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Deficiency of smarcal1 causes cell cycle arrest and developmental abnormalities
in zebrafish
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Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive
multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow
failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the
biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear. In this work, we
cloned the zebrafish homologue of the human SMARCAL1 gene and found that smarcal1 regulated cell cycle
progression. Morpholino knockdown of smarcal1 in zebrafish recapitulated developmental abnormalities in
SIOD patients, including growth retardation, craniofacial abnormality, and haematopoietic and vascular
defects. Lack of smarcal1 caused G0/G1 cell cycle arrest and induced cell apoptosis. Furthermore, using
Electrophoretic Mobility Shift Assay and reporter assay, we found that SMARCAL1 was transcriptionally
inhibited by E2F6, an important cell cycle regulator. Over-expression of E2F6 in zebrafish embryos reduced
the expression of smarcal1 mRNA and induced developmental defects similar to those in smarcal1
morphants. These results suggest that SIOD may be caused by defects in cell cycle regulation. Our study
provides a model of SIOD and reveals its cellular and molecular bases.
cted at School of Pharmacy,
1200 Cailun Road, Shanghai

21 54921735.
estdu@ion.ac.cn (J. Du).

ll rights reserved.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Schimke Immuno-Osseous Dysplasia (SIOD) is an autosomal
recessive multisystem developmental disease characterized by
growth failure with short stature, T-cell deficiency with recurrent
infection, bone marrow failure, anemia, renal failure, cardiovascular
disease, hypertension and stroke in the first decade of the patient's
life (Boerkoel et al., 2002; Bokenkamp et al., 2005; Clewing et al.,
2007b). SIOD is caused by the mutations in SMARCAL1 (swi/snf
related, matrix associated, actin-dependent regulator of chromatin,
subfamily a-like 1), which encodes a chromatin remodeling protein
(Coleman et al., 2000). However, the function of SMARCAL1 and the
cellular and molecular mechanisms underlying SIOD remain to be
elucidated.

SMARCAL1 is homologous to the SWI/SNF chromatin remodeling
proteins and the SF2 family of helicases (Boerkoel et al., 2002;
Coleman et al., 2000). SWI/SNF family complexes regulate DNA repair,
DNA replication, DNA recombination and transcriptional activity
through DNA methylation, DNA acetylation, ubiquitination and phos-
phorylation, consequently regulating cell cycle (Gangaraju and
Bartholomew, 2007; Huang et al., 2003; Kadam and Emerson,
2002). SWI/SNF molecules such as excision repair cross-complemen-
tation (ERCC), α thalassemia X linked mental retardation (ATRX),
brahma-related gene 1 (BRG1) and brahma (BRM) are involved in
many developmental processes including cell proliferation, differen-
tiation, apoptosis and homeostasis. Mutations in these genes cause
tumorigenesis and human developmental diseases (Cho et al., 2004;
Huang et al., 2003; Wang et al., 2007). SMARCAL1 is an ATP-driven
annealing helicase (Yusufzai and Kadonaga, 2008), but its cellular
function has not been examined. The large number of tissue and organ
defects in SIOD patients suggests that SMARCAL1 plays an array of
essential roles during development. Clinical studies of SIOD show that
patients have normal UV sensitivity and rates of chromosome
breakage, indicating no defect in p53-dependent DNA repair follow-
ing gamma radiation (Boerkoel et al., 2000). However, patients show
defects in T-cell proliferation in response to mitogens such as
interleukin-2, phytohaemagglutinin and concanavalin A. Anemia
patients do not respond to erythropoietin. Patients with bone marrow
failure do not respond to stem cell factor and those with growth
retardation are not improved with growth hormone supplementation
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(Boerkoel et al., 2000). Those clinical findings imply that SIOD is
mainly due to dysfunction in cell proliferation. Besides, some other
aspects of SIOD may be related to the defects in cell differentiation,
cell survival, cell growth and homeostasis and other developmental
processes (Boerkoel et al., 2002; Clewing et al., 2007a; Elizondo et al.,
2006), indicating that SMARCAL1 is involved in SIOD through
complicated mechanisms.

An animal model greatly facilitates the study of SMARCAL1
functions and the mechanisms underlying SIOD. However deletion
of mouse Smarcal1 and drosophila homologues Marcal1 do not
phenocopy the symptoms of SIOD patients (KS Cho et al., in
preparation). The external and rapid development and optical clarity
during embryogenesis make zebrafish a powerful vertebrate model
for in vivo dissecting mechanisms of clinically relevant developmental
processes and diseases, particularly hematopoiesis, angiogenesis and
T-cell development (Amatruda and Zon, 1999; Dooley and Zon, 2000;
Langenau and Zon, 2005; McReynolds et al., 2007), all of which are
impaired in SIOD. Gene knockdown by morpholino oligonucleotides
(MO) has been demonstrated to be an efficient method of gene
targeting during early development of zebrafish (Gamse et al., 2002;
Nasevicius and Ekker, 2000).

In the present study, we cloned the zebrafish homologue of the
human SMARCAL1 gene and found that deficiency of zebrafish smar-
cal1 caused developmental abnormalities like those found in SIOD
patients. Down-regulation of smarcal1 expression caused cell prolif-
eration defects with the cell cycle arrested at G0/G1 stage, and
induced cell apoptosis. Furthermore, we found that smarcal1 is a
direct target of cell cycle regulating transcription factor E2F6. These
results shed light on the function of smarcal1 and the cellular and
molecular bases for SIOD.

Materials and methods

Zebrafish strains

AB and Tg (fli1:GFP) zebrafish were obtained from Zebrafish
International Resource Center (Eugene, Oregon, USA). Fish were
housed in an automatic fish housing system (ESEN, China) at 28 °C.

5′and 3′ RACE

Total RNA was extracted from the adult wild-type (WT) zebrafish
head. The TakaRa RACE cDNA amplification kit was used according to
the protocol provided by the manufacturer to perform 5′ and 3′ RACE
(rapid amplification of cDNA ends). The 5′ RACE primers are outside
5′-ACTTTACCGCGTACTTCAAATG-3′ and inside 5′-GGCATGCGCATTT-
CAATATA-3′; 3′RACE primers are outside 5′-CCATGCAGACCTCATCC-
TAGT-3′ and inside 5′-CAAAAGCATTCCCTCCAAA-3′. The RACE
Table 1
Real-time PCR primer sequences.

Gene Acc. no. For

β-actin NM_131031 TGA
cyclin A2 NM_152949 GCT
cyclin B1 NM_131513 GCT
cyclin D1 NM_131025 CAA
cyclin E NM_130995 GG
p21 AL912410 TGG
cdkn1b NM_212792 GTC
cdkn1c NM_0001002040 GCT
gata1 NM_131234 CAG
beta E1 globin NM_198073 CAT
runx1 NM_131603 ACT
smarcal1 EU655703 ATC
human SMARCAL1 NM_014140.2 CAG
human β-ACTIN NM_001101 GAA
products were cloned into pMD18-T vector (TakaRa, Dalian, China)
and sequenced.

