
call all such systems so related to a given system (1) the sign equivalence
class of the system.

An example of (1) with n=5and M =3 1is ¢, =x,x,x;5, ¢, =X, X504 X5,
¢y=x,x, and

dy,/dt= —x, + x,X;

dx,fdt = — X, — X | Xy~ X X4X5— X4

dxsjdt = —x3—x,x5 (2)
dx,jdt = —x,+ x x84 x5

dxg/di = —Xxs.

Here
I -t -1 0 0
k=0 -1 0 1 0
-1 0 1 ¢

The results in this paper can be used to show that every trajectory for (2)
asymptotically approaches the origin 0 of five-space as t — + oc, that is, 0
is a global attractor trajectory for (2). Furthermore, for any other five-
dimensional dynamical system occurring in the same sign equivalence class,
0 is also a global attractor trajectory provided K,4+ (—K14/K3,) K3 =0.
We mention that k., + (—K&34/K3,) K5, is an example of a sum of path
products, to be explained below.

The second mathematical object 1s a hypergraph H with the following
types of components. The hypergraph has n vertices labelled {v,, v,, .., v, }.
The barycenters {b,, b,, .., b, } of H are subsets of at least two vertices,
each thought of as corresponding to an element of {¢,}. We allow the
trivial possibilities that the hypergraph consists of one vertex only or one
barycenter only. Graphically each barycenter (open circle) is joined to its
p =2 vertices (filled circles) by p edges (line segments); p is the degree of
the barycenter. This object is associated with (1) as follows. Each ¢,
corresponds to a barycenter connected by edges to the vertices having the
same indices as the variables in ¢,. For example, if ¢, =x,x,x;, then
barycenter 1 is connected by edges to vertices v,, v,, v,. Given x ,, the edge
between the barycenter 1 and vertex i is given the same sign and is called
signed. A barycenter with at least one “ + ™ edge and at least one “ — " edge
is said to have mixed sign.



HYPERGRAPHS, K - A = (), AND VOLTERRA MULT 169

As an example, the hypergraph we wish to associate with (2) is shown
in Fig 1.

Our goal is to produce sufficient qualitative conditions on the sign
pattern of x and quantitative conditions on products of certain entries
in k which imply the stability of the origin 0 (making 0 a global attractor
trajectory). The present work, in treating systems with hypergraphs with as
many signed edges as that in Fig. 1, extends results in [1].

Furthermore, there is a curious relationship between the conditions of
the present paper which are used to drive every trajectory to the origin and
the conditions of [JvdD] which are used to drive every trajectory to one
of several constant trajectories, each with components + 1. Here heavy use
is made of the mixed sign condition; in [JvdD7] barycenters having every
edge of the same sign are exploited.

The special case of (1) in which each {¢,} is the set of all n(n—1)/2
products of distinct pairs of components of x is, of course, a linear
dynamical system

n
dejdt=—x,+ Y a,x;, (3)
o
where {a;} is an nxn matrix with zero diagonal entries. The stability
of (3) can be established by the existence of »n positive constants
{Af, A3, .., A, called Volterra multipliers. That is, if {4,;} can be chosen so
that {4,4,} is a skew symmetric matrix, then the derivative of the positive
definite function

A=

-

"

2
Z Ax;
i=1

n n

n
dajdi=% —ixl+ 5 xi(day)x,=) —ixl
i=1 if=1 i=1
iy

F16. 1. The hypergraph associated with the dynamical system (2) and other systems of
the sign equivalence class. Note that the product +x,.x,xs occurs in dx,/dr (hence the +
edge between ry and b,) but no v, x,x, term occurs in dvs/dt (hence the 0 edge between
ve and b,).
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Thus A is a natural Lyapunov function for (3) with respect to the constant
trajectory 0 [H). More precisely, we say 0 is an attractor trajectory for a
system of the form (1) provided that for any x(0) and any &> O there exists
a time interval T such that > T implies |x{r) — 0| <¢&; T must depend only
on ¢ and the distance from x(0) to 0. The existence of a Lyapunov function
such as A (positive definite, unbounded along rays from the origin, and
differentiable with negative derivative along all trajectories except 0)
implies 0 is an attractor trajectory.

