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The varying-coefficient model is an attractive alternative to the additive and
other models. One important method in estimating the coefficient functions in this
model is the local polynomial fitting approach. In this approach, the choice of
bandwidth is crucial. If the unknown curve is spatial homogeneous, a constant
bandwidth is sufficient. However, for estimating curves with a more complicated
structure, a variable bandwidth is needed. The present article focuses on a variable
bandwidth selection procedure, and provides the conditional bias and the condi-
tional variance of the estimator, the convergence rate of the bandwidth, and the
asymptotic distribution of its error relative to the theoretical optimal variable
bandwidth. � 2000 Academic Press
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1. INTRODUCTION

In recent years, various nonparametric techniques have been developed
to increase the flexibility of the regression modeling. Examples include the
approach of penalized least squares (Wahba, 1990) and the local polyno-
mial modeling (Fan and Gijbels, 1996). Among these methods, the local
polynomial approach has been shown to be an attractive method from
both theoretical and practical points of view; see, for example, Stone
(1977), Cleveland (1979), Fan and Gijbels (1992), Fan (1993), Lu (1996),
and Ruppert and Wand (1994). In this procedure, the choice of bandwidth
is crucial in the analysis. In the literature, there are many proposals for
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selecting the bandwidth; examples include the cross-validation technique
(Bowman, 1984; Scott and Terrell, 1987; Vieu, 1991; Hall and Johnstone,
1992; Fan et al., 1996a) and the plug-in approach (Woodroofe, 1970;
Sheather and Jones, 1991; Jones et al. 1996).

Based on the model

Y=a(U )+_(U ) =, (1.1)

and in the context of local polynomial fitting, Fan and Gijbels (1995)
developed a procedure for bandwidth selection which can be applied to
both constant and variable bandwidth selections in a wide variety of situa-
tions. Further theoretical foundation of their procedure has been provided
by Fan et al. (1996b). An important extension of the model (1.1) as
well as other linear models is the varying-coefficient model (Hastie and
Tibshirani, 1993)

Y= :
p

j=1

a j (U ) Xj+=, (1.2)

for given covariates (U, X1 , ..., Xp)T and response variable Y with

E(= | U, X1 , ..., Xp)=0, and Var(= | U, X1 , ..., Xp)=_2(U ).

It is well recognized that (see Hastie and Tibshirani, 1993, and its discus-
sion) this model has extremely wide applications. For example, see Hoover
et al. (1997), Brumback and Rice (1998), Wu et al. (1998), and Fan and
Zhang (1998) for application to longitudinal data, and Chen and Tsay
(1993) and Cai et al. (1998) for application to nonlinear time series.
Assuming the coefficient functions possess about the same degree of
smoothness, Hastie and Tibshirani (1993) proposed an estimate for aj (U )
via the dynamic linear model (West et al., 1985; West and Harrison, 1989)
and the approach of penalized least squares (Wahba, 1990). A two-step
method was proposed by Fan and Zhang (1997) to analyze the model in
which the coefficient functions admit different degrees of smoothness.

Inspired by the work of Fan and Zhang (1997), we propose in this paper
an estimation method based on local polynomial fitting for analyzing vary-
ing coefficient models with coefficient functions that possess about the same
degree of smoothness. Asymptotic expressions for the conditional bias and
conditional variance of the estimators are derived. Like other methods in
nonparametric estimation, the selection of bandwidth in the kernel function
is crucial. In general, if the unknown coefficient functions are spatial
homogeneous, a constant bandwidth is sufficient; however, for estimating
coefficient functions with more complex structures, variable bandwidth is
needed. In this paper, we present a variable bandwidth selection procedure.
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Moreover, we establish the rate of convergence of the bandwidth selector
and provide the asymptotic distribution of its error relative to the theoretical
optimal variable bandwidth. These results are extensions of Fan et al.'s
(1996b) work that associated with Fan and Gijbels' (1995) procedure for
model (1.1) to the more general varying-coefficient models as defined in
(1.2). Since it is assumed that the coefficient functions possess about the
same degree of smoothness, we use the same bandwidth for estimating all
the coefficient functions.