Morpholinos

Antisense smarcal1 (ATG-blocking) MO1 TTCTGGAGTCAGACTCA-
CAGACATC, smarcal1 (splice-blocking) MO2 GCTGAGTCTGTAAAGAT-
GAGCATAA, mdm2 MO CTCTGTTGCCATTTTGGTAGTTATC and p53
(ATG-blocking) MO GCGCCATTGCTTTGCAAGAATTG (Gene Tools,
Philomath, OR, USA) were designed. The standard control MO was
used as a control. One nl (8 ng) smarcal1 MO1, smarcal1 MO2, p53
MO, 3 ng of mdm2 MO or equal amount of control MO was
microinjected into each 1-2 cell stage embryo.

RT-PCR

RNeasy Mini kit (QIAgen) was used to isolate total RNA from ten
uninjectedWT embryos and ten embryos injected with 1 nl MO. After
treatment with DNase, 2 μg RNA was reverse-transcribed using
Moloney murine leukemia virus (MMLV) Reverse Transcriptase
(Promega). TakaRa Taq (TakaRa) was used for PCR for 30 and 26
cycles with smarcal1 primers and β-actin primers, respectively.
Smarcal1 primers for 453 bp product are 5′-TCAAACCTCTGGAAGG-
GATG-3′ (sense) and 5′-CTCTCTGGAAAGGCATGAGG-3′ (antisense).
Smarcal1 exon1/exon4 primers are 5′-TTGTGTCAGTAAGCGCCTGT-3′
(sense) and 5′-CATCCCTTCCAGAGGTTTGA-3′ (antisense). β-actin
primers for 559 bp product are 5′-CACCTTCTACAATGAGCTGCGTGTT-
3′ (sense) and 5′-GATACCGCAAGATTCCATACCCAAG-3′ (antisense).
Human SMARCAL1 primers are 5′-AGGGGAGACGTAAAGCTGTCC-3′
(sense) and 5′-AGACCATCCAAGCCATCTGC-3′ (antisense). Human β-
ACTIN primers are 5′-TGGATCAGCAAGCAGGAGTATG-3′ (sense) and
5′-TCAAGAAAGGGTGTAACGCAACT-3′ (antisense).

Real-time RT-PCR

Total RNA from WT and MO injected embryos was extracted
using the RNeasy Mini kit (QIAgen, Germany). The amount of
reversely transcribed cDNAs was normalized with the real-time ABI
7500 Cycler using β-actin as a reference. Primer sequences are listed
in Table 1.

Constructs

The full-length human SMARCAL1, zebrafish smarcal1, zebrafish
silent mutation smarcal1 and dp1 were cloned into pcDNA3.1 V5/His
C by RT-PCR. Zebrafish smarcal1 5′UTR-5′cds was cloned into pEGFP-
1. Human SMARCAL1 reporter plasmids were cloned into pGL3. The
453 bp zf smarcal1 PCR product was cloned into pGEM-T vector for
ward primer Reverse primer

CAACGGCTCCGGTATG TTCTGTCCCATGCCAACCAT
TTTGGCTTCGAAGTTTGA TTGTGTACGTGTCGTCAGTGATG
TATGCCCTGACCCTGAA GCATCACAGGAACCAGCTCAT
GCCCTCCCTCCATGAT GCAACTGTCGGTGCTTTTCAG

GCTGAAGTGGTGTGATTTG GAGCTGCCTGCTTCACGAA
AGAAAACCCCAGAGAAGAG GACGCTTCTTGGCTTGGTAGA
CGACACCCACATAAACACA CATCGAAGCGACGACAATGA
CACGGCATTGACTTTTAGA CGCTCCAGATTGCTTGATACG
CCACTGGAGGAGTTTACG TGAATAGAGCGCTGCTGAACTG
CGTGTACCCCTGGACTCA GTTTTACCGTGGGCAGCAA
GGCGCTGCAACAAGAC TCATCATTTCCCGCCATCA
AACTCCAGGACCAAAGCA TTCTCCTGGGATTTGTTGTGGTA
CTATGCCGGTCCTAAAGG GACTGCGATGATCTGCGTGTA
GGATTCCTATGTGGGCGA CATGTCGTCCCAGTTGGTGA



Table 2
Primer sequences used in PCR for constructs.

Construct 5′ primer 3′ primer

pcDNA3.1 AAGCTTGATGTCCTTGCCTCTTACAGAGGAG GGATCCGACAGGGGAGACGTAAAGCTGTCC
hSMARCAL1 (HindIII) (BamHI)
pcDNA3.1 GGATCCAATGTCTGTGAGTCTGACTCC GAATTCCTGGGTCCTGATCCATCAAAG
zf smarcal1 (BamHI) (EcoRI)
pcDNA3.1 GGATCCAATGAGTGTGTCTCTGACTCCAGAACAGCAG GAATTCCTGGGTCCTGATCCATCAAAG
zf silence smarcal1 (BamHI)a (EcoRI)
pcDNA3.1 GGATCCCCATGGCCAAAGATGCTGGTCTGAT GTCGACGTCCTCGTCGTCGTTTTCATCAAAC
zf dp1 (BamHI) (SalI)
pEGFP AAGCTTCTACCCCTCGCGGTAATGTAAAAAT ACCGGTCGCTGCTGTTCTGGAGTCAGACTCA
zf smarcal1 5UTR (HindIII) (AgeI)
pGL3 GGTACCTAACCGTCCACTCGGAAGAC AGATCTCACCTCCAAACTCCCCAGATC
hSMARCAL1 promoter1 (KpnI) (BglII)
pGL3 GGTACCGAGTTTGGAGGTGCAGGAGA AGATCTATGGCGTGACACTTGCTAACAT
hSMARCAL1 promoter2 (KpnI) (BglII)

a Bold characters indicate mutated nucleotides.
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whole-mount in situ hybridization. The primers are listed in Table 2 .
In situ plasmids of rag1 and βE1-globin were obtained from Dr. R.
Patient (Gering and Patient, 2005), and gata1, gata2, l-plastin, pu.1
and mpo plasmids were obtained from Dr. N. Itoh (Yamauchi et al.,
2006). E2F1-5 expression constructs were obtained from Dr. R.
Bernards and E2F6 construct was obtained from Dr. S. Gaubatz.

Whole-mount in situ hybridization (WISH)

WISH was performed as described (Koshida et al., 1998).
Digoxigenin (Roche, Mannheim, Germany) labeled cRNA probes
were synthesized from linearized plasmids by in vitro transcription.
Stained embryos were imaged with Olympus SZX9 Zoom Ztereo
Microscope (Japan).