As a clear generalization, 0 is an attractor trajectory for a system of the
form (1) if positive numbers {4, 4,, .., 4,,} exist satisfying

Z Ku';tlzo (4)

for each 1=1, .., M. Such constants {4,} we also call Voirerra multipliers
for the system (1) or corresponding hypergraph. Thus, given (1), this paper
amounts to a specification of qualitative conditions on a hypergraph
structure derived from {@,} and signs of {k;} and guantitative conditions
on path products derived from certain {x,}; these conditions insure the
positive solvability of k-4=0 and so the stability of 0 as a constant
trajectory of {1).
So-called neural network models of the form

dx,/dt =k (1;— x;) + p,(g(x))

appear in [JvdD], where &, and /, are positive constants and each p, is a
continuously differentable function of {g;}, i=1, 2, .., n. In turn, each g, is
a function of x; described as follows. Use is made of some positive ¢ <0.5
with respect to which g, (x;)=0if x,< —¢; gi(x;)=11if x,>¢; and g,(x,)=
{x;+¢&)/(2¢) for —e < x; <& Thus each g, is a ramp function. In order to
guarantee that almost all neural network trajectories asymptotically
approach one of several “memories” (constant trajectories with com-
ponents + 1), all edges connected to each barycenter are required to be of
the same sign. Use is made of a balanced loop condition so that another
type of Volterra multipliers exists.

2. PATHS IN HYPERGRAPHS

Suppose in a hypergraph H constructed as above that there exist g > 1
distinct vertices {v,,..v,}; ¢ distinct barycenters {f,,..,b,} and 2¢—1
distinct nonzero edges {e(, e,, ... e,, |} with e, connecting v, and 5,, e,
connecting b, and v,, and so on. We call such a triple set a path from v,
to p,. H is called connected if there is a path from any vertex to any
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barycenter (so the hypergraph in Fig. 1 is not connected because there is
no path from vs to b,). Each maximal connected subset of H is called a
component. If {r;} are in order the real numbers (entries in {x,})
associated with the 2¢ — 1 edges in a path from v, to b, then we define the
path product of the path to be (—r/ro)(—r3/ry) - (=ray_3/raq 2)Nra, 1)

As an example, the path from v, to b, in the Fig. | hypergraph involves
(in order) vertices {v;,v,,v,}, barycenters {b,, by, b,}, and associated
edges signed —, —, —, +, +; the path product is negative.

Suppose between vertex v, and barycenter b, are two distinct paths with
no common intermediate vertices or barycenters. Then the set of all vertices
(p=2 distinct vertices), barycenters, and edges in the union of the two
paths is a p-cycle. From a p-cycle as a set of hypergraph elements can arise
p? pairs of paths. Examples of p-cycles are shown in Fig. 2.

Suppose a hypergraph contains a p-cycle with all barycenters of
degree 2. Consider the two associated paths from vertex v, in the cycle to
barycenter b, in the cycle. If the absolute values of the two path products
are equal, then we cail the p-cycle balanced. Clearly this definition is
independent of the choice of the pair of paths. A connected hypergraph
without p-cycles is called a tree.

As used by Volterra and many others [JvdD, M, RZ], linear Volterra
multipliers can be found for (3) satisfying A.a;= —A;a; (the special linear
case of (4)) provided:

(¢) {i#jand a;#0} imply a,a;<0;

(B) for any p >3 distinct indices {i,, i, .., 1,}

la;,,a5 ai,,ill = Ia.',i,, e ai;i;aizill'
+ - _ -
O
=)
+ * -
S
(r " . O— L3 "
- +

Fic. 2. A hypergraph with one 2-cycle, two 3-cycles, a 4-cycle, a S-cycle, and a 6-cycle.

505-105/1-12
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In the context of our hypergraph approach, these conditions on (3)
amount fo:

(a') every barycenter is of mixed sign (and has degree 2);

(') every p-cycle with p >3 is balanced.