The paper is organized as follows. In Section 2, we briefly discuss the
estimation method and its associated bandwidth selection procedure. The
main asymptotic results are provided in Section 3. Some illustrative examples
on the bandwidth selection procedure are given in Section 4, and technical
proofs are given in Section 5.

2. ESTIMATION METHODS AND BANDWIDTH SELECTION
PROCEDURE

Throughout this article, we assume that the coefficient functions aj ( } ),
j=1, ..., p, in model (1.2) possess about the same degrees of smoothness.
Consider identically and independent distributed (i.i.d.) random observa-
tions [(Ui , Xi1 , ..., Xip , Y i), i=1, ..., n]. Based on the arguments given in
Fan (1992), we adopt local polynomials of odd order q to estimate the
functions aj ( } ), j=1, ..., p. For each given point u0 , we approximate the
function locally as

aj (u)r :
q

l=0

; j, l (u&u0) l, (2.1)

for u in a neighborhood of u0 ; and consider the following local
least-squares problem: Minimize

:
n

i=1
{Yi& :

p

j=1

:
q

l=0

; j, l (Ui&u0) l Xij]2 Kh(U i&u0), (2.2)

for a given kernel function K and bandwidth h, where Kh( } )=K( } �h)�h. Let

Y=(Y1 , ..., Yn)T, W=diag(Kh(U1&u0), ..., Kh(Un&u0)),

and

X11 } } } X11(U1&u0)q } } } X1p } } } X1p(U1&u0)q

Xq=\ b . . . b . . . b . . . b + .

Xn1 } } } Xn1(Un&u0)q } } } Xnp } } } Xnp(Un&u0)q
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Moreover, let ;=(;1, 0 , ..., ;1, q , ..., ;p, 0 , ..., ;p, q)T; the solution of the
least-squares problem (2.2) gives the following one-step estimator ;� of ;:

;� =(;� 1, 0 , ..., ;� 1, q , ..., ;� p, 0 , ..., ;� p, q)T=(XT
q W Xq)&1 XT

q WY. (2.3)

We use the normalized weighted residual sum of squares from the local
polynomial of order q fit to estimate _2=_2(u0) as

_̂2=_̂2(u0)=
1

tr[W&(XT
q W Xq)&1 XT

q W 2Xq]
:
n

i=1

(Yi&Y� i)
2 Kh(U i&u0),

(2.4)

where Y� =(Y� 1 , ..., Y� n)T=Xq(XT
q W Xq)&1 XT

q WY. Let

â( } )=(â1( } ), ..., âp( } ))T, a( } )=(a1( } ), ..., ap( } ))T.

Obviously, the local polynomial regression estimate of a=a(u0) is given by

â=â(u0)=(Ip �e1, q)(XT
q W Xq)&1 XT

q WY, (2.5)

where � denotes the Kronecker product and ek, q denotes the unit vector
of length q+1 with 1 at position k.

To introduce the variable bandwidth selection procedure, the following
notations are required:

+i=| t iK(t) dt, ui=(+q+i , ..., +2q+i)
T, and &i=| t iK2(t) dt.

Note that +i=0, and &i=0 when the kernel function K( } ) is symmetric and
i is odd. Let 1q be a (q+1)_(q+1) matrix with elements

{ij={ 0
+ i+j

i+ j=odd
i+ j=even

for i, j=0, ..., q,

Let 1� q be the matrix similar to 1q with +i replacing by &i , and let D be the
observed covariates vector

D=(U1 , ..., Un , X11 , ..., X1n , ..., Xp1 , ..., Xpn)T.

Let rij (u)=E(XiXj | U=u), r ij=r ij (u0), for i, j=1, ..., p, 0(u) and 0 are
matrices with their (i, j ) th elements equal to rij (u) and rij , respectively.
Moreover, let bias(âi (u) | D) be the conditional bias of âi (u) given D,

b(u)=bias(â(u) | D)=(bias(â1(u) | D), ..., bias(âp(u) | D))T, and

b=b(u0).
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Based on the definition of the varying-coefficient model defined in (1.2),
we define the mean squared error

MSE(â( } ))=E \E _{ :
p

j=1

(âj (U )&aj (U )) Xj=
2

} D&+
=E { :

p

j=1

(âj (U )&aj (U )) Xj=
2

(2.6)

as a criterion to depict the error of the estimators âj , j=1, ..., p, where the
first expectation is taken over U, X1 , ..., Xp which are random variables
that are independent of the observed sample. It can be shown that

MSE(â( } ))=tr E[0(U ) E((â(U )&a(U ))(â(U )&a(U ))T | U )]

=tr E[E[0(U )(â(U)&a(U ))(â(U )&a(U))T | U, D]]

=E[bT (U ) 0(U ) b(U )+tr(0(U ) Cov(â(U ) | U, D))].