Smarcal1 mRNA rescue experiments

The capped full-length smarcal1RNA with silent mutations was
synthesized using a T7 RNA polymerase and mMessage mMachine
high-yield capped RNA transcription kit, according to the manufac-
turer's protocols (Ambion, Austin TX). For the rescue experiment,
each 1–2 cell stage embryo was injected with 200 pg synthesized
RNA.

Analysis of cell cycle

To analyze cell proliferation in the zebrafish, embryos were
incubated with 10 mM bromodeoxyuridine (BrdU) as described
previously (Shepard et al., 2004) and were fixed with 4% paraformal-
dehyde (PFA). Then whole-mount immunofluorescence was per-
formed with 1:10 anti-BrdU antibody (Roche) and the secondary
antibodies conjugated to fluorescein (1:10) according to standard
protocols (Shepard et al., 2004). The G2/M phase cells were detected
by immunohistochemistry using a rabbit polyclonal anti-phosphory-
lated histone H3 (pH3) antibody (1:400, Cell Signaling, USA) and
1:500 Alexa red as described previously (Maroon et al., 2002).

Apoptotic cells were determined with the TMR-RED in situ cell
death detection kit (Roche) as previously described (Liu et al., 2003).
The fluorescent signal was visualized and imaged using a Zeiss
LSM510 microscope. Z-stack was superimposed using the extended
focus feature of Zeiss LSM Image Examiner Version 3.2.0.115 software.

Fluorescence Activated Cell Sorting (FACS) was performed
according to a standard protocol (Shepard et al., 2004). Twenty 2
dpf embryos were disaggregated in 500 μl 10% FCS containing DMEM,
and the cell suspensions were passed through a 70 μm filter. After
being spun at 400g for 10 min at 4 °C, liquid was removed. Then cell
pellets were re-suspended in 2 ml propidium iodide (PI) solution
containing 2 μg RNAase, and incubated in the dark at room
temperature for 30 min. Then the cells were immediately analyzed
on FACS Calibur (BD, USA).

Alcian blue cartilage staining

Cartilage was stained with Alcian Blue using a modified protocol
(Robu et al., 2007). Zebrafish larvae were fixed in 4% PFA, and stained
with 0.1% Alcian blue (Sigma) in 70% ethanol and 0.37% hydrochloric
acid for overnight at 4 °C. Then embryos were bleached with 3% H2O2

and 1% KOH for 4 h.

O-dianisidine staining

For staining of hemoglobin, embryos were treated in freshly
prepared O-dianisidine mixture of 2.0 ml o-dianisidine (Sigma,
100 mg/70 ml of ethanol), 0.5 ml of 0.1 M acetate buffer (pH 4.7),
2.0 ml of deionizedwater, and 0.1ml of hydrogen peroxide (30%) ) for
15 min and then fixed in 4% PFA (Iuchi and Yamamoto, 1983).
Embryos were dehydrated in methanol and cleared in 2:1 benzyl
benzoate: benzyl alcohol solution (Ransom et al., 1996).

Western blot analysis

Embryos were homogenized in 2× SDS sample buffer and boiled
for 5 min. Ten micrograms of protein was separated by 10% SDS-PAGE
and transferred to PVDF membrane, blocked for 1 h at room
temperature in 5% non-fat dried milk/PBS-T. 1:2000 of anti-V5
(Invitrogen, USA) and HRP-conjugated secondary antibody were
incubated with membrane for 1 h at room temperature. The
membrane was then washed with PBS-T twice for 10 min each
time, incubated with HRP-conjugated secondary antibody for 30 min
at room temperature, and washed with PBS-T twice for 10 min. The
signals were detected by ECL Plus Western Blotting Detection System
according to the manufacturer's specifications (Amersham, Little
Chalfont Buckinghamshire, England).

Electrophoretic mobility shift assay (EMSA)

The nuclear protein was extracted from E2F1-6 and dp1 co-
transfected 293T cells. The sequences of biotin labeled probes are as
follows:

Site A 5′-GGCTCTGCAGTCGCGCCTGGGGTCAGGGC-3′
Site B 5′-GGAGTGGGGCGTGGCGCCCGCTTACCTTG-3′
Site C 5′-GGGCGTCCATGGCGGAATGGATTTATGG-3′

EMSA was carried out according to a previous report (MacLachlan
and El-Deiry, 2002) using a kit from Pierce (Rockford, IL, USA). Two
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hundred times 4 pmol of unlabeled probe was used to confirm the
specificity of the binding.

Reporter assay

E2F1-6 and dp1 expression plasmids were co-transfected with
reporter constructs. Transfection efficiencies were normalized by
combining 0.5 μg of the relevant plasmids with 0.5 μg of reporter
plasmids and 0.1 μg of pREP7 (Renilla luciferase) reporter (Huang et
al., 2006). All transfections included 1.1 μg of total plasmids and 2 μl
Lipofectamine 2000 (Invitrogen, Carlsbad, CA) per 0.5 ml of DMEM.
Transfection solution was added to 293T cells for 4 h and then was
replaced by culture medium. The cells were harvested for determi-
nation of luciferase activity 48 h later using the Dual-Luciferase
Reporter Assay System (Promega, Madison, WI). The transfection
efficiency was normalized by Renilla luciferase activity. All the
transfection experiments were performed in triplicate and repeated
at least two times.

Phylogenetic tree construction

The phylogenetic tree was constructed by aligning the amino acid
sequences of most published Smarcal1 proteins with neighbor-
joining (Kumar et al., 2004) and maximum likelihood algorithms
(Felsenstein, 2008). The accession numbers of proteins used in the
phylogenetic analysis are: Homo sapiens NP_054859.2, Pan troglo-
dytes XP_516076.2, Macaca mulatta XP_001086469.1, Canis familiaris
XP_536062.2, Bos Taurus NP_788839.1, Rattus norvegicus
NP_001101692.1, Mus musculus NP_061287.1, Xenopus laevis
NP_001089668.1, Xenopus tropicalis NP_001072923.1, Drosophila
melanogaster NP_608883.1, Caenorhabditis elegans NP_498401.2.

Statistical analysis

Data analyses were performed using SPSS12.0 for Windows
statistical program. All data were presented as means±SE. Statistical
analysis was done by one-way analysis of variance (ANOVA).
Differences were considered significant when Pb 0.05.
Fig. 1. Structure and expression of smarcal1. (A) Structural comparison of putative zebrafis
SNF2_N: SNF2 family N-terminal domain; Helicase_C: Helicase superfamily c-terminal doma
vertebrates. (C) RT-PCR detection of maternal and zygotic smarcal1 transcript from 1-cell s
Results

Cloning and expression of zebrafish smarcal1

By searching the Ensemble database (http://www.ensembl.org/
Danio_rerio/blastview) with amino acid sequences of human SMAR-
CAL1, we obtained one zebrafish smarcal1 expressed sequenced tag
sequence (XM_001334615). We then isolated the full-length com-
plementary DNA from adult zebrafish head cDNAwith 5′ and 3′ RACE.
A 3083-bp zebrafish smarcal1was obtained, in which a poly(A) tailing
signal AATAAA is located at the 3′ terminus from nucleotide 3055 to
3060. Zebrafish smarcal1 cDNA has been deposited in GenBank under
the accession no. EU655703.

