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Cataracts are the leading cause of blindness in most countries. Although most hereditary cases appear to follow
an autosomal dominant pattern of inheritance, autosomal recessive inheritance has been clearly documented and
is probably underrecognized. We studied a large family—from a relatively isolated geographic region—whose
members were affected by autosomal recessive adult-onset pulverulent cataracts. We mapped the disease locus to
a 14-cM interval at a novel disease locus, 9q13-q22 (between markers D9S1123 and D9S257), with a LOD score
of 4.7. The study of this progressive and age-related cataract phenotype may provide insight into the cause of the
more common sporadic form of age-related cataracts.

Cataracts remain a leading cause of blindness worldwide
(Thylefors et al. 1995; Lim 1996; Yorston 1998), ac-
counting for 42% of all blindness. The number of cases
is expected to double by 2010. Although we are begin-
ning to learn more about lens structure and function,
the mechanisms of lens opacification remain poorly un-
derstood (Arnold 1998). Segregation analysis and twin
studies of populations affected with age-related cataracts
suggest that Mendelian inheritance, often autosomal re-
cessive (AR), could account for ∼50% of age-related
cataracts (Italian American Cataract Study Group 1991;
Heiba et al. 1993, 1995; Group TFOES 1994; Ham-
mond et al. 2000). The study of single-gene hereditary
cataracts has been helpful in the identification of ∼20
candidate loci and of 10 human genes, all for autosomal
dominant (AD) phenotypes (MIM 604219) (Hejtmancik
1998; Kannabiran et al. 1998; Litt et al. 1998; Mumford
et al. 1998; Shiels et al. 1998; Heon et al. 1999; Mackay

Received November 21, 2000; accepted for publication December
21, 2000; electronically published February 5, 2001.

Address for correspondence and reprints: Dr. Elise Héon, Vision
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et al. 1999; Bateman et al. 2000; Kramer et al. 2000;
Ren et al. 2000). Only one human locus (Pras et al. 2000)
and a few murine loci (Kratochvilova et al. 1988; Chang
et al. 1996; Iida et al. 1997; Song et al. 1997) are linked
with AR cataracts. Mutations in CRYAA were recently
identified in patients with AR cataracts (Pras et al. 2000).
For a genetic study, we have recruited a large family that
is affected with AR early-onset progressive pulverulent
cataracts (ARPCs) and that resides in a relatively isolated
region of Switzerland.

This family was documented to have nine members,
all in one generation (fig. 1), who were affected with an
ARPC (fig. 2). Eight affected individuals and 22 of their
children were recruited and examined for this study.
None of the offspring (generation IV), whose ages at the
time of study were 16–43 years, showed any sign of lens
opacity. Because ARPCs progress slowly, the presence of
lens opacities can be detected by slit-lamp biomicroscopy
several years before the symptoms become manifest. Slit-
lamp biomicroscopy was used to examine all partici-
pants on two occasions, separated by a 2-year interval.
Because no member of the fourth generation showed
evidence of lens opacity and because the phenotype af-
fects only one generation, we proposed that the inher-
itance of this phenotype is AR. In genealogical studies
that included the two generations preceding the gener-
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Figure 1 Genealogy and summarized haplotype showing the most informative markers. All spouses were examined and found to be
normal. Blackened symbols indicate clinically affected individuals; unblackened symbols represent unaffected relatives. Unblackened symbols
containing an “N” indicate relatives �30 years old who were examined but who did not show signs of the disease; empty unblackened symbols
indicate unaffected relatives who are �30 years old; slashes indicate deceased individuals. The hatched boxes indicate the affected haplotype,
whereas the unhatched boxes indicate the unaffected haplotype. “XX” indicates the beginning and end of the disease-gene interval. “?” indicates
the genotype was not available.

Figure 2 Drawing of the ARPC lens opacity. Top, Individual III:
15, at age 20 years, showing pulverulent lamellar and cortical opacity.
Bottom, Individual III:5, at age 47 years, showing additional nuclear
and posterior subcapsular changes.

ation that included affected individuals, we were unable
to document any consanguineous link between the two
sides of the family. However, consanguineous relation-
ships are documented in both sides of the family (fig.
1), and other consanguineous marriages are documented
in that locality. Individuals II:2 and II:3 died during their
70s, at which time they had good functional vision. One
sib from each side of the family was examined (II:1 and
II:4) and failed to show any cataract phenotype. Fur-
thermore, they were not aware of any vision problem
in their respective siblings. In no case was the affection
status modified after the second examination.

The ARPC phenotype did not clearly match any of
the cataract phenotypes described to date, because it
consisted of a mostly cortical, pulverulent (dustlike)
opacity, with occasional nuclear and posterior subcap-
sular involvement and with early nuclear sclerosis
(browning of the nucleus) (fig. 2). The opacification of
the nucleus and/or the posterior subcapsular area was
progressive and was present to a variable degree (table
1). This cloudy appearance of the lens worsened with
age; the affected lens aged prematurely, and, to restore
visual function, cataract surgery was usually required by
the age of 40 years.