Define

MSE(â(u) | D)=bT (u) 0(u) b(u)+tr(0(u) Cov(â(u) | D)). (2.7)

Note that

Cov(â(U ) | U, D)=Cov(â(u) | D)| u=U ,

hence

MSE(â( } ))=E[E[MSE(â(u) | D)|u=U | D]].

The variable bandwidth hopt that minimizes the MSE(â | D) is called the
theoretical optimal variable bandwidth at u0 . Since the quantity
MSE(â | D) depends on some unknown quantities, it is impossible to find
the theoretical optimal variable bandwidth. To cope with this problem, the
plug-in approach (Ruppert et al., 1995) first derives the minimizer of the
asymptotic expression of MSE(â | D), namely, the asymptotic optimal
variable bandwidth; then replaces the unknown parameters by their
estimators. A disadvantage of this approach is that it depends heavily on
the asymptotic expressions. The following more reasonable approach is to
minimize a good estimator of MSE(â | D) and take the minimizer as the
variable bandwidth. The quantity MSE(â | D) will be estimated as below.
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The conditional bias b in MSE(â | D) is equal to (Ip �eT
1, q)(XT

q W Xq)&1

XT
q Wl, where l=(l1 , ..., ln)T with

li= :
p

j=1
\aj (Ui)& :

q

k=0

;j, k (Ui&u0)k+ Xij .

Based on the Taylor expansion of order m, the conditional bias can be
approximated by (Ip �eT

1, q)(XT
q W Xq)&1 XT

q W', where ' is a n vector with
ith element equal to

:
p

j=1

:
m

k=1

;j, q+k (Ui&u0)q+k Xij .

For convenience, we take m=2; then (Ip �eT
1, q)(XT

q W Xq)&1 XT
q W' is

simplified as

(Ip �eT
1, q)(XT

q W Xq)&1 XT
q W Xq*d,

where

di=(;1, q+i , ..., ;p, q+i)
T, for i=1, 2, ...;

d=(dT
1 � (1, 0)+dT

2 � (0, 1))T,

and

Xq*=\
X11(U1&u0)q+1 X11(U1&u0)q+2 } } }

+ .

b b . . .
Xn1(Un&u0)q+1 Xn1(Un&u0)q+2 } } }

X1p(U1&u0)q+1 X1p(U1&u0)q+2

b b
Xnp(Un&u0)q+1 Xnp(Un&u0)q+2

The quantity d can be estimated by using a local polynomial regression of
order g (g>q) with a bandwidth h

*
, namely

d� =(Ip � (eq+2, g , eq+3, g)T)(XT
g W

*
Xg)&1 XT

g W
*

Y,

where W
*

=diag(Kh
*
(U1&u0), ..., Kh

*
(Un&u0)). The initial bandwidth h

*
can be obtained by the minimizer of some residual squares criterion (RSC)
as given in Zhang and Lee (1998); see also Fan and Gijbels (1995).

The conditional covariance is given by

Cov(â | D)=(Ip �eT
1, q)(XT

q W Xq)&1

_(XT
q W9W Xq)(XT

q W Xq)&1 (Ip �e1, q),
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where 9=diag(_2(U1), ..., _2(Un)). We can approximate it by using the
local homoscedasticity as follows:

(Ip �eT
1, q)(XT

q W Xq)&1 (XT
q W2Xq)(XT

q W Xq)&1 (Ip �e1, q) _2.

The unknown parameter _2 can be estimated by the normalized weighted
residual sum of squares from a gth-order polynomial fit as below,

_̂2=
1

tr(W
*

)&tr((XT
g W

*
Xg)&1 XT

g W2

*
Xg)

:
n

i=1

(Yi&Y�
*i)

2 Kh
*
(U i&u0),

where

Y�
*

=(Y�
*1 , ..., Y�

*n)T=Xg(XT
g W

*
Xg)&1 XT

g W
*

Y.