Using the zebrafish smarcal1 cDNA sequence to BLAST the
Ensemble Zebrafish Genomic Sequence Project database, we found
that the gene is located on Chromosome 20. Full-length zebrafish
smarcal1 encodes a putative Smarcal1 protein of 807 amino acids.
Sequence similarity comparison indicated that zebrafish putative
Smarcal1 protein has 62.2% identity and 78.5% similarity to human
SMARCAL1. Zebrafish Smarcal1 has all domains found in mammalian
SMARCAL1 proteins (Fig. 1A), including two HepA-related protein
(HARP) domains at N-terminus that exhibit single-stranded DNA-
dependent ATPase activity, one SNF2 family N-terminal (SNF2_N)
domain that involves in transcription regulation, DNA repair, DNA
recombination and chromatin unwinding, as well as one helicase
superfamily C-terminal (Helicase_C) domain near the C terminus
(Supplementary Fig. S1).

A phylogenetic tree was constructed by aligning the amino acid
sequences ofmost published Smarcal1 proteins with neighbor-joining
(Kumar et al., 2004) andmaximum likelihood algorithms (Felsenstein,
2008). Zebrafish Smarcal1 is conserved within vertebrates (Fig. 1B).
Comparison between zebrafish Smarcal1 and its homologues in other
species shows that it shares 78.5%, 68%, 69%, 74.4%, and 76.5%
similarity to human, mouse, rat, X. laevis and X. tropicalis Smarcal1,
respectively. Taken together, smarcal1 gene is structurally conserved
among zebrafish and mammals.

With use of RT-PCR, smarcal1 transcript was readily detected
through 1-cell stage to the adult (Fig. 1C). Whole-mount in situ
h Smarcal1 with human and mouse SMARCAL1 protein. HARP: HepA-related protein;
in. (B) Phylogenetic analysis shows that zebrafish Smarcal1 protein is conserved among
tage to adult zebrafish.

http://www.ensembl.org/Danio_rerio/blastview
http://www.ensembl.org/Danio_rerio/blastview
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hybridization (WISH) confirmed the presence of maternal smarcal1
mRNA at 1-cell stage embryos (Supplementary Fig. S2A). The
expression was retained at a high level during blastula and
gastrulation, which is at approximately 6 h post-fertilization (hpf)
(Supplementary Fig. S2B, C). Around segmentation stages, the smar-
cal1 transcript, presumably the zygotic mRNA, appeared in a
ubiquitous manner, and was subsequently enriched in the central
nervous system (CNS) and eyes as well as the intermediate cell mass
(ICM) from the 18-somite stage onwards (Supplementary Fig. S2D, G).

Knockdown of smarcal1 causes abnormal development in zebrafish

To mimic SIOD symptoms, we designed two MOs to knock down
zebrafish smarcal1. MO1 is against zebrafish smarcal1 ATG to block
smarcal1 protein translation, and MO2 is against intron1 and exon2
junction to block the splice of smarcal1 mRNA (Fig. 2A). To assay the
efficiency of smarcal1 MO1, we first made an expression construct
that links smarcal1 5′ UTR and 5′ cds to GFP. Injection of in vitro
transcribed mRNA into 1–2 cell stage embryos strongly induced GFP
signal at 24 hpf (Fig. 2B). However, GFP signal was significantly
inhibited by co-injection with smarcal1 MO1 (Fig. 2B). To further
confirm MO1 efficiency, we made an expression construct of full
coding region of zebrafish smarcal1 with V5/His tags. Western blot
analysis showed that injection of in vitro transcribed mRNA into 1–2
cell stage embryos (200 pg/embryo) efficiently induced Smarcal1
protein at 24 hpf (Fig. 2C). By co-injecting it with smarcal1 MO1
(8 ng/embryo), the signal was significantly suppressed (Fig. 2C),
indicating that MO1 can recognize smarcal1 mRNA efficiently (Eisen
and Smith, 2008). Next, we tested the efficiency of MO2, which was
designed to retain exon2. Using primers in exon1 and exon4, a 640 bp
band was detected from WT embryos, but a 570-bp product was
yielded in the MO2 morphants (Fig. 2D), suggesting MO2 efficiently
blocks splicing of smarcal1 mRNA.
Fig. 2. Design and efficiency of smarcal1MOs. (A) Design of smarcal1MOs and RT-PCR prime
in (D). (B) Embryos with injection of smarcal1 5′ UTR-5′cds-GFP mRNA (50 pg per embryo)
with 5′ UTR-5′cds-GFP mRNA (50 pg per embryo) blocked fluorescence signal. (C) Knockdo
full-length zebrafish smarcal1 injected embryos (200 pg per embryo) showed the induct
translation. A 105 KD non-specific band and β-actin serve as loading control. (D) RT-PCR a
embryos and MO2 deleted about 70 nucleotides of smarcal1 mRNA. In each group, 20 embr
We tested a series of dosages of MO1 (1 ng, 2 ng, 4 ng, 6 ng per
embryo) and found no obvious defect in zebrafish gross morphology
at the time points we examined (24 hpf, 2 dpf and 4 dpf). Among
embryos injected with 8 ng smarcal1 MO1, we also did not observe
obvious gross morphological abnormality during the first 24 h
(Figs. 3A–C). However, at 2 days post-fertilization (dpf), developmen-
tal defects were readily observed in smarcal1 MO1 morphants with
shorter trunk (32/109, 2.17±0.10 μm compared with 2.59±0.09 μm
in control MO injected embryos, Pb0.001), un-consumed yolk sac
(99/109), less dark pigment (105/109) and heart edema (101/109)
when compared to wild type (WT) and control MO injected embryos.
Examples are shown in Figs. 3D–F and the percentage of embryos
affected by the injection is shown inSupplementary Fig. S3B. By 4 dpf,
the smarcal1morphants had severe gross morphological defects (data
not shown). We observed death in part of smarcal1morphants (death
70/99). The rest of the morphants (growth delayed) could not hatch
(26/29), and displayed heart edema (28/29) and shorter trunk and
smaller head and eyes (23/29). Also, when compared to the heart rate
of the control MO injected embryos (128.9±6.5 times/min,Supple-
mentary movie 1), the morphants exhibited lower heart rates (24/29,
59.2±20.2 times/min,Supplementary movie 2).