3. VOLTERRA MULTIPLIERS FOR SPECIAL HYPERGRAPHS

We now are in a position to develop conditions sufficient to solve (4).
This section contains three little lemmas which set the stage for a fairly
general set of conditions.

LEmma 1 (The Linear Case). Suppose only edges signed + or — occur
in a connected hypergraph H derived from (3). Suppose each barycenter is of
mixed sign (and degree 2). Then the system admits Volterra multipliers iff all
cycles are balanced.

Proof. Without loss of generality let us choose labels so a,,a,, <0. Let
A;=1. Then A1, must be (—a,,/a,)4,, a positive constant. If as well
a,3a;, <0, then 4, must be (—a,;/a;,) A,. Suppose a,ya;, <0. Tt follows
that A, must equal (—a,;/a,,) 4,; this additional condition is solvable
precisely because |a,,| - |a,3| - las| = |aysl - |a5;] - [, ], the balanced cycle or
equal path product condition.

Figure 3 contains a general (p + g)-cycle in which every barycenter is of
degree 2; for the sake of clarity we omit any edges between shown vertices
and barycenters not in the cycle.

Let r, denote the real number in {a,} associated with edge e,. Note that
in Fig. 3 there are two types of paths starting at v, and including v,
namely the paths proceeding clockwise and counterclockwise. Using the

FiG. 3. A typical (p+ ¢q)-cycle of barycenters of degree 2. Auxiliary edges from shown
vertices are omitted.
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labels in Fig. 3 and specifying 4, to be any positive number, we are led to
two values for 4, corresponding to the two path types. Due to the mixed
sign condition, any such A, is positive. The balanced path condition
is algebraically equivalent to A,=(—r,, 3/ry,_,)---(—r,/ry) 4, and
Ap=(—Tops2g/T2ps2g—1) - (—ry/ra, 1) A,. Clearly the two specifications
of 4, are equal iff the balanced cycle condition is satisfied, that is,
(=ri/ro)(~r3fre) - (~=ry 2, 1/T23p+2,)=1. Stating this condition in
terms of the sum of the two path products from v, to b,, we have

(—rl/rZ)(—rS/rtt)"'(_er»S/r2p~2)r2p~l +(_r2p+2q/r2[l+24~l)".r2p=0'

Q.ED.

Now consider a general connected hypergraph. Lemma 1 implies that
within a maximal block of barycenters of degree 2 and associated vertices,
the balanced loop condition guarantees that specification of any A value
propagates consistently through the block; of course, the same A values
might or might not satisfy other row equations (involving rows of x with
three or more nonzero components) in (4).

LEMMA 2 (The Acyclic Nonlinear Case [J]). Suppose H is connected
and no cycles occur in H, that is, H is a tree. Suppose all edges in H are
signed. Then the system admits Volterra multipliers iff all barycenters are of
mixed sign.

Proof. Clearly Volterra multipliers can exist only if every barycenter is
of mixed sign. So suppose every barycenter is of mixed sign. As a typical
case, suppose that barycenter b, is connected by “+” signed edges to
vertices v, .., t, and “ —” signed edges to vertices v, ;, .., v,,,. Let 4, be
any positive number and set 4, =4, = .-- = 4,. Certainly we may choose
positive numbers 4, y, ..., 4,,, 50 that

K:lll + .- +K:p}‘p+xxp+l"{p+l+ +K1p+qip+tl=0'

Since all barycenters are of mixed sign, this procedure extends throughout
H to specify all {4,}. Since no cycles occur, redundant specifications do not
arise. Q.E.D.

Suppose a hypergraph consists of p vertices, p barycenters of degree 2,
and 2p edges arranged in a p-cycle, plus a central barycenter b of degree
p and its associated p edges. Suppose all barycenters are of mixed sign. We
refer to such a hypergraph as a wagon wheel. A typical wagon wheel is
shown in Fig. 4.