The estimate of the element rij in 0 will be obtained based on
(Ul , Xli Xlj), l=1, ..., n, using the local polynomial fit of order g with
bandwidth h0*

=OP(h
*

) as below,

r̂ij=eT
1, g(V

TW0*
V)&1 VTW0*

Zij ,

where W0*
=diag(Kh0*

(U1&u0), ..., Kh0*
(Un&u0)) and

1 } } } (U1&u0) g X1i X1j

V=\ b . . . b + , Zij=\ b + .

1 } } } (Un&u0) g) Xni Xnj

By Theorem 3.1 of Fan and Gijbels (1996), it can be shown that

bias( r̂ij | U1 , ..., Un)=OP(h
*
g+1), Var(r̂ ij | U1 , ..., Un)=OP \ 1

nh
*
+ .

(2.8)

Let 0� be an estimator of 0 with elements r̂ij ; we obtain the following
estimate of MSE(â | D):

MSE@ (â | D)=d� TXq*
TW Xq(XT

q W Xq)&1

_(0� �e1, qeT
1, q)(XT

q W Xq)&1 XT
q W Xq*d�

+tr[(XT
q W Xq)&1 (XT

q W 2Xq)(XT
q W Xq)&1

_(0� �e1, qeT
1, q) _̂2]. (2.9)
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Finally, we select the variable bandwidth

h� opt=arg min
h

MSE@ (â | D)

as our final bandwidth to be used in the analysis with polynomial of
order q. Hereafter, we call this variable bandwidth the estimated optimal
variable bandwidth.

3. MAIN ASYMPTOTIC RESULTS

We first impose the following technical conditions:

(1) EX 2s
j <�, for s>2, j=1, ..., p.

(2) Let a (i )
j denote the ith derivative of aj ( } ); a (q+3)

j ( } ) is continuous
in a neighborhood of u0 , for j=1, ..., p. Further, assume a (q+1)

j (u0){0, for
j=1, ..., p.

(3) The marginal density f (u) of U has a continuous second
derivative in some neighborhood of u0 and f (u0){0.

(4) The functions rij ( } ) and _2( } ) have bounded second derivatives in
a neighborhood of u0 .

(5) The function K(t) is a symmetric density function with a compact
support.

(6) 2�(2q+3)>(g&q)�(2g+3) and g>q.

The asymptotic expansions for the conditional bias and variance are
given via the following theorem. The proof of this theorem, which will be
given in the next section, is based on an extension of the arguments in Fan
and Zhang (1997).

Theorem 1. Under conditions (1)�(5), if n&b<h<n&a for 0<a<b<1,
then the conditional bias and covariance of â have the following expansions
uniformly for h # [n&b, n&a],

bias(â | D)=eT
1, q 1 &1

q u1 d1 hq+1 \1+OP \h2+
log n

- nh++ ,

and

Cov(â | D)=
_2

nhf (u0)
(eT

1, q1 &1
q 1� q1 &1

q e1, q) 0&1 \1+OP \h2+
log n

- nh++ .
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Remark. From Theorem 1, we see that the order of the convergence is
OP(h2+log n�- nh). This result is crucial for getting the asymptotic dis-
tribution of the estimated optimal variable bandwidth. Fan and Zhang
(1997) obtained some expressions for the asymptotic bias and variance, but
they did not give the convergence rate. Using the technique of the proof of
Theorem 1, we can get

bias(;� | D)=d1 �G&1
q 1 &1

q u1hq+1(1+oP(1)),

and

Cov(;� | D)=
_2

nhf (u0)
0&1� (G&1

q 1 &1
q 1� q1 &1

q G&1
q )(1+oP(1)),

where Gq=diag(1, h, ..., hq). This provides the asymptotic bias and the
asymptotic variance of the estimator of the derivative of a. Moreover, from
the proof of Theorem 1, we can see that for the even derivative of a, its
asymptotic bias and asymptotic variance still have the convergence rate
OP(h2+log n�- nh).