In order to confirmMO1 specificity,we then testedMO2 effects.We
found that like MO1, MO2 did not cause abnormal development at
24 hpf but led similar phenotypes at 2 dpf (Supplementary Fig. S3A, B).
To further rule out the non-specific effects of smarcal1 MOs, we
introduced five-nucleotide silent mutations into the full-length
zebrafish smarcal1 mRNA (Eisen and Smith, 2008). The primers are
shown in Table 2. Injection of 200 pg silent smarcal1 mRNA alone did
not cause phenotype in embryos (data not shown). We co-injected
200 pg of this mRNA with smarcal1 MO1 and found that the
developmental defects mentioned above were largely corrected
(Supplementary Fig. S3A, B). Similarly, co-injection of smarcal1
mRNA and MO2 partially rescued the defects in MO2 morphants
rs for detecting the splice-blocked smarcal1mRNA. P1 and P2 indicate the primers used
displayed green fluorescence, whereas co-injection of smarcal1 MO1 (8 ng per embryo)
wn efficiency of smarca11 MO1 analyzed by Western blot with V5 antibody. V5-tagged
ion of 85 KD protein, whereas co-injection with 8 ng of MO1 inhibited the protein
nalysis of splice-blocking efficiency of MO2. A 640 bp product was amplified from WT
yos were pooled for western blot and RT-PCR experiments.



Fig. 3. Knockdown of smarcal1 causes developmental defects in zebrafish. (A–F) The gross morphology of 1 dpf and 2 dpf smarcal1 morphants. The morphology of uninjected and
control MO injected embryos (8 ng per embryo) was largely normal. By 2 dpf, the embryos injected with smarcal1MO (8 ng per embryo) showed growth defects including less dark
pigment, unconsumed yolk sac and heart edema (F). (G–I) O-dianisidine staining of 2 dpf embryos showed reduced hemoglobin-positive cells on the yolk in smarcal1morphants (I).
Anterior is to the left.
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(Supplementary Fig. S3B). These results confirmed the specificity of
smarcal1 MOs.

Alcian blue staining revealed that cartilage developed normally in
WT and control MO injected zebrafish larvae at 5 dpf (Supplementary
Fig. S4A–D). In contrast, severely reduced growth of pharyngeal
cartilage was found in smarcal1 morphants (Supplementary Fig. S4E,
F). The ceratobranchials 3–5 were absent, whereas the sizes of the
dorsal hyosymplectic cartilage, the ventral ceratohyal and the jaw
palatoquadrate were reduced (Supplementary Fig. S4E, F), suggesting
that the maturation of arch cartilage requires smarcal1.

SIOD patients suffer migraine, cerebral ischaemia and transient
ischemic attacks, all of which may be the result of arteriosclerosis in
the first decade of life, suggesting defects in blood vessel formation
and/or maintenance. We then examined whether knockdown of
smarcal1 causes developmental defects in vasculogenesis and/or
angiogenesis. At 2 dpf zebrafish embryos, the intact dorsal aorta and
axial circulation were observed in smarcal1 morphants (data not
shown), suggesting that the smarcal1 is not essential for vasculogen-
esis. The formation of the parachordal vessel (PAV) and sub-intestinal
vessel (SIV) is a process of angiogenesis (Isogai et al., 2003; Nicoli and
Presta, 2007). Microangiography showed that both PAV and SIV were
sprouted normally at uninjected and control MO embryos, whereas
they were absent in smarcal1 morphants (19/20) at 3 dpf (Supple-
mentary Fig. S4G–I), suggesting that smarcal1 is required for
angiogenesis.

Knockdown of smarcal1 impairs hematopoietic development

Using O-dianisidine staining, we found that there were fewer red
blood cells in smarcal1morphants at 2 dpf (35/40) (Fig. 3I) compared
to uninjected (Fig. 3G) and control MO injected embryos (Fig. 3H),
suggesting an impaired erythrogenesis caused by knockdown of
smarcal1.

To address effects of smarcal1 on hematopoiesis, WISH was
performed to examine the expression of blood markers in smarcal1
morphants. The expression of scl and gata2, the hemangioblast and
hematopoietic stem cell markers (Amatruda and Zon, 1999;
Patterson et al., 2007; Yamauchi et al., 2006), respectively, remained
intact in smarcal1 morphants (Figs. 4A, B, and E, F), indicating that
smarcal1 is not required for proliferation of hemangioblasts and
hematopoietic stem cells. Although the initiation of primitive
erythropoiesis is normal, the expression of gata1, that determines
the fate of erythroid progenitor cells (Amatruda and Zon, 1999), was
markedly reduced in smarcal1 morphants (28/30, Figs. 4C, G).
Consistently, the expression of mature erythrocyte marker βE1-
globin was also reduced (32/33, Figs. 4D, H). Real-time RT-PCR
confirmed that gata1 and βE1-globin mRNA levels were significantly
reduced at 24 hpf smarcal1 morphant (Fig. 4I). These results indicate
that deficiency of smarcal1 causes abnormal proliferation and/or
differentiation of erythroid progenitors. To test whether the primitive
myelopoiesis is impaired in smarcal1 morphants, the myeloid
markers were assayed in 18 hpf embryos. The expressions of myeloid
progenitor marker pu.1, monocyte/macrophage marker l-plastin and
granulocyte markermpo (Bennett et al., 2001) were generally normal
(Figs. 4J, O), indicating that smarcal1 is not required for the primitive
myelopoiesis.

Next, we examined whether deficiency of smarcal1 affects
definitive hematopoiesis. RT-PCR results showed that the expression
of definitive hematopoietic marker runx1 (Kalev-Zylinska et al., 2002;
Lam et al., 2009) was suppressed by smarcal1 knockdown at 24 hpf
embryos (Fig. 4P). WISH showed the expression of rag1, a thymic
marker (Langenau and Zon, 2005), was reduced (23/25, data not
shown), suggesting the loss of the thymocytes in smarcal1morphants.
The defects in definitive myelopoiesis were examined at 30 hpf
embryos. The expressions of pu.1 (38/40, Figs. 4Q, T), l-plastin (37/37,
Figs. 4R, U) and mpo (32/36, Figs. 4S, V) were suppressed at ICM of
30 hpf smarcal1 morphants.