LEMMA 3 (The Wagon Wheel). Suppose a hypergraph consists of a
wagon wheel. Choose a vertex v, at random. Select p distinct path products
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FiG. 4. A typical wagon wheel hypergraph with central barycenter b and vertex v,.

from v, to b, no two having the same last vertex (so all p vertices appear as
last vertices). Then the system admits Volterra multipliers iff the rim p-cycle
is balanced and the sum of the p distinct path products from v, to b is zero.

Proof. Let A,=1. Equations in (4) corresponding to barycenters of
degree 2 have exactly two nonzero terms, and as in Lemma | we can use
these equations to determine all of {4,, 4;,..,4,}. This can be done
without contradiction iff the rim p-cycle is balanced. In the equation in
(4) corresponding to the central barycenter b we can write each 4; as a
multiple of 1, using the path products (due to the balanced cycle condition,
it does not matter whether we use clockwise or counterclockwise paths).
Thereafter the equation corresponding to b reduces to: zero equals 4, times
the sum of the path products from v, to b. Since 4, is positive this equation
can be solved iff the sum of the path products is zero. Q.ED.

Note that Lemma 2 is purely qualitative while Lemmas 1 and 3 are
a mixture of qualitative and quantitative conditions on {x,}. Roughly
speaking, given a hypergraph satisfying the qualitative conditions with
arbitrary {«,} values, the quantitative conditions can be met by adjusting
the magnitudes of a smalil fraction of the nonzero entries in {k,}. For
example, in the wagon wheel at most two such adjustments are needed.

4. CONDENSATION OF HYPERGRAPHS
Standing hypotheses for this section are that every barycenter of H is of

mixed sign and that every cycle containing only barycenters of degree 2 is
balanced.



HYPERGRAPHS, K - A =0, AND VOLTERRA MULT 175

FiG. 5. The condensation of the hypergraph in Fig. 1, assuming that the 2-cycle in Fig. 1
is balanced. Vertex vy, highlighted by a square, replaces the block in Fig. 1.

Let us define a block of vertices in a hypergraph H to be a maximal sub-
set of vertices interconnected by paths using only barycenters of degree 2,
including such paths which are parts of cycles. (We allow the possibility
that the same vertices are otherwise interconnected with other barycenters.)
We define the condensation C(H) of H to be a new hypergraph generated
as follows. Edges signed 0 are deleted in C(H). Each block (possibly
consisting of a single vertex) becomes a vertex identified with a randomly
chosen vertex in the block. All barycenters of degree >2 are retained. If
one barycenter of degree >2 is connected by g edges to g vertices in a
block, then those g edges are replaced by one new edge; the value of the
new edge is the sum of the path products of ¢ paths from the chosen vertex
to the barycenter, each having a unique last vertex among the g vertices.
Of course, if all g path products have the same sign, then the sign of
the resulting edge in the condensed hypergraph is so determined. If the
sum of the g path products is 0, then no edge is drawn from the vertex

FIG. 6. A hypergraph before condensation.
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Fic. 7. The condensation of the hypergraph in Fig. 6. The signs of ? edges must be deter-
mined by quantitative evaluation of associated sums of path products. If both ? edges are —,
then this hypergraph is a tree and all barycenters are of mixed sign.

representing the block to the barycenter. The fact that every barycenter of
degree 2 is of mixed sign implies that the sign of the resulting edge in the
condensed hypergraph is independent of which vertex serves as chosen
vertex in the block. Condensation can be applied nontrivially more than
once to some hypergraphs, but after a finite number of condensations,
condensation becomes the identity operator.

Let us consider the condensation of the hypergraph in Fig. 1. Assuming
the 2-cycle involving vertices v,, v, and barycenters b,, b, is balanced, one
condensation produces the hypergraph in Fig. 5. Further condensation is
the identity operator.

A more elaborate example is shown in Figs. 6 and 7.

Suppose in the wagon wheel hypergraph the rim p-cycle is balanced
and the sum of p path products with distinct last vertices (as in Lemma 3)
from any vertex to the central barycenter is 0. The condensation of such a
hypergraph is simply one barycenter, one vertex (a block), and no edges.