To derive the rate of convergence for bandwidth selection, we need the
following lemma of Fan et al. (1996b):

Lemma 1. Suppose that a function M(h) has the asymptotic expansion

M(h)=ch2( p+1&&) \1+OP \h2+
log n

- nh+++
:

nh2&+1 \1+OP \h2+
log n

- nh++ ,

uniformly in h # [n&b, n&a]. Let hmin be the minimizer of M(h). Then

hmin=\ (2&+1) :
2( p+1&&) cn+

1�(2p+3)

(1+OP(n&2�(2p+3) log n)),

and

M(hmin)=c1&s:s(2p+3)(2&+1)&(1&s)

_[2( p+1&&)]&s n&s(1+OP(n&2�(2p+3) log n)),

with s=2( p+1&&)�(2p+3), provided that c, :>0. If p>1, the log n
factor does not have to appear in the `` OP-terms.''
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Combining Theorem 1 and (2.7), we obtain

MSE(â | D)=(eT
1, q1 &1

q u1)2 dT
1 0d1 h2q+2(1+OP(h2+log n�- nh))

+ p_2(nhf (u0))&1 (eT
1, q 1 &1

q 1� q1 &1
q e1, q)

_(1+OP(h2+log n�- nh)).

From the above result and Lemma 1, the following theorem is valid.

Theorem 2. Under conditions (1)�(5),

hopt&ha, opt

ha, opt
=OP(n&2�(2q+3) log n),

where

ha, opt=\
p_2eT

1, q1 &1
q 1� q1 &1

q e1, q

2(q+1)(eT
1, q1 &1

q u1)2 dT
1 0d1 f (u0) n+

1�(2q+3)

.

It is clear ha, opt is the minimizer of

(eT
1, q 1 &1

q u1)2 dT
1 0d1h2q+2+

p_2

nhf (u0)
(eT

1, q1 &1
q 1� q 1 &1

q e1, q).

We call ha, opt the asymptotic optimal variable bandwidth. From Theorem 2,
we see that the rate of the relative difference between the asymptotic
optimal variable bandwidth and the optimal variable bandwidth converges
to zero.

Now, we consider the estimated optimal variable bandwidth h� opt . Let

d� 1=(Ip �eT
q+2, g)(XT

g W
*

Xg)&1 XT
g W

*
Y

be an estimator of d1 obtained by using local polynomial of order g modeling
with bandwidth h

*
. Using arguments similar to Theorem 1, we have

MSE@ (â | D)=(eT
1, q1 &1

q u1)2 d� T
1 0� d� 1 h2q+2(1+OP(h2+log n�- nh))

+_̂2(nhf (u0))&1 (eT
1, q1 &1

q 1� q1 &1
q e1, q)

_tr[0� 0&1](1+OP(h2+log n�- nh)),

uniformly for h # [n&b, n&a] with 0<a<b<1. From Lemma 1, we have

h� opt&h� a, opt

h� a, opt

=OP(n&2�(2q+3) log n), (3.1)
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where

h� a, opt=\
_̂2eT

1, q1 &1
q 1� q 1 &1

q e1, q tr[0� 0&1]

2(q+1)(eT
1, q1 &1

q u1)2 d� T
1 0� d� 1 f (u0) n+

1�(2q+3)

,

the minimizer of

(eT
1, q 1 &1

q u1)2 d� T
1 0� d� 1h2q+2+

_̂2 tr[0� 0&1]
nhf (u0)

(eT
1, q1 &1

q 1� q1 &1
q e1, q).

It follows from Theorem 2 and (3.1) that the asymptotic result for the error
of the estimated optimal variable bandwidth h� opt relative to the theoretical
optimal variable bandwidth hopt can be established by the connection
between ha, opt and h� a, opt .

The following theorem provides the asymptotic distribution of the error
of the estimated optimal variable bandwidth h� opt relative to the theoretical
optimal variable bandwidth hopt .

Theorem 3. Under conditions (1)�(6) and _2(u)=_2 in a neighborhood
of u0 , if h

*
=O(n&1�(2g+3)), then the asymptotic distribution of

- nh
*
2q+3 f (u0) {

h� opt&hopt

hopt
+

2dT
1 0dg&q+1eT

q+2, g1 &1
g ug&q+1h

*
g&q

(2q+3) dT
1 0d1 =

is

N \0,
4_2eT

q+2, g 1 &1
g 1� g1 &1

g eq+2, g

(2q+3)2 dT
1 0d1 + .