Knockdown of smarcal1 reduces cell proliferation and induces apoptosis

The development of the organisms depends on the balance
between cell proliferation and apoptosis. Based on many lines of
SIOD clinical evidence, we hypothesized that smarcal1 is involved in
the cell cycle regulation. To examine cell proliferation changes in
smarcal1 deficient embryos, we incorporated the S-phase marker of
cell cycle BrdU into the DNA of embryos and found that the number of
BrdU-positive nuclei in 20 hpf smarcal1 morphants were largely
reduced (Figs. 5A, B, E, F), even though therewas no grossmorphology



Fig. 4. Knockdown of smarcal1 reduces expression of hematopoietic genes. (A–H) WISH shows that expression of hemangioblast marker scl and hematopoietic stem cell marker
gata2 were not affected by knockdown of smarcal1, whereas erythroid progenitor marker gata1 and erythroid marker β-E1 globin were significantly reduced. All embryos are in
lateral view with anterior to the left. (I) Real-time RT-PCR results from 24 hpf embryos show that smarcal1 MO significantly reduced the expression of gata1 and β-E1 globin.
(J–O) The expressions of myeloid progenitor marker pu.1, macrophage marker l-plastin and heterophil granulocyte marker mpo were not obviously changed by knockdown of
smarcal1 at 18 hpf. (P) Real-time RT-PCR shows reduced expression of definitive erythroid marker runx1 in 24 hpf MO1 injected embryos. (Q–V) Knockdown of smarcal1
suppressed definitive hematopoiesis.. (Q–S) show the expression of pu.1, l-plastin and mpo at definitive myeloid cells and (T–V) show the markers were down-regulated by
knockdown of smarcal1 at 30 hpf. The real time PCR results were obtained from at least three experiments. β-actin mRNA was measured as an internal control. Data are
presented as means ± SE. ⁎Pb 0.05.
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change at this time point (see Fig. 3C). By 2 dpf, a significant reduction
of BrdU-positive nuclei was also observed in the head, eyes, yolk sac,
ICM and tail in smarcal1 morphants (Figs. 5C, D, G, H). The
quantification of BrdU-positive nuclei in 2 dpf embryo head is
shown at Fig. 5I. We further examined changes in the number of
G2/M phase cells using immunostaining of phosphorylated histone 3
(pH3), which is phosphorylated in G2/M and is dephosphorylated in
anaphase (Hendzel et al., 1997). As we found in BrdU staining, the
numbers of pH3-positive cells were also significantly reduced by
knockdown of smarcal1 at both 20 hpf and 2 dpf embryos (Figs. 5J, Q).
The quantification of pH3-positive nuclei in 2 dpf embryo head is
shown in Fig. 5R. To assay the cell cycle, DNA content of the cells from
2 dpf embryos was analyzed by Fluorescence Activated Cell Sorting
(FACS). Propidium iodide (PI) staining showed that uninjected and
control MO embryos displayed 62% and 60% of cells at G0/G1, 15% and
16% at S, and 23% and 23% at G2/M phase, respectively, whereas the
smarcal1 morphants exhibited cell accumulation at G0/G1 phase
(91%) and reduction at both S (5%) and G2/M (4%) phase (Fig. 5S).
These results indicate that cell cycle was arrested at G0/G1 phase in
smarcal1 morphants.



Fig. 5. Knockdown of smarcal1 disrupts the cell cycle. (A–H) Confocal images of whole-mount immunostaining of BrdU show S-phase cells. (B, D, F, H) are higher magnification of the
boxed regions in (A, C, E, G), respectively, which indicate BrdU-positive nuclei in the head. (I) The quantification of BrdU-positive nuclei in the head of uninjected, control MO and
smarcal1 MO1 embryos at 2 dpf. The data was counted from three individual embryos. ⁎Pb0.05. (J–Q) Confocal images of whole-mount immunostaining of pH3 show G2/M phase
cells. (K, M, O, Q) are higher magnification of the boxed regions of (J, L, N, P), respectively, which indicate pH3-positive nuclei in the head. (R) The quantification of pH3-positive
nuclei in the head of uninjected, control MO and smarcal1MO1 embryos at 2 dpf. The data was counted from three individual embryos. ⁎⁎Pb0.01. regions of S. (S) FACS analysis with
PI staining of DNA contents shows that uninjected and control MO injected embryos had normal cell cycle, whereas the smarcal1 morphants showed cell accumulation at G0/G1
phase and cell reduction of S and G2/M phase at 2 dpf. (T–Z') Apoptosis analysis with TUNEL staining of smarcal1morphants at 14 hpf (T, X), 20 hpf (U, Y) and 36 hpf (V, Z). (W, Z')
are higher magnification of the boxed regions in (V) and (Z), respectively. All experiments were repeated at least three times.
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To examine whether the deficiency of smarcal1 causes apoptosis,
TUNEL was used to detect apoptotic cells in zebrafish embryos. While
the number of TUNEL positive cells in 14 hpf embryos remained
unchanged (Figs. 5T, X), it was significantly increased in 20 hpf
smarcal1 morphants (Figs. 5U, Y), even though there was no obvious
abnormality of gross morphology at this time point (see Fig. 3C). By
36 hpf, the number of positive cells was dramatically increased in the
brain, eyes, trunk, tail and ICM (Figs. 5V, W, Z, Z'), suggesting that the
developmental defects of smarcal1morphantsmay be partially caused
by the increase of apoptosis.

The cell cycle transition depends on the function of CDK-cyclin
complexes. To explore whether deficiency of smarcal1 causes
changes in the expression of cell cycle genes, we assayed the
expression of a group of cyclins by real-time RT-PCR. We found that
mRNA levels of cyclinA2, that promotes G1 to S phase transition
(Lehner and O'Farrell, 1989; Sprenger et al., 1997), were reduced
significantly in both 1 dpf and 2 dpf smarcal1 morphants (Fig. 6A).
The expression levels of cyclinB1, cyclinD1 and cyclinE were not
altered markedly at 1 dpf, but the mRNA levels of cyclinD1 were
increased at 2 dpf morphants. These results are consistent with
reduction of BrdU-positive cells in smarcal1 morphants ( Fig. 5I). The
cell cycle is also negatively regulated by cyclin-dependent kinase
inhibitor proteins (kips/cips) p21cip1 (p21), p27kip1 (cdkn1b) and
p57kip2 (cdkn1c), all of which are expressed at G1 phase (Vidal and
Koff, 2000). It is known that p21cip1 inhibits the cell cycle transition
from G1 to S phase and controls the cell cycle exit to G0. We found
that p21 mRNA level was greatly increased at 1 dpf and 2 dpf
embryos by knockdown of smarcal1 (Fig. 6B), whereas p27kip1 and



Fig. 6. Knockdown of smarcal1 changes the expressions of cell cycle-related genes. Real-time PCR experiments show that mRNA levels of cyclinA (A) was suppressed and p21 (B) was
increased by smarcal1 MO at 1 dpf and 2 dpf. The levels of cyclinB1, cyclinD1, cyclinE were not changed at 1 dpf, whereas the expressions of cyclinD1 increased at 2 dpf (A). The
expression levels of cdkn1b (p27) and cdkn1c (p57) remained no significant change (B). The results were obtained from at least three experiments. β-actin mRNA was measured as
an internal control. Data are presented as means± SE. ⁎Pb 0.05; ⁎⁎Pb 0.01.
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p57kip2 expressions were not significantly changed (Fig. 6B).
Collectively, our data imply that G0/G1 phase arrest in smarcal1
morphants may be caused by reduced expression of cyclinA2 and
increased expression of p21.