Using the notions in the above lemmas, we easily deduce the following
theorem.

FiG. 8. A hypergraph before condensation.
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THEOREM. Suppose every barycenter of H is of mixed sign and that every
cycle containing only barycenters of degree 2 is balanced. Suppose repeated
condensations of a hypergraph (until condensation becomes the identity
operator) lead to a hypergraph each component of which is a tree. If every
barycenter in the condensed hypergraph is of mixed sign or is attached to no
vertices, then the corresponding system (4) has Volterra multipliers. The
corresponding dynamical system (1) has O as a global attractor trajectory.

Proof. Volterra multipliers exist for the condensed hypergraph by
virtue of Lemma 2. Each value of 1 for the chosen vertex in a vertex block
can be expanded to generate A values for all vertices in the block without
contradiction by virtue of the balanced cycle condition and the sum of path
products condition. Note paths with edges signed 0 do not contribute to
such sums. Repetition of this procedure secures all A values for the original
hypergraph. Q.E.D.

A more intricate hypergraph which can be condensed is shown in Fig, 8
(see also Fig. 9).
As an example, a dynamical system corresponding to the hypergraph in
Fig. 8 is
dx Jdi= —Xx;+ X34+ X, X3X4X5XcXq
de/d[ = —.Xz - .xl
dx/dl = — X3 — X X3X4X5X¢X7— X34

dX4/dt= —X4+x:4_x$

dxs/dt = —X5— X | X3X3X4XeX7+ X5 — X4XeXg+ X+ XgX7XgX 10X ]
dxg/dl = —Xe— X | X3X3X3X5X7— X3XsXg— X5+ X5X7X9X 10X} — X7
dx,/dt = — X7+ XXX X 10X, + X6

dxg/dt = — x5+ x4%5%4

dxsfdt = —xg— X5X6X7X19X 1y

dxofdt = — X0+ XsXcX7Xg X1y + X1

dx /dt = —X| + XsXgX7XgX 10— X 0.

The theorem implies that 0 is a global attractor trajectory for this system.
One set of Volterra multipliers is 4,=4,=1, A;=4;,=A;=414=4,=1/3,
Ag=2/3, Ag=3, A;0=4, = 1. However, the theorem also implies that any
system in the same sign equivalence class likewise has 0 as global attractor
(and generally different Volterra multipliers).

It can be said that the above results are weak in the sense that they say
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+ 'F"]'C*’@

F1G. 9. The result of one condensation of the hypergraph in Fig. 8. Further condensation
is the identity operator. The edge signs in the condensed hypergraph are qualitatively deter-
mined by the edge signs in the original hypergraph (summands in sums of path products are
all the same sign). Also, the condensed hypergraph is a tree with mixed sign barycenters. Thus
Lemma 2 implies the condensed hypergraph admits Volterra multipliers. In turn, the theorem
then implies the hypergraph itsell admits Volterra multipliers. Thus in this case no
quantitative conditions on x are needed.

nothing about hypergraphs with multiple cycles involving only barycenters
with degree > 2. An example of such a hypergraph is shown in Fig. 10.

On the otber hand, it is perhaps worth noting that in the above develop-
ment we have only used certain ratios of nonzero entries in {x,}; it is not
necessary that each «,; be a constant. In fact, all the above pertains just as
well to the case that each k, is a continuously differentiable function of x
and ¢ provided the rarios of various elements of {x,} in cycles are
constants and admit Volterra multipliers.

Furthermore, it is not necessary that the negative feedback term —x,

i

appear in each dx,/dr. Lyapunov stability theory [H] permits replacing

FiG. 10. A hypergraph for which condensation is the identity operator and which cannot
be treated by the theorem.
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—x; with any differentiable function —f,(x,, ) having the following
property: for any ¢ > 0 there exists J > 0 such that [x| > ¢ implies

i _fi(xi, 1) X, < ~ 4.

i=1

This ¢ value can be used to give a maximum for the time required to go
from any initial state to an ¢ neighborhood of 0.
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