Remark. From Theorem 3 we can see that the error of the estimated
optimal variable bandwidth h� opt relative to the theoretical optimal variable
bandwidth hopt is of order OP(n&( g&q)�(2g+3)). Moreover, the asymptotic
bias and the asymptotic variance of the estimated optimal variable
bandwidth are given by

{&
2dT

1 0dg&q+1eT
q+2, g 1 &1

g ug&q+1hopt h*
g&q

(2q+3) dT
1 0d1 = (1+o(1)),

and

4_2eT
q+2, g1 &1

g 1� g 1 &1
g eq+2, gh2

opt

(2q+3)2 dT
1 0d1 f (u0) h

*
2q+3n

(1+o(1)),

respectively, where the 1g and 1� g are similarly defined as 1q and 1� q .
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4. SOME EXAMPLES

The following three examples are used to illustrate the empirical
performance of our bandwidth selection method,

Example 1: Y=X1 cos(3U)+2X2 exp[&16U2]+=,

Example 2: Y=X1 cos(3U)+2X2 exp[&16U2] sin(2U )+=,

Example 3: Y=X1 sin(U )+2X2 exp[&16U2]+=,

where X1 and X2 are normally distributed with correlation coefficient 2&1�2,
E(X1)=E(X2)=0 and Var(X1)=Var(X2)=1; U follows a uniform dis-
tribution on [&2, 2], = is distributed as normal with mean zero and
variance _2; =, U, and (X1 , X2) are independent. For each example, a
sample size n=200 was considered. In general, the noise-to-signal ratio
_2�Var[E(Y | U, X1 , X2)] indicates the difficulty of the estimation problem:
the bigger this ratio the more difficult the problem. For these examples, we
choose _2 such that the noise-to-signal ratio is about 1 : 5, namely

_2=0.2 Var[E(Y | U, X1 , X2)].

Moreover, the local linear fit (q=1) for the regression curve estimation is
considered, and the kernel function is taken to be the Epanechnikov kernel
K(t)=0.75(1&t2)+ . In our bandwidth selection procedure, the initial
bandwidth h

*
is chosen by minimizing the residual squares criterion as

given in Zhang and Lee (1998), and h0*
is chosen to be the same as h

*
.

Based on 100 replications, the MSE (â( } )), see (2.6), of the estimated
regression function with (i) the variable bandwidth obtained by our
method, (ii) the theoretical optimal constant bandwidth, and (iii) the
bandwidth obtained by the cross-validation method (see Hoover et al.,
1997) are computed and they are respectively denoted as MSE1, MSE2,
and MSE3. In these three examples, the theoretical optimal constant
bandwidths are all equal to 0.32. Table I describes the gain of our variable
bandwidth over the theoretical optimal constant bandwidth and the
bandwidth obtained via the cross-validation method. From this table, we

TABLE I

Comparison between the Bandwidth Selection Rules

(MSE3-MSE1)�MSE1 (MSE2-MSE1)�MSE1

Example 1 0.288644 0.089782
Example 2 0.138218 0.010000
Example 3 0.408973 0.202803
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FIG. 1. The box-plots of deviations.

see that the empirical performance of our variable bandwidth is the best.
Compared to the cross-validation method and the theoretical optimal con-
stant bandwidth, the MSE of our procedure are reduced respectively by
about (290, 140, 41 0) and (90, 10, 20 0) in Examples 1, 2, and 3.

To give more ideas on the empirical performance of our method, we use

| \h� opt (u)&hopt (u)
hopt (u) +

2

du (4.1)

to describe the deviation of the variable bandwidth obtained by our
method, h� opt (u), and the theoretical optimal variable bandwidth, hopt (u).
Based on 100 replications, the box plot of the deviations defined in (4.1) is
presented in Fig. 1. From this figure, we see that the deviation is small.

5. PROOF OF THEOREMS

Proof of Theorem 1. Let 8 be p_p matrix with elements

,ij=
d(rij (u) f (u))

du } u=u0

,

and let 1q* be a (q+1)_(q+1) matrix with elements

{*ij={0
+i+j+1

i+j=even
i+ j=odd.