Previous studies suggested that 15–20% of MOs used in zebrafish
can induce neural death at 24 hpf or earlier stages through the
activation of p53 signaling (Ekker and Larson, 2001; Robu et al., 2007).
Co-injection with p53 MO could rescue the neural death caused by
those MOs (Bill et al., 2008; Gongal and Waskiewicz, 2008; Jia et al.,
2008; Robu et al., 2007). Thus we co-injected p53 MO with smarcal1
MO to exclude the possibility that smarcal1 MO may have such off-
targeting effects on p53 signaling. We observed that knockdown of
p53 did not cause obvious developmental defects (data not shown),
consistent with that p53 mutations did not affect the embryonic
development in zebrafish (Berghmans et al., 2005). We found that the
gross morphology, erythrogenesis and apoptosis of co-injected
embryos were not obviously changed when compared to smarcal1
morphants (Supplementary Fig 5). To test the efficiency of p53 MO,
we injected 3 ng of mdm2 MO and found that mdm2 MO caused early
apoptosis in 24 hpf zebrafish embryos (Supplementary Fig 3C),
consistent with a previous report (Robu et al., 2007). Co-injection of
p53 MO significantly reduced apoptosis induced by mdm2 MO
(Supplementary Fig 3C), indicating p53 MO effectively inhibits p53
signaling, the abnormalities observed in smarcal1 morphants are not
due to the p53 signaling activation, and the apoptosis in smarcal1
morphants may be p53-independent.

SMARCAL1 is down-regulated by E2F6

The involvement of smarcal1 in cell cycle regulation prompted us
to investigate the association between smarcal1 and E2F6, a cell cycle
regulating transcription factor. We used S_Site 1.0 (http://compel.
bionet.nsc.ru/FunSite/SiteScan.html) to search for E2F binding sites
at SMARCAL1 promoter. At human SMARCAL1 promoter, a 869 bp CpG
island, usually associated with gene promoter and found at almost all
house-keeping genes (Cho and Hedrick, 1997), was identified
between −933 to −1801. Three putative E2F binding sites were
found between −1250 to −1261 (site A), −1069 to −1080 (site B)
and−965 to−976 (site C), respectively. In zebrafish, four e2f binding
sites were found (Supplementary Fig. S6). To investigate whether
E2Fs bind to these sites, EMSA was performed with use of biotin
labeled E2F binding probes and nuclear protein extracts from E2F1-6
and dp1 co-transfected 293T cells. While E2Fs were not found to bind
with site B and site C (data not shown), E2F6 but not E2F1-5 bound to
site A (Fig. 7A). This binding was completely reduced by unlabeled
probes (Fig. 7A). The results suggest that SMARCAL1 is a direct target
of E2F6.

To test whether E2F6 activates or suppresses SMARCAL1 transcrip-
tion, SMARCAL1 promoter sequence containing E2F binding sites (P1)
was cloned into pGL3 vector, and the luciferase reporter assay was
carried out. We found that E2F6 significantly suppressed SMARCAL1
transactivity by over-expression of E2F6 (Fig. 7B). In contrast,
transactivity of SMARCAL1 promoter sequence without E2F binding
sites (P2) was not altered (Fig. 7B). To validate this point, SMARCAL1
mRNA level was examined in E2F6 transfected 293T cells by RT-PCR.
Over-expression of E2F6 decreased SMARCAL1 expression (Figs. 7C, D).
These results indicate that E2F6 is a transcriptional suppressor of
SMARCAL1.

To further address whether E2F6 inhibits smarcal1 expression
in vivo, we injected E2F6 mRNA into 1–2 cell zebrafish embryos. E2F6
mRNA injection significantly disrupted zebrafish development
with phenotypes similar to those observed in smarcal1 morphants
(Figs. 7E, F). Consistently, smarcal1 transcription level was markedly
inhibited in E2F6mRNA injected embryos at 1 dpf (Figs. 7G, H). These
results suggest that smarcal1 may play important roles downstream
to E2F6 in cell cycle regulation.

Discussion

Smarcal1 loss of function in zebrafish resembles SIOD symptoms

In this work, we first identified a zebrafish structural and
functional homologue of the human SMARCAL1 gene. Structural
analysis showed that the zebrafish smarcal1 shares 78.5% and 68%
similarity to human and mouse homologues, respectively. This high
degree of sequence similarity indicates functional conservation.
Similar to its human and mouse counterparts (Boerkoel et al., 2002;
Elizondo et al., 2006), zebrafish smarcal1 is expressed ubiquitously at
embryonic stages, implying a wide range of functions of smarcal1
during development.

SIOD patients havemultiple developmental defects such as growth
retardation, lymphopenia, bone marrow failure, anemia, neutropenia,
craniofacial abnormality, renal failure and premature death in their
first decades of life. An animal model is fundamentally important for
understanding the cellular and molecular bases of SIOD and functions
of SMARCAL1. In the present work, we found that knockdown of
smarcal1 in zebrafish caused multi-system developmental defects,
including growth retardation, craniofacial abnormality, reduced
thymic development, and defects in both primitive and definitive
hematopoiesis and angiogenesis. SIOD is considered a postnatal

http://compel.bionet.nsc.ru/FunSite/SiteScan.html
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Fig. 7. smarcal1 is a direct target of E2F6. (A) Demonstration of E2Fs binding to SMARCAL1 promoter by EMSA. EMSA using nuclear protein extracts from E2Fs-dp1 co-transfected
293T cells shows that E2F-dp1 complexes bound to E2F sites in SMARCAL1 promoter. 200 times unlabeled probe was used to compete with the biotin labeled probe. The black
arrowhead indicates the band of specific DNA–protein complexes. The asterisk indicates the band of the unbound probe. (B) Reporter gene assay shows SMARCAL1 transactivity was
specifically inhibited by E2F6. E2F6-dp1 co-transfected with SMARCAL1 reporter plasmids and renilla luciferase activity was measured as transfection control. P1: pGL3-SMARCAL1
promoter1 containing E2F binding sites. P2: pGL3-SMARCAL1 promoter2 without E2F binding sites.⁎Pb0.05. (C) RT-PCR analysis of SMARCAL1 expression in E2F6 transfected 293T
cells. The empty vector of pcDNA3.1 was transfected as a control. PCR was performed for 26 cycles. (D) Real time PCR analysis of mRNA levels in 293T cells in (C). The results
represent three experiments. β-actin mRNA was measured as an internal control. Data are presented as means±SE. ⁎Pb0.05. (E) Embryos injected with E2F6 mRNA (200 pg per
embryo) showed gross morphology defects similar to smarcal1 morphants at 2 dpf. Human SMARCAL1 mRNA (200 pg per embryo) was used as control. (F) Example of E2F6 mRNA
injected embryos. White arrowhead in the bottom image indicates the heart edema. (G) E2F6mRNA injection inhibits smarcal1mRNA expression in zebrafish embryos at 24 hpf but
not at 48 hpf. Human SMARCAL1 mRNA (200 pg per embryo) was used as control. (H) Real time PCR analysis of mRNA levels in embryos in (G). The results represent three
experiments. β-actin mRNA was measured as an internal control. Data are presented as means±SE. ⁎Pb0.05.