The age at onset of the cataracts in this large family
is not entirely clear, because the affected individuals pre-
sented with various degrees of visual impairment (table

1). The variation in onset of visual symptoms was in-
fluenced by the differing visual needs of individual sub-
jects. The earliest diagnosis was made, at the age of 20
years, in an individual whose vision was decreased by
80% in one eye and by 20% in the other. Lens opacities
were most likely present for several years before symp-
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Table 1

ARPC-Affected Status Clinical Data

Subject
Vision before

Surgery (Age [years])a

Age at
Surgery
(years)

Other
Findingsb

III:2 D .5/.6; N .3/.4 (44) 55 Hyperlipidemia
III:4 D .3/.3; N .2/.2 (50) 53
III:5 D .4/.3 52
III:12 D .3/.3; N .1/.3 (42) 44 Hyperthyroid, AS, CS
III:14 D .6/.6; N .2/.2 (30) 42 Obesity, hypertension
III:15 D .2/.8 (22) 40 Diagnosis at age 20
III:17 D .4/.4 (37) 37
III:20 D .4/.5 (36) 36

a Normal visual acuity has a measurement of 1.0. D p distance
vision; N p near vision. Near vision measurements were not available
for subjects III:5, III:15, III:17, and III:20.

b AS p Albright syndrome; CS p congenital anosmia.

Table 2

Candidate Cataract Loci-Exclusion Data

Location Candidate Gene MIM STRP Intervala

Exclusion
Regionb

(cM)
% of Total

Chromosome

1p36 Unknown 115665 D1S468(4)-GATA29A05 34 12
116600

1q21-25 GJA8 116200 D1S2669(151)-D1S484 38.5 13
1q32.2 PROX-1 D1S1663(226)-D1S549 33.6 12
2q33-35 Gamma C 123660 D2S155(202)-D2S434 13 5.3

Gamma D 115700
Gamma D 123690
Gamma A–F 601286

2q36 CryBA2
3p21.1-21.3 Unknown D3S2432(58)-D3S1766 21 9
3q21.3-25.2 BFSP2/phakinin; CRYGS 603212 D3S2460(135)-D3S1764 28 14
10q23.3-25 PITX3 602669 D10S1753(113)-D10S1750 17 9.8
11q22.3-23.1 CryAB D11S898(99)-D11S1998 34 23
12q13 MP26/LIM1/AQPO 154050 D12S368(66)-D12S83 30 17.5
13cen-q11 GJA3 601885 D13S1316(0)-D13S787 10 9
16q22.1 Unknown 116800 D16S515(92)-D16S518 23 17
17p Unknown 601202 D17S849(.6)-D17S796 24 19
17q11.2-q12 CRYBA1/A3 600881 D17S122(41)-D17S925 30 24
17q24 Galactokinase 115660 D17S836(113)-D17S784 3.9
19q13.3 IRE/FTL; LIM2/TGFb1 600886 D19S178(68)-D19S877 30 29
21q22.3 CryAA 123580 D21S266(46)-D21S171 26 45
22q11.2 CRYBB2 601547 TOP1P2(19)-D22258 13 21

409

NOTE.—Data from the genotyping of the hotspots from the pooling study allow us to exclude 13.8% of the human genome.
a From The Center for Medical Genetics, Marshfield Medical Research Foundation. The map position (in parentheses) is

expressed in centimorgans.
b May include flanking regions.

toms were manifest. Affected individuals required cat-
aract surgery at a mean age of 44 years (range 36–55
years), because of progressive visual impairment. At the
time of surgery, the mean decrease in vision was 60%
for distance vision and 76% for near vision, both de-
creases being significant.

It is the manifestation of the lens opacity at an unusually
early age that facilitated detection of the familial pattern.

Furthermore, the noncongenital and progressive opacifi-
cation of the various layers of the lens makes the ARPC
phenotype the first human genetic model for the study of
age-related cataracts. Cortical, pulverulent cataracts ac-
count for a substantial proportion of cataracts, although
exact figures are not available (Leske et al. 1991). It is
the clear hereditary pattern of these findings that is less
commonly documented.

The initial strategy for the genetic study of this family
was as follows: (1) candidate-loci screening by linkage
analysis, (2) genomewide screening using a DNA-pool-
ing approach, and (3) detailed linkage analysis of the
new candidate loci. If we assume an AR mode of in-
heritance and complete penetrance, the data from our
family are powerful enough to detect significant linkage
(LOD score 13, odds for linkage �1,000:1 [ ]).P p .05
The power to detect linkage was investigated using
SLINK. Two hundred replicates of the pedigree were
generated, under the assumption of a completely pene-
trant AR disease locus with disease-allele frequency p
.01 and no phenocopies. Also simulated were data for
one marker with five equally frequent alleles at a recom-
bination fraction (v) of 0. The average LOD score at

was 3.4 ( ), and the maximum LODv p 0 SD p 1.5
score was 4.7.
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Table 3