We first note that if (!i , 'i), i=1, ..., n are i.i.d. random observations from
the population associated with (!, '), then

1

nh j
:
n

i=1

'i (!i&x0) j Kh(!i&x0)=t(x0) +j+ht$(x0) +j+1+OP \h2+
log n

- nh+ ,
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uniformly for h # [n&b, n&a] with 0<a<b<1, where t( } )= f!( } ) v( } ), and
f!( } ) is the density function of ! and v(x)=E(' | !=x).

Based on this result and let 0<a<b<1, it can be shown that

1
n

(Ip �Gq)&1 (XT
q W Xq)(Ip �Gq)&1

=[0�1q f (u0)+8�1q*h+O(h2)] \1+OP \log n

- nh++ , (5.1)

and

n&1(Ip �Gq)&1 XT
q Wl=[0� (u1 , u2) f (u0)+8� (u2 , u3) h+O(h2)]

_(Ip �G1) dhq+1(1+OP(log n�- nh))

uniformly for h # [n&b, n&a]. Using the fact (A+hB)&1=A&1&
hA&1BA&1+O(h2), we get

[n&1(Ip �Gq)&1 (XT
q W Xq)(Ip �Gq)&1]&1

=[ f (u0)&1 (0&1�1 &1
q )&hf (u0)&2 (0&180&1)

� (1 &1
q 1q*1 &1

q )+O(h2)]

_(1+OP(log n�- nh)), (5.2)

uniformly for h # [n&b, n&a]. Hence, bias(â | D) is equal to

[Ip � (eT
1, q1 &1

q u1 , eT
1, q1 &1

q u2)&hf (u0)&1

_[(0&18)� (eT
1, q1 &1

q 1q*1 &1
q u1 , eT

1, q1 &1
q 1q*1 &1

q u2)]

+hf (u0)&1 [(0&18)� (eT
1, q 1 &1

q u2 , eT
1, q 1 &1

q u3)]+O(h2)]

_(Ip �G1) dhq+1(1+OP(log n�- nh)),

uniformly for h # [n&b, n&a]. Based on similar reasonings in Fan et al.
(1996b), it can be shown that eT

1, q1 &1
q u2=0, and eT

1, q1 &1
q 1q*1 &1

q u1=0.
Hence

bias(â | D)=eT
1, q 1 &1

q u1 d1hq+1(1+OP(h2+log n�- nh)).

Next, we consider Cov(â | D). Let 1� q* be the matrix similar to 1q* except
replacing +i by &i , and let 8* be p_p matrix with element d(_2(u) f (u)
rij (u))�du |u=u0

. Using arguments similar to those used in getting (5.1), we have
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hn&1(Ip �Gq)&1 (XT
q W9W Xq)(Ip �Gq)&1

=[0�1� q f (u0) _2+8*�1� q* h+O(h2)](1+OP(log n�- nh))

uniformly for h # [n&b, n&a]. Combining this result and (5.2), we get

Cov(â | D)=_2(nhf (u0))&1 (eT
q, 11 &1

q 1� q1 &1
q eq, 1) 0&1

_(1+OP(h2+log n�- nh))

uniformly for h # [n&b, n&a]. This establishes the results of Theorem 1.

Proof of Theorem 3. First, note that

ha, opt=O(n&1�(2q+3)) and h� a, opt=OP(n&1�(2q+3)).

This result together with Eq. (3.1) and Theorem 2 leads to

hopt=O(n&1�(2q+3)) and h� opt=OP(n&1�(2q+3)).

Consequently,

h� opt&hopt

hopt
=

h� a, opt&ha, opt

ha, opt
+OP(n&2(2q+3)&1

log n).

Further, note that

h� a, opt&ha, opt

ha, opt

=
h� a, opt

ha, opt

&1=\tr(0� 0&1) _̂2

p_2 +
1�(2q+3)

\dT
1 0d1

d� T
1 0� d� 1

+
1�(2q+3)

&1

(5.3)

and

\tr(0� 0&1) _̂2

p_2 +
1�(2q+3)

\dT
1 0d1

d� T
1 0� d� 1

+
1�(2q+3)

&1

=\dT
1 0d1

d� T
1 0� d� 1

+
1�(2q+3)

{\tr(0� 0&1) _̂2

p_2 +
1�(2q+3)

&\d� T
1 0� d� 1

dT
1 0d1

+
1�(2q+3)

= .

(5.4)

From (2.8), we have

0� =0 \1+OP \h
*
g+1+

1

- nh
*
++ , (5.5)
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which gives

tr(0� 0&1) _̂2

p_2
=\_̂2

_2+\1+OP \h
*
g+1+

1

- nh
*
++ .

From Theorem 2 in Zhang and Lee (1998),

_̂2=_2 \1+OP \h
*
2g+2+

1

- nh
*
++ .

So,

\tr(0� 0&1) _̂2

p_2 +
1�(2q+3)

=1+OP \h
*
g+1+h

*
2g+2+

1

- nh
*
+

=1+OP \h
*
g+1+

1

- nh
*
+ . (5.6)

Using the Taylar expansion and (5.5), we obtain

\d� T
1 0� d� 1

dT
1 0d1+

1�(2q+3)

=\1+
2dT

1 0(d� 1&d1)
(2q+3) dT

1 0d1

+OP(&d� 1&d1&2)+
_\1+OP \h

*
g+1+

1

- nh
*
++ , (5.7)

where &d� 1&d1&2=(d� 1&d1)T (d� 1&d1).
Now, we prove that - nh

*
2q+3 f (u0) (d� 1&d1) is asymptotic normal. Let

==(=1 , ..., =n)T, it can be shown that

- nh
*

2q+3 f (u0) (d� 1&d1)

=- nh2q+3
* f (u0) (Ip �eT

q+2, g)(XT
g W

*
Xg)&1 XT

g W
*

=

+- nh
*

2q+3 f (u0)[(Ip �eT
q+2, g)(XT

g W
*

Xg)&1

_XT
g W

*
E(Y | D)&d1]

and

- nh
*
2q+3 f (u0) (Ip �eT

q+2, g)(XT
g W

*
Xg)&1XT

g W
*

=

=[0&1� (eT
q+2, g1 &1

g )] f (u0)&1
- nh

*
f (u0) n&1(Ip �G&1

g )

_XT
g W

*
=(1+oP(1)).
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From the central limit theorem,

- nh
*

f (u0) n&1(Ip �G&1
g ) XT

g W
*

= w�D N(0, (0�1� g) _2f (u0)2).

So,

- nh
*
2q+3 f (u0) (Ip �eT

q+2, g)(XT
g W

*
Xg)&1 XT

g W
*

=

w�D N(0, eT
q+2, g 1 &1

g 1� g1 &1
g eq+2, g 0&1_2).

Further, it can be shown that

- nh
*
2q+3f (u0) [(Ip �eT

q+2, g)(XT
g W

*
Xg)&1 XT

g W
*

E(Y | D)&d1]

=- nh
*
2q+3 f (u0) (eT

q+2, g 1 &1
g ug&q+1) dg&q+1h

*
g&q(1+oP(1)),

hence,

- nh
*
2q+3 f (u0) [d� 1&d1&(eT

q+2, g1 &1
g ug&q+1) dg&q+1 h

*
g&q]

w�D (0, eT
q+2, g1 &1

g 1� g1 &1
g eq+2, g0&1_2).

Further, it follows from the above result and (5.7) that the asymptotic
distribution of

- nh
*
2q+3f (u0)

_{\
d� T

1 0� d� 1

dT
1 0d1+

1�(2q+3)

&1&
2dT

1 0dg&q+1(eT
q+2, g1 &1

g ug&q+1) h
*
g&q

(2q+3) dT
1 0d1 =

is

N \0,
4_2eT

q+2, g1 &1
g 1� g1 &1

g eq+2, g

(2q+3)2 dT
1 0d1 + .

Finally, it follows from (5.3), (5.4), and (5.6) that the asymptotic distribution
of

- nh
*
2q+3f (u0) {

h� opt&hopt

hopt
+

2dT
1 0dg&q+1(eT

q+2, g1 &1
g ug&q+1) h

*
g&q

(2q+3) dT
1 0d1 =

is

N \0,
4_2eT

q+2, g1 &1
g 1� g1 &1

g eq+2, g

(2q+3)2 dT
1 0d1 + .
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