98 C. Huang et al. / Developmental Biology 339 (2010) 89–100
developmental disease (Boerkoel et al., 2002), though SMARCAL1 is
expressed in all tissues at high levels in very early stages of human
embryonic development (Deguchi et al., 2008). Similarly, zebrafish
smarcal1 transcript is expressed ubiquitously in the zebrafish embryos
from the 1-cell stage, but gross morphological abnormalities caused
by knockdown of smarcal1 were only observed after 24 hpf. It
indicates that knockdown of smarcal1 in zebrafish can recapitulate
SIOD symptoms.

We provided several lines of evidence to demonstrate the
specificity of smarcal1 MOs. First, two MOs designed to block the
translation and splicing of smarcal1, respectively, led to similar
phenotypes. In contrast, embryos injected with a standard control
MO developed normally. Second, the two MOs could efficiently
knock down smarcal1 (see Fig. 2). Third, full-length smarcal1 with
silent mutations largely rescued the phenotypes of MO1 and
partially rescued the phenotypes of MO2 (seeSupplementary Fig.
S3B). Taken together, zebrafish smarcal1 morphant can serve as an
animal model to study the cellular and molecular mechanisms
underlying SIOD.

Smarcal1 is required for hematopoiesis

In this work, we showed that impaired hematopoiesis is one of the
major defects induced by smarcal1 deficiency. Previous studies have
shown that chromatin remodeling molecules play important roles in
the hematopoietic stem cell self-renewal, multilineage differentiation
(Horsfield et al., 2007; Yoshida et al., 2008), primitive and definitive
alpha-and beta-globin transcription, primitive erythrocyte apoptosis
(Griffin et al., 2008) and T-cell differentiation (Sawalha, 2008),
indicating that chromatin remodeling molecules are important
regulators in hematopoiesis. We demonstrated a link between smar-
cal1 and hematopoiesis during zebrafish development. We found that
the expressions of gata1, beta-E1 globin and runx1 in smarcal1
morphants were suppressed, indicating abnormal proliferation of
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both primitive and definitive erythroid progenitors. Similarly, smar-
cal1 is required for the proliferation of definitive myeloid cells and
lymphocyte since the expressions of pu.1, l-plastin and mpo and rag1
were decreased by knockdown of smarcal1. Our results are consistent
with the findings that SWI/SNF molecules play crucial roles in a wide
variety of developmental processes during hematopoiesis via gene
transcription regulation.

Smarcal1 is required for cell cycle progress

SMARCAL1 encodes an ATPase-dependent chromatin remodeling
molecule that contains all functional domains of SWI/SNF members.
SWI/SNF family chromatin remodeling complexes promote or inhibit
the transcriptional activity and are involved in cell cycle regulation
through DNA methylation, acetylation, ubiqulation and phosphoryla-
tion, DNA repair, DNA replication and DNA recombination (Gangaraju
and Bartholomew, 2007; Huang et al., 2003; Kadam and Emerson,
2002). Recent study has shown that SMARCAL1 has DNA annealing
helicase activity (Yusufzai and Kadonaga, 2008) that may contribute
to the helicity of DNA at gene promoters. DNA superhelicity is a major
regulator of gene expression in bacteria (Cheung et al., 2003; Dai and
Rothman-Denes, 1999; Salmon et al., 2003). Changing the level of
DNA superhelicity could enhance or inhibit gene expression (Lim
et al., 2003). Deficiency of smarcal1may result either in inappropriate
or suppressed gene expression linked to the cell cycle. It implies that
SIOD symptoms may be due to cell cycle defects caused by loss of
SMARCAL1.

Our main finding is the demonstration of involvement of smarcal1
in cell cycle regulation. First, the cell cycle S phase marker BrdU
incorporation and G2/M phase marker phosphorylated histone-3
signal were significantly reduced in smarcal1 morphants. Meanwhile,
FACS experiments showed that the cell cycle was arrested at G0/G1
phase, indicating that deficiency of smarcal1 causes defects in G1/S
phase transition. Second, the expression of the cell cycle molecule
cyclinA2, which promotes G1 to S phase transition (Lehner and
O'Farrell, 1989; Sprenger et al., 1997), was suppressed, while CDK
inhibitor A (p21), which is an inhibitor of G1 to S transition (Vidal and
Koff, 2000), was up-regulated. This indicates that smarcal1modulates
the cell cycle through transcriptional regulation similar to other SWI/
SNF family members (Gangaraju and Bartholomew, 2007; Kadam and
Emerson, 2002). Finally, smarcal1 morphants exhibit p53 indepen-
dent cell death, suggesting the developmental defects of smarcal1
morphants may be partially caused by excessive apoptosis. Thus
smarcal1 is required for cell cycle check point transition, whichmay be
the cellular basis of SIOD.

Smarcal1 is a direct target of E2F6

E2F transcription factors regulate the expression of genes essential
for the cell cycle transition, DNA replication, DNA synthesis, DNA
repair and mitosis, and thus play crucial roles in cell proliferation,
differentiation and apoptosis (DeGregori and Johnson, 2006; Korenjak
and Brehm, 2005; Wu et al., 2001). Deletion of E2Fs causes
hematopoietic progenitor and immune cell deficiency by disruption
of the cell cycle, resulting in anemia and leucopenia (Gabellini et al.,
2006; Korenjak and Brehm, 2005). E2F1-5 serve as both transcrip-
tional activators and suppressors, whereas E2F6 suppresses E2F-
responsive genes (Ogawa et al., 2002; Trimarchi et al., 1998). Our data
demonstrate that smarcal1 is a direct target of E2F6. First, the EMSA
experiment showed E2F6 protein specifically bound to E2F site in
SMARCAL1 promoter, and this binding could be inhibited completely
by an unlabelled probe. Second, reporter gene analysis confirmed that
SMARCAL1 was suppressed by over-expression of E2F6 both in vitro
and in vivo. Third, over-expression of E2F6 reduced transcription
levels of SMARCAL1 both in vivo and in vitro. These results further
support that smarcal1 is a cell cycle regulator.
In summary, we cloned the zebrafish homologue of human
SMARCAL1 gene and found that smarcal1 loss of function recapitulated
the symptoms of SIOD patients with respect to growth retardation,
blood cell deficiency, craniofacial abnormality and angiogenesis
defect. It indicates that zebrafish can serve as an animal model for
studying the mechanism of SIOD. Furthermore, we demonstrated that
smarcal1 is involved in cell cycle regulation during development.
Taken together, our study indicates that SIOD may be caused by cell
proliferation defects and excessive apoptosis resulting from SMAR-
CAL1 mutations.
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