Two-Point Linkage Data for ARPC Phenotype and Markers of the 9q13-q22 Region

MARKER

(DISTANCE

[cM])a LOCATION HETEROZYGOSITYb

LOD SCORE AT v p

Zmax vmax0 .1 .2 .3 .04

D9S301 (66) 9p21-9q21 .71 � 1.20 1.13 .76 .27 1.23 .13
D9S1122 (75) 9pter-qter .67 � 2.90 2.32 1.52 .6 3.02 .05
D9S1123 (77) 9pter-qter .66 � .96 .84 .56 .21 .96 .11
D9S153 (79) 9q13-q22.3 .68 2.00 1.63 1.23 .78 .29 2.00 .00
D9S1867 (79) 9pter-qter .71 2.00 1.62 1.21 .75 .28 2.00 .00
D9S768 (80) 9q13-q22.3 .79 4.71 3.85 2.92 1.89 .76 4.71 .00
D9S167 (83) 9q13-q22.3 .83 2.30 1.94 1.49 .98 .40 2.30 .00
D9S152 (84) 9q21-q22 .72 2.00 1.38 .76 .24 .02 2.00 .00
D9S1119 (85) 9pter-qter .64 .04 .02 .01 .00 .00 .14 .00
D9S252 (88) 9q13-q22 .66 2.00 1.38 .76 .24 .02 2.00 .00
D9S1812 (90) 9pter-qter .57 2.30 1.93 1.48 .97 .40 2.30 .00
D9S257 (91) 9q13-q22 .84 � 1.73 1.57 1.08 .42 1.74 .12
D9S283 (94) 9q13-q22 .75 � .48 .80 .67 .30 .80 .21

a Markers within the critical interval are underlined.
b As determined on the basis of family spouses. AR, full-penetrance, and marker-allele frequencies were

estimated on the basis of the founders, and disease-allele frequencies of .01 were assumed for the disease
locus.

Figure 3 SIMWALK2 analysis of markers at the 9q13-q22 locus.
Simulated location scores for ARPC vs. chromosome 9 markers. The
maximum log10 location score was 4.7, with D9S768. The 14-cM
disease interval, as defined by haplotype analysis, was between
D9S1123 and D9S257.

We studied ∼20 loci that are related to genes involved
in lens formation, metabolism, or opacification, with an
average of four STRP markers per locus (table 2). Two-
point and multipoint linkage analyses were performed,
considering both AR and dominant inheritance, and no
evidence of linkage was detected (data not shown).

A genomewide scan consisting of 380 microsatellite
markers spaced at ∼10-cM intervals was performed us-
ing a pooling strategy (Betard et al. 2000). The protocol
was modified for the ABI-3700 DNA analyzer (Applied
Biosystems). Initially, the following three DNA pools
were genotyped: (1) seven affected individuals, (2) eight
spouses, and (3) eight unaffected offspring. We later
added a fourth pool, of four unaffected siblings 125
years old.

Linkage was suggested by the observation of a skew
(termed a “hotspot”) in the banding pattern of the af-
fected pool compared with those of the other pools; 22
hotspots were identified. Individual family mem-
bers were then genotyped with markers from these can-
didate loci, and significant linkage was observed with
markers on chromosome 9q13-q22. Linkage and haplo-
type analysis confirmed the AR inheritance of the phe-
notype. A maximum pairwise LOD score of 4.71 at

was obtained with D9S768 (table 3). Location-v p 0
score analysis, using SIMWALK2, version 2.60 (Sobel
and Lange 1996) (fig. 3), supported the strong evidence
for linkage to this region (maximum location score
[log10] p 4.70, , with marker D9S768). With thisv p 0
analysis, the estimate for the most-likely-genetic-descent
graph is used as the initial position, and a random walk
is then performed on the space-of-descent graphs, using
the Metropolis acceptance criterion. Completely typed

representative pedigrees are obtained by sampling, in
numbers proportional to their true likelihood, from this
random walk; and these pedigrees are then used to es-
timate the location-score curve for the original pedigree.
Haplotype analysis showed that recombination events
observed with markers D9S1123 and D9S257 defined a
14-cM interval, according to the sex-averaged reference
map (fig. 1) (Broman et al. 1998).

The ARPC locus represents the second AR cataract
locus published and the only one associated with a non-
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congenital progressive cataract. Also, this new ARPC
locus does not correspond to a known candidate cataract
locus in mice or humans. Fifteen genes have been iden-
tified in this interval. None of these appear to have a
role in the maintenance of either lens transparency or
lens metabolism. Under the assumption of a common
founder for both sides of the family, further genetic map-
ping will use a combination of recombination and ho-
mozygosity mapping. Both the progress of the docu-
mentation of the human genome sequence and the recent
identification of other families with AR cataracts will
assist us in narrowing the disease interval and identifying
the ARPC gene.

The leading cause of blindness in most countries is
cataracts. The hypothesis that Mendelian inheritance
can account for a significant portion of age-related cat-
aracts provides a tremendous incentive to identify as
many cataract genes as possible, to better understand
the biology of lens opacification. Molecular character-
ization of AR cataracts is essential to the understanding
of the biology of cataracts and to the designing of novel
therapies. Although the complete prevention of age-
related cataracts is unlikely, the simple ability to delay
lens opacification could reduce cataract-related blind-
ness significantly (Wilson 1980